Université de Nice Sophia Antipolis L1 Sciences économiques - Gestion Mathématiques 2 **(DL1EMA2) - Unité U5** Année 2007/2008

Enseignant: J. YAMEOGO

Chargés de TD: F. BARKATS, F.-X. DEHON, J. YAMEOGO

CORRIGÉ SUCCINCT DE LA FEUILLE TD N°2 - semaine du 11/02/2008 (les énoncés sont en bleu)

Exercice 1. (s'habituer à la technique d'intégration par parties)

Calculer les intégrales suivantes:

$$\int_{1}^{27} \sqrt[3]{x} \ln(x) dx, \quad \int_{0}^{\pi} \theta(\cos(\theta) + 1) d\theta, \quad \int_{0}^{1} (6t + 100) e^{-3t} dt.$$

Réponse:

• $\sqrt[3]{x}$ s'écrit encore $x^{\frac{1}{3}}$.

On fait une intégration par parties en posant $u'(x) = x^{\frac{1}{3}}$, $v(x) = \ln(x)$.

Ainsi $u(x) = \frac{3}{4}x^{\frac{4}{3}}$ (par exemple) et $v'(x) = \frac{1}{x}$.

On a alors
$$\int_{1}^{27} \sqrt[3]{x} \ln(x) dx = \left[\frac{3}{4} x^{\frac{4}{3}} \ln(x) \right]_{1}^{27} - \int_{1}^{27} \frac{3}{4} x^{\frac{1}{3}} dx = \left[\frac{3}{4} x^{\frac{4}{3}} \ln(x) \right]_{1}^{27} - \frac{3}{4} \left[\frac{3}{4} x^{\frac{4}{3}} \right]_{1}^{27},$$
soit
$$\int_{1}^{27} \sqrt[3]{x} \ln(x) dx = \left[\frac{3}{4} x^{\frac{4}{3}} (\ln(x) - \frac{3}{4}) \right]_{1}^{27} = \frac{3}{4} 3^{4} \left(\ln(27) - \frac{3}{4} \right) + \frac{9}{16} = \frac{3^{6}}{16} (4\ln(3) - 1) + \frac{9}{16}$$

• On fait une intégration par parties en posant $u'(\theta) = \cos(\theta) + 1$, $v(\theta) = \theta$, de sorte que $u(\theta) = \sin(\theta) + \theta$ et $v'(\theta) = 1$.

On en déduit $\int_0^{\pi} \theta(\cos(\theta) + 1)d\theta = \left[\theta(\sin(\theta) + \theta)\right]_0^{\pi} - \int_0^{\pi} (\sin(\theta) + \theta)d\theta.$ Soit finalement $\int_0^{\pi} \theta(\cos(\theta) + 1)d\theta = \left[\theta(\sin(\theta) + \theta) + \cos(\theta) - \frac{1}{2}\theta^2\right]_0^{\pi} = \frac{\pi^2}{2} - 2.$

• En faisant une intégration par parties, on montre que la fonction $t \mapsto (6t + 100)e^{-3t}$ admet pour primitive $t \mapsto -\frac{1}{3}(6t + 102)e^{-3t}$, d'où $\int_0^1 (6t + 100)e^{-3t} dt = \frac{1}{3}(102 - \frac{108}{e^3})$.

Exercice 2. (étudier une suite d'intégrales définies)

On pose $I_0 = J_0 = \int_1^e \ln(x) dx$, et pour tout entier naturel $n \ge 1$, on pose $I_n = \int_1^e x^n \ln(x) dx$, $J_n = \int_1^e \frac{\ln(x)}{x^n} dx$.

1. Calculer I_0 , I_1 , et J_1 .

Réponse: Une intégration par parties donne $\int_1^e \ln(x) dx = [x \ln(x) - x]_1^e$ (voir l'exemple traité en cours). On a donc $I_0 = J_0 = 1$.

En posant u'(x) = x et $v(x) = \ln(x)$, une intégration par parties donne

$$I_1 = \left[\frac{1}{2}x^2\ln(x)\right]_1^e - \int_1^e \frac{1}{2}x \, dx, \text{ c'est-\hat{a}-dire } I_1 = \left[\frac{1}{2}x^2\ln(x) - \frac{1}{4}x^2\right]_1^e = \frac{1}{4}(e^2 + 1).$$

Pour calculer J_1 on peut faire une intégration par parties ou remarquer que

$$\frac{\ln(x)}{x} = \ln(x) \times (\ln(x))', \text{ donc une primitive de } \frac{\ln(x)}{x} = \frac{1}{2}(\ln(x))^2. \text{ On en déduit } J_1 = \frac{1}{2}.$$

2. Pour $n \ge 2$, calculer I_n , J_n et dire si les suites $(I_n)_{n \in \mathbb{N}}$, $(J_n)_{\in \mathbb{N}}$ sont convergentes.

