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Abstract

We analyse the Landau damping mechanism for variants of Vlasov equations, with
a time dependent linear force term and a self-consistent potential that involves an
additional memory effect. This question is directly motivated by a model describing
the interaction of particles with their environment, through momentum and energy
exchanges with a vibrating field. We establish the stability of homogeneous states.
We bring out how the coupling influences the stability criterion, in comparison to the
standard Vlasov case.
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1 Introduction
In this work, we go back to the analysis of Landau damping mechanisms in kinetic
equations. This effect has been brought out for the Vlasov equation of plasma physics
in the pioneering work of L. Landau [23], and extended to gravitational models in as-
trophysics [25, 26], where it is thought to play a key role in the stability of galaxies. It
can be interpreted as a stability statement about steady solutions, leading to a decay of
the self-consistent force. A complete mathematical analysis of the Landau damping for
non linear Vlasov equations has been performed in [27], and revisited later on in [6, 7]
(see also [21]). Similar behaviors have been revealed for the 2D Euler system [5]. The
phenomena are surprising since they describe damping mechanisms, counter-intuitive
for reversible equations which apparently do not present any dissipative process.

The starting point of this contribution comes from an original model introduced
by L. Bruneau and S. De Bièvre [8] describing the motion of a single classical particle
interacting with its environment. The particle is described by its position t 7→ q(t) ∈
Rd, while the behavior of the environment is embodied into a scalar field (t, x, z) ∈
(0,∞)×Rd×Rn 7→ ψ(t, x, z). The dynamic is modeled by the following set of differential
equations

q̈(t) = −∇V (q(t))−
¨

Rd×Rn
σ1(q(t)− y) σ2(z) ∇xΨ(t, y, z) dy dz,

∂2
ttΨ(t, x, z)− c2∆zΨ(t, x, z) = −σ2(z)σ1(x− q(t)), x ∈ Rd, z ∈ Rn.

(1)

It corresponds to the intuition of a particle moving through an infinite set of n-dimen-
sional elastic membranes, one for each position x ∈ Rd. The physical properties of
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the membranes are characterized by the wave speed c > 0. The coupling between the
particles and the environment is governed by two form functions σ1, σ2, which are both
non negative, smooth and radially symmetric functions; they can be seen as determin-
ing the influence domain of the particle in each direction, the direction of particle’s
motion and the direction of wave propagation, respectively. It is therefore relevant to
assume both form functions have a compact support. The particle exchanges its kinetic
energy with the vibrations of the membranes. These mechanisms eventually act like a
friction force since particle’s energy is evacuated in the membranes, and, depending on
the shape of the external potential x 7→ V (x), they determine the large time behavior
of the particle. We refer the reader to [1, 11, 12, 13, 22, 29] for further studies of the
system (1), that include numerical experiments and interpretation by means of random
walks.

The system (1) can be generalized by considering a set of N particles going through
the membranes. The mean field regime N →∞ leads to the following PDE system

∂tF + v · ∇xF −∇x(V + Φ[Ψ]) · ∇vF = 0, t ≥ 0, x ∈ Rd, v ∈ Rd, (2a)

(
∂2
ttΨ− c2∆zΨ

)
(t, x, z) = −σ2(z)

ˆ
Rd
σ1(x− y)ρ(t, y) dy, t ≥ 0, x ∈ Rd, z ∈ Rn,

(2b)

ρ(t, x) =
ˆ
Rd
F (t, x, v) dv, (2c)

Φ[Ψ](t, x) =
¨

Rd×Rn
σ1(x− y)σ2(z)Ψ(t, y, z) dz dy, t ≥ 0, x ∈ Rd, (2d)

where now (t, x, v) 7→ F (t, x, v) is interpreted as the particles distribution function in
phase space, x ∈ Rd being the position variable, and v ∈ Rd the velocity variable. The
system (2a)–(2d) is completed by initial conditions

F
∣∣
t=0 = F0, (Ψ, ∂tΨ)

∣∣
t=0 = (Ψ0,Ψ1). (3)

We refer the reader to [17, 31] for the derivation of the N -particles system and the
analysis of the mean field regime that leads to (2a)–(2d). The existence of solutions of
(2a)–(2d) is investigated in [9]. Furthermore, asymptotic issues are also discussed that
reveal an unexpected connection with the gravitational Vlasov-Poisson equation. This
relation with another model of statistical physics can guide the intuition to analyze fur-
ther mathematical properties of (2a)–(2d). In this spirit, the existence of equilibrium
states and their stability is discussed in [2], adding in the kinetic model a dissipative
effect with the Fokker–Planck operator, and in [10] where a variational approach is
adopted for the collisionless model, following [19, 20, 34].