Réponse: pour calculer
$$I_n$$
 et J_n pour $n \geqslant 2$ on fait une intégration par parties.
$$I_n = \left[\frac{x^{n+1}}{n+1}\ln(x)\right]_1^e - \int_1^e \frac{x^n}{n+1} \mathrm{d}\mathbf{x} = \left[\frac{x^{n+1}}{n+1}\ln(x) - \frac{x^{n+1}}{(n+1)^2}\right]_1^e = \frac{ne^{n+1}+1}{(n+1)^2}.$$

$$J_n = \left[\frac{x^{-n+1}}{-n+1}\ln(x)\right]_1^e - \int_1^e \frac{x^{-n}}{-n+1} \mathrm{d}\mathbf{x} = \left[\frac{x^{-n+1}}{-n+1}\ln(x) - \frac{x^{-n+1}}{(-n+1)^2}\right]_1^e = \frac{-ne^{-n+1}+1}{(-n+1)^2}.$$

La suite de terme général I_n ne converge pas $(\lim_{n \to +\infty} I_n = +\infty)$. La suite (J_n) tend vers 0:

Exercice 3. (s'habituer à la technique de changement de variable)

Calculer les intégrales suivantes:
$$\int_{1}^{9} \frac{3x}{\sqrt{2x+7}} dx \quad \text{(indication: au choix, poser } u = (2x+7) \text{ ou } x = \frac{t^2-7}{2}\text{)},$$

$$\int_{0}^{1} \frac{x}{3x+1} dx,$$

$$\int_{0}^{2} \frac{1+x}{4+x^2} dx$$

Réponse:

- En posant u=2x+7, nous obtenons par différentiation, du = 2dx. Lorsque x=1, u=9 et lorsque $x=9,\ u=25.$ On en déduit $\int_1^9 \frac{3x}{\sqrt{2x+7}} dx = \int_9^{25} \frac{3(u-7)}{4\sqrt{u}} du$. On constate que pour *u* parcourant l'intervalle [9,25], on a $\frac{u-7}{\sqrt{u}} = \sqrt{u} - \frac{7}{\sqrt{u}}$ et $\int_{0}^{25} \frac{3(u-7)}{4\sqrt{u}} du = \frac{3}{4} \left[\frac{2}{3} u^{\frac{3}{2}} - 14\sqrt{u} \right]_{0}^{25} = 28.$
- En posant u = 3x + 1, ou encore $x = \frac{1}{3}(u 1)$, on trouve $\int_{0}^{1} \frac{x}{3x+1} dx = \frac{1}{9} \int_{1}^{4} (1-\frac{1}{u}) du = \frac{1}{9} (3-2\ln(2)).$
- Si on pose x = 2t, on dx = 2dt et $\int_0^2 \frac{1+x}{4+x^2} dx = \int_0^1 \frac{1+2t}{4(1+t^2)} \times 2dt$. Comme $\frac{1+2t}{4(1+t^2)} \times 2 = \frac{1}{2} \times \frac{1}{1+t^2} + \frac{t}{1+t^2}$, on a $\int_0^1 \frac{1+2t}{4(1+t^2)} \times 2dt = \frac{1}{2} \int_0^1 \frac{1}{1+t^2} dt + \int_0^1 \frac{t}{1+t^2} dt$. $\frac{1}{1+t^2} \text{ admet pour primitive } \arctan(t) \text{ et } \frac{t}{1+t^2} \text{ admet pour primitive } \frac{1}{2} \ln(1+t^2).$ On en déduit $\int_0^1 \frac{1+2t}{4(1+t^2)} \times 2 dt = \frac{1}{2} \left[\arctan(t) + \ln(1+t^2)\right]_0^1 = \frac{1}{2} \left(\frac{\pi}{4} + \ln(2)\right).$ Conclusion: $\int_{0}^{2} \frac{1+x}{4+x^{2}} dx = \frac{1}{2} (\frac{\pi}{4} + \ln(2)).$

2

Exercice 4. (utiliser la technique appropriée pour calculer)

Calculer les intégrales suivantes:
$$\int_0^1 \arctan(x) dx$$
, $\int_2^3 \frac{x^2}{(x-1)^3} dx$, $\int_{-1}^1 \sqrt{1-x^2} dx$.

Réponse:

- En faisant une intégration par parties où on pose u'(x) = 1 et $v(x) = \arctan(x)$, on a $\int_0^1 \arctan(x) dx = \left[x \arctan(x) \frac{1}{2} \ln(x^2 + 1) \right]_0^1 = \frac{\pi}{4} \frac{1}{2} \ln(2).$
- En posant u = x 1 (soit x = u + 1), on a $\int_{2}^{3} \frac{x^{2}}{(x 1)^{3}} dx = \int_{1}^{2} \frac{(u + 1)^{2}}{u^{3}} du = \int_{1}^{2} \left(\frac{1}{u} + \frac{2}{u^{2}} + \frac{1}{u^{3}}\right) du = \left[\ln(u) 2\frac{1}{u} \frac{1}{2u^{2}}\right]_{1}^{2} = \ln(2) + \frac{11}{8}.$
- La fonction $x \mapsto \sqrt{1-x^2}$ définie sur [-1,1] étant paire, on a $\int_{-1}^1 \sqrt{1-x^2} dx = 2 \int_0^1 \sqrt{1-x^2} dx.$ Posant $x = \sin(t), 0 \leqslant t \leqslant \frac{\pi}{2}$, on obtient $\int_0^1 \sqrt{1-x^2} dx = \int_0^{\frac{\pi}{2}} \cos^2(t) dt = \frac{\pi}{4}.$ Conclusion: $\int_{-1}^1 \sqrt{1-x^2} dx = \frac{\pi}{2}.$

Exercice 5. (modéliser) Une entreprise vient d'ouvrir une usine de fabrication de stylos.