We wish to continue this analysis, adopting a different viewpoint. In [2, 10] the
effect of a confining potential x 7→ V (x) is considered, which governs the shape of
the equilibrium states. Here, we change the geometry of the problem, replacing the
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confining assumption on the external potential, by the assumption that particles’ mo-
tion holds in the d−dimensional torus Td. In such a framework, like for the usual
Vlasov-Poisson system, we can find space–homogeneous stationary solutions, and we
wish to investigate their stability. This question is directly reminiscient to the well-
known phenomena of damping brought out in plasma physics by L. Landau [23]: for
the electrostatic Vlasov-Poisson system, it can be shown that the electric field of the
linearized system decays exponentially fast. For gravitational interactions a similar
discussion dates back to D. Lynden–Bell [25, 26]. In fact, Landau’s analysis [23] was
concerned with the linearized equation only. Of course the linearization procedure is
questionable and the non linear dynamics might significantly depart form the linear
behavior, as pointed out in [3]. A stunning analysis of the non linear problem in the
analytic framework has been recently performed by C. Mouhot & C. Villani [27, 32].
A simplified analysis of the Landau damping has been proposed in [6]; we also refer
the reader to [15] for results based on Sobolev regularity (with a definition of the force
which involves only a finite number of Fourier modes, though). The Landau damping
around homogeneous solutions has also been investigated in the whole space Rd [7],
thus dealing with a set of particles having an infinite mass. See also [21] for an alter-
native approach that uses integration along phase-space characteristics. We wish to
address these issues for the system (2a)–(2d), still when V = 0. The analysis of the
non-linear equations is quite involved; it requires a complex functional framework and
fine estimates in order to control the non linear effects, the so–called “plasma echoes”,
that can break the damping mechanisms observed on the linearized model. By the
way, it has been recently shown that insufficient regularity of the perturbation can
annihilate the damping mechanisms, and the proof (which, though, is very specific to
the coupling with the Poisson equation; it is not clear that the argument applies for
more regular convolution kernels) precisely uses the role of the plasma echoes against
damping [4]. Nevertheless it turns out that identifying stability conditions for the
linearized problem plays a central role in the analysis of the non linear stability, see
[27, Condition (L)]. Beyond their interest for the specific model (2a)–(2d) of particles
interacting with their environment, the results we are going to discuss can be thought
of with some generality. Indeed, as we shall detail below, the equation for the particle
distribution function can be recast as follows

∂tF + v · ∇xF −∇xΦI · ∇vF −∇xΦS · ∇vF = 0,

where the potential splits into two parts, that both induce new issues compared to
the case of the “standard” Vlasov system (hereafter simply refered to as the “Vlasov
equation”):
• ΦI(t, x) does not depend on F : this is a linear contribution in the equation.

The damping then relies on suitable time-decay properties, here related to the
dispersion properties of the free wave equation.

• the self-consistent potential ΦS(t, x) is defined by a convolution with respect to
space, combined with a half-convolution with respect to time

ΦS(t, x) = −
ˆ t

0

ˆ
Σ(x− y)pc(t− s)ρ(s, y) dy ds.
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Then the Landau damping relies on properties of the kernel Σ, which is quite
similar to the analysis of the Vlasov case, but also on decay properties of the
kernel pc.

The discussion is organized as follows. We start by checking that we can find homoge-
neous solutions in Section 2. We also introduce different, but complementary, ways to
think of the equations and we make a series of comments explaining how the problem
differs from the usual Vlasov system. We complete this preliminary section by paying
a specific attention to the properties of the kernel pc, depending on the dimension
n, which play a crucial role in the analysis. In Section 3, which is the heart of this
work, we turn to the linearized problem. The analysis of the linearized equation re-
duces to study a certain integral equation, satisfied by the Fourier coefficients of the
macroscopic density. That the damping occurs relies on a stability criterion on the
kernel of this Volterra equation, which, at least, can be verified when c, the speed of
wave propagation, is large enough. Next, we briefly explain the method for proving
the non linear Landau damping for the free space problem, for which the functional
framework is less intricate, in Section 4.1. We present how the main arguments should
be adapted for the torus in Section 4.2. We further discuss the stability criterion in
Section 5, in the spirit of the Penrose criterion. Quite surprisingly, we are led to an
intricate expression, much more complicated than for the Vlasov model. Nevertheless,
these expressions allows us to establish some conclusions close to what is known on the
gravitational Vlasov case. We also propose several interpretations of criteria that lead
to (un)stable solutions. The interested reader will find fully detailed arguments in [33],
and numerical illustrations in [18].

2 Preliminaries
In what follows, Xd stands indifferently for Td or Rd, and for given functions φ : x ∈
Xd 7→ φ(x) and g : v ∈ Rd 7→ g(v), we denote

〈
ϕ
〉
Xd =

ˆ
Xd
ϕ(x) dx,

〈
g
〉
Rd =

ˆ
Rd
g(v) dv,

where dx is either the usual Lebesgue measure on Xd = Rd or the normalized Lebesgue
measure on Xd = Td. We shall also use indifferently the notation ·̂ for the Fourier
coefficients of a Td−periodic function

ϕ : Td → R, ϕ̂(k) =
ˆ
Td
e−ik·xϕ(x) dx for k ∈ Zd,

or the Fourier transform over Rm (with m = d or m = n)

ϕ : Rm → R, ϕ̂(ξ) =
ˆ
Rm

e−ix·ξϕ(x) dx for ξ ∈ Rm.

We equally use the same notation for a function φ depending on x ∈ Xd and v ∈ Rd

ϕ̂(k, ξ) =
¨

Xd×Rm
e−ik·xe−iξ·vϕ(x, v) dv dx,
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for ξ ∈ Rm and either k ∈ Zd (case Xd = Td) or k ∈ Rd (case Xd = Rd). In the
sequel, we shall use the shorthand notation k ∈ X?d to encompass these two situations.
Throughout the paper, we shall use the notations

〈x〉 =
√

1 + x2

and, given a real number s, s+ means s + ε for ε > 0 arbitrarily small. We write
A . B when we can find a constant C > 0 such that A ≤ CB. Here, A, B are in
general functions of time, space, velocity, or their associated Fourier variables; it is
thus understood that C is uniform over these variables. In certain circumstances, we
write A .r B to emphasize the fact that the constant C depends on the parameter r.

2.1 Rewriting the equations
Due to the linearity of the wave equation, the solution of (2b) can be split into a
contribution that depends only on the initial condition (Ψ0,Ψ1) and a contribution
that depends only on ρ, see [9, Eq. (6)–(8)]. Accordingly, we split the potential into

Φ = ΦI + ΦS ,

where ΦI depends only on (Ψ0,Ψ1) as follows

ΦI(t, x) = 1
(2π)n

¨
Rn×Xd

σ1(x−y)
(

Ψ̂0(y, ζ) cos(c|ζ|t) + Ψ̂1(y, ζ)sin(c|ζ|t)
c|ζ|

)
σ̂2(ζ) dy dζ

(4)
and the coupling term reads

ΦS(t, x) = −
ˆ t

0
pc(t− s)Σ ? ρ(s, x) ds,

Σ = σ1 ? σ1,

pc(t) =
ˆ
Rn

sin(c|ζ|t)
c|ζ|

|σ̂2(ζ)|2 dζ
(2π)n .

(5)

The properties of the function t 7→ pc(t), collected in Lemma 2.3 below, play a crucial
role in the asymptotic analysis of (2a)–(2d).