On suppose que la production journalière de cette usine est modélisée par la fonction $f: [0, +\infty[\longrightarrow \mathbb{R}, \text{ définie par}]$

$$f(t) = 4000 \left(1 - \frac{100}{(t+10)^2} \right)$$

où t est le nombre de jours travaillés depuis l'ouverture de l'usine (f(t) étant le nombre de stylos fabriqués par jour). On suppose qu'il y a 250 jours travaillés par an.

a) Quelle sera la production journalière à la fin du trentième jour travaillé? Réponse:

La production journalière à la fin du trentième jour travaillé est donnée par f(30). Elle est donc de 3750 stylos/jour.

b) Quelle est la limite de la production journalière lorsque t tend vers $+\infty?$ Réponse:

On a
$$\lim_{t \to +\infty} f(t) = 4000$$
.

c) Au total, combien de stylos cette usine aura-t-elle produits au bout de ses 30 premiers jours travaillés? Quelle est la production journalière moyenne sur les 30 premiers jours travaillés?

Réponse:

En utilisant la fonction modélisant la production journalière, on peut estimer qu'au bout des trente premiers jours travaillés, le nombre de stylos fabriqués est donné par $\int_0^{30} f(t) dt$. La fonction f(t) admet pour primitive $F(t) = 4000(t + \frac{100}{t+10})$. On a $\int_0^{30} f(t) dt = F(30) - F(0)$. Conclusion: au bout des trente premiers jours travaillés, cette

On a $\int_0^{30} f(t)dt = F(30) - F(0)$. Conclusion: au bout des trente premiers jours travaillés, cette usine aura produit au total 90000 stylos. La production journalière moyenne sur les 30 premiers jours travaillés est alors de 3000 stylos/jours.

d) Par quelle fonction
$$g: \left[0, +\infty\right[, x \mapsto g(x)$$
 peut-on modéliser le nombre total de stylos qui auront été fabriqués dans cette usine au bout de x années?

Comme une année compte 250 jours travaillés, x années correspondent à $250 \times x$ jours travaillés. Au bout de x années l'usine aura produit au total un nombre de stylos égale à $\int_0^{250x} f(t) dt$. On a vu au c) que f(t) admet pour primitive $F(t) = 4000(t + \frac{100}{t+10})$.

Il s'en suit que la fonction g qui modélise le nombre total de stylos qui auront été fabriqués dans cette usine au bout de x années est donnée par $g(x) = 10^6 x (1 - \frac{1}{25x + 1})$.

Exercice 6. (encore un changement de variable)

Pour un entier naturel non nul n donné, on pose

$$I_n = \int_0^{\frac{\pi}{2}} (\sin(x))^n \mathrm{dx} \quad \mathrm{et} \quad J_n = \int_0^{\frac{\pi}{2}} (\cos(x))^n \mathrm{dx}.$$

a) Calculer I_1 , J_1

Réponse: on trouve facilement $I_1 = J_1 = 1$

b) En utilisant la formule trigonométrique $(\cos(x))^2 = \frac{1 + \cos(2x)}{x^2}$, calculer J_2 .

Réponse:
$$J_2 = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 + \cos(2x)) dx = \frac{1}{2} \left[x + \frac{1}{2} \sin(2x) \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

c) Montrer que pour tout entier naturel non nul n, on a $I_n = J_n$. (Indication: on pourra faire un changement de variable en posant $x = \frac{\pi}{2} - t$)

Réponse: en posant $x = \frac{\pi}{2} - t$, on obtient $I_n = \int_{\frac{\pi}{2}}^0 (\sin(\frac{\pi}{2} - t))^n \times (-1) dt = \int_0^{\frac{\pi}{2}} (\sin(\frac{\pi}{2} - t))^n dt$.

En utilisant le fait que pour tout nombre réel t on a $\sin(\frac{\pi}{2} - t) = \cos(t)$, il s'en suit que $I_n = J_n$.

d) Sachant que pour tout entier naturel $n \ge 3$, on a $I_n = \frac{n-1}{n} I_{n-2}$, calculer J_4 et J_5 . Réponse: en utilisant la question c) et la relation de récurrence donnée ici, on a $J_4 = \frac{3}{4} J_2 = \frac{3\pi}{16} J_4$ $J_5 = \frac{4}{5}J_3 = \frac{4}{5} \times \frac{2}{3}J_1 = \frac{8}{15}$