2.2 Homogeneous solutions
Let ρ0 > 0 and let v 7→M(v) be a given function such that

´
RdM(v) dv = 1. We claim

that
M : (x, v) ∈ Xd × Rd 7−→M (x, v) = ρ0M(v)

is a stationary solution of (2a)–(2d), associated to a spatially homogeneous potential Φ,
when starting from spatially homogeneous data for the wave equation. On the torus,
since M and dx are normalized, ρ0 is the mass of the solution M . With F = M , the
right hand side of the wave equation (2b) becomes

−σ2(z)
¨

Xd×Rd
σ1(x− y)M (y, v) dv dy = −σ2(z)

〈
σ1
〉
Xd
〈
M
〉
Rd ,
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which depends only on the variable z ∈ Rn. Therefore, considering space-homogeneous
initial data (x, z) 7→ (ΨH

0 (z),ΨH
1 (z)), the solution of the wave equation

∂2
ttΨH − c2∆zΨH = −σ2(z)

〈
σ1
〉
Xd
〈
M
〉
Rd

is given by the inverse Fourier transform of

Ψ̂H(t, ξ) = Ψ̂H
0 (ξ) cos(c|ξ|t) + Ψ̂H

1 (ξ)sin(c|ξ|t)
c|ξ|

− 1− cos(c|ξ|t)
c2|ξ|2

σ̂2(ξ)
〈
σ1
〉
Xd
〈
M
〉
Rd ,

and it does not depend on the space variable x. Accordingly, the associated potential

Φ[ΨH ](t, x) =
〈
σ1
〉
Xd

¨
Rn
σ2(z)ΨH(t, z) dz

does not depend on x. We obtain

(∂t + v · ∇x)M = 0 = ∇xΦ[ΨH ] · ∇vM ,

and finally (M ,ΨH) is a homogeneous solution of (2a)–(2d). We bring the attention
of the reader to the fact that, in the case Xd = Rd, the homogeneous solutions have
infinite mass and infinite energy.

Remark 2.1 (Stationary solutions) A specific case of interest corresponds to sta-
tionary solutions. Let us associate to M , the function

Ψeq(z) = 1
c2 Γ(z)

〈
σ1
〉
Xd
〈
M
〉
Rd ,

where Γ is the solution of ∆zΓ(z) = σ2(z). It defines a stationary solution Ψeq for the
wave equation (2c) (with initial data ΨH

0 = Ψeq and ΨH
1 = 0). The associated potential

thus reads¨
Xd×Rn

σ1(x− y)σ2(z)Ψeq(z) dx dz =
〈
σ1
〉
Xd

ˆ
Rn
σ2(z)Ψeq(z) dz,

which does not depend on the space variable x ∈ Xd, nor on the time variable t.

2.3 Equations for the fluctuations
Given a space-homogeneous solution (M ,ΨH), we expand the solution as

F (t, x, v) = M (v) + f(t, x, v), Ψ(t, x, z) = ΨH(t, z) + ψ(t, x, z). (6)

The fluctuations (f, ψ) satisfy

∂tf + v · ∇xf −∇xΦ[ψ] · ∇v(M + f) = 0, (7a)

Φ[ψ](t, x) =
¨
Xd×Rn

σ1(x− y)σ2(z)ψ(t, y, z) dy dz, (7b)

∂2
ttψ − c2∆zψ = −σ2(z)

ˆ
Rd
σ1(x− y)%(t, y) dy, (7c)

%(t, x) =
ˆ
Rd
f(t, x, v) dv, (7d)
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completed by the initial conditions

f(0, x, v) = f0(x, v), (ψ(0, x, z), ∂tψ(0, x, z)) = (ψ0(x, z), ψ1(x, z)). (8)

As said above, it can be convenient to set ψ(t, x, z) = ψI(t, x, z) + ψS(t, x, z), with the
contribution from the initial data

ψ̂I(t, x, ξ) = ψ̂0(x, ξ) cos(c|ξ|t) + ψ̂1(x, ξ)sin(c|ξ|t)
c|ξ|

and the self-consistent contribution

ψ̂S(t, x, ξ) = −
ˆ t

0

sin(c|ξ|[t− τ ])
c|ξ|

σ̂2(ξ)σ1 ? %(τ, x) dτ.

Plugging this into the expression of the potential, we get

Φ[ψ](t, x) = σ1 ? (FI(t)− σ1 ? G%(t)) (x),

where we have set
FI(t, x) =

ˆ
Rn
σ2(z)ψI(t, x, z) dz

and
G%(t, x) =

ˆ t

0
pc(t− τ)%(τ, x) dτ.

Hence, the evolution equation for the fluctuation f can be recast as

∂tf + v · ∇xf −∇σ1 ? (FI − σ1 ? G%) · ∇v(M + f) = 0. (9)

Finally, let us introduce
g(t, x, v) = f(t, x+ tv, v),

which allows us to get rid of the advection operator. We remark that

∂tg(t, x, v) = (∂t + v · ∇x)f(t, x+ tv, v)

and

(∇vf)(t, x+ tv, v) = ∇v
[
f(t, x+ tv, v)

]
− t∇xf(t, x+ tv, v) = (∇v − t∇x)g(t, x, v).

Thus, (9) becomes

∂tg(t, x, v) = ∇σ1 ? (FI − σ1 ? G%) (t, x+ tv) · (∇v − t∇x)(M + g)(t, x, v), (10a)
g(0, x, v) = f0(x, v). (10b)

The following rough statement gives the flavor of the result we wish to justify.

Theorem We assume that the data σ1, σ2, ψ0, ψ1, f0 are smooth enough. We assume,
furthermore, that the analog of the (L)-condition for the Vlasov-Wave equation holds.
If, initially, the fluctuation is small enough, then, we can find an asymptotic profile
g∞ so that g(t)− g∞ and the applied force ∇σ1 ? (FI − σ1 ? G%) tend to 0 as t→∞.
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The precise statements are given in Theorem 4.4 (case Xd = Rd) and Theorem 4.16
(case Xd = Td) Let us make a few comments to announce the forthcoming analysis.
• The stability condition (L) (see Section 5), like for the usual Vlasov equation,

imposes that a certain symbol cannot reach the value 1. In particular, the stability
condition holds provided the wave speed c is large enough, see Proposition 3.10.

• The functional framework is a bit intricate. Roughly speaking, we distinguish
two types of results, depending whether we work with analytic functions and
regularity measured by means of Gevrey spaces (for the torus, the result applies
only in this framework), or with functions having enough Sobolev regularity (the
result on Rd applies in this context, and we can also establish the damping for
the linearized problems in both cases Xd = Rd and Xd = Td).

• Typically the smallness assumption is imposed on a certain space X (of Gevrey
or Sobolev type), but the damping holds in slightly “less regular” spaces Y , with
X ⊂ Y . The rate of convergence depends on the functional framework (Gevrey
vs. Sobolev) and how far Y is from X.

• For the problem on Rd, we shall need to assume d ≥ 3; the method breaks down
in smaller dimensions, for reasons that already appeared for the Vlasov-Poisson
system [7].

For the usual Vlasov equation, the main ingredients to justify the Landau damping
can be recapped as follows:
• the transport operator induces a phase mixing phenomena, which is a source of

decay for the macroscopic density %;
• when linearizing the system around the homogeneous solution, the Fourier modes

of % decouple, leading to a Volterra equation for the Fourier transform of the den-
sity. It permits to identify a stability criterion, that depends on the homogeneous
solution and on the potential so that the linear dynamics induced by the force
term does not annihilate the effects of the phase mixing;

• it remains to control the non linear effects, with the plasma echoes that tend to
contribute against the phase mixing.

Technically, in order to address this program, one assumes the smallness of the data
and justifies uniform boundedness with respect to time, and, eventually, the Landau
damping. In particular, the echoes should be controlled by means of the underlying
norms. Rewriting the potential with (4)–(5), we realize that the system (2a)–(2d)
substantially differs from the usual Vlasov system dealt with in [27] and [6, 7] in the
following aspects:
• there is an additional term ∇xΦI ·∇vF, with a force independent on the particles

density. This linear perturbation could drive the solution far from the homoge-
neous state M ;

• the self-consistent potential ΦS involves a half-convolution with respect to the
time variable, inducing a sort of memory effect. In particular, the function pc
dramatically influences the expression of the stability criterion.
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As we shall see, the analysis of the linearized problem, and the stability criterion,
sensibly differ from the Vlasov case. Nevertheless, this linearized analysis remains at
the heart of the proof of the Landau damping: once the Landau damping established
for the linearized equation, the arguments of [27] and [6, 7] can be adapted to handle
the nonlinear problem. Furthermore, we will also bring out the analogies with the
gravitational Vlasov-Poisson problem, in terms of conditions of the equilibrium profile.
We address both the confined case Xd = Td and the free space problem Xd = Rd,
underlying the differences needed depending on the technical framework.

2.4 The kernel pc

As said above, the decay properties of the kernel pc, consequences of the dispersion
properties of the wave equations, are crucial for the analysis. When n ≥ 3, pc is
integrable and satisfies

ˆ ∞
0

pc(t) dt = κ

c2 , with κ =
ˆ
Rn

|σ̂2(ζ)|2

|ζ|2
dζ <∞,

see [9, Lemma 4.4]. The following statement strengthens this result, depending on the
dimension n ≥ 2 and the assumptions on the form function σ2. Roughly speaking,
we distinguish the case of odd dimensions n ≥ 3 where the necessary estimates are
consequences of the Huygens’ principle, and even dimensions where the dispersion
effects are weaker. Similar considerations apply when dealing with the term FI .

Lemma 2.3 Let n ≥ 2 and let σ2 belong to the Besov space Bn−1,1
1 .

(i) There exists a constant C(σ2) > 0 such that

|pc(t)| ≤
C(σ2)
c〈ct〉

n−1
2
.

(ii) Moreover, if |σ2(z)| . 〈z〉−m2 with m2 > n+(n−1)/2, then there exists a constant
C(σ2) > 0 such that

|pc(t)| ≤
C(σ2)
c〈ct〉n−1 .

Let n ≥ 3 be an odd integer.
(iii) Suppose that |σ2(z)| . 〈z〉−m2 for some m2 > n + α, with α > 0. Then there

exists a constant C(σ2) > 0 such that

|pc(t)| ≤
C(σ2)
c〈ct〉α

.

(iv) Let λ > 0. If |σ2(z)| . exp(−λ2|z|) for some λ2 > λ, then there exists a constant
C(σ2) > 0 such that

|pc(t)| ≤
C(σ2) e−λ|ct|

c
.
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(v) If σ2 ∈ C0
c (Rn) with supp(σ2) ⊂ B(0, R2), then pc has a compact support included

in [0, 2R2
c ] and it satisfies

|pc(t)| ≤ C
‖σ2‖L2n/(n+2)‖σ2‖L2

c
,

for a certain constant C > 0.

The decay of pc is intimately connected to the energy dissipation mechanisms
through the vibration of the medium, which are at the heart of the qualitative prop-
erties of the model introduced in [8]. In dimension n = 1, a direct computation by
means of D’Alembert formula shows that

pc(t) = 1
2c

ˆ +∞

−∞
σ2(z)

(ˆ z+ct

z−ct
σ2(s) ds

)
dz −−−→

t→∞

1
2c‖σ2‖2L1

z
> 0.

Hence, in this case pc /∈ L1(0,∞), there is no loss of memory at all; numerical simula-
tions indeed confirm that there is no damping phenomena [18]. Similarly, working in
the torus Tn for the wave equation leads to

pc(t) =
∑
6̀=0

|σ̂2(`)|2

c`
sin(c`t) + |σ̂2(0)|2t.

It shows that there is no possible energy dispersion mechanism in this geometry.
As we shall see later on the rate of the Landau damping is directly related to the

decay rate of pc. If even dimensions n are considered the best decay rate provided by
Lemma 2.3 leads to |pc(t)| . 〈t〉−(n−1). However, the Landau damping also requires
some regularity on the Cauchy data for the Vlasov equation. For instance, the analysis
of the non linear Landau damping in Rd, inspired from [7], leads to suppose that the
data lies in the Sobolev space H36 (which might be sub-optimal, see [7, Remark 1]).
This imposes a constraint on the decay of pc, which amount to a condition on the di-
mension n for the wave equation (like n−1 ≥ 36, see (H1) and (A1)–(A2)). Then, one
may wonder to identify minimal regularity assumptions to obtain the Landau damp-
ing. The alternative proof of [21], which is less demanding in terms of regularity, could
be adapted in order to extend the result in this direction. It is easier to discuss the
linearized problem, for which we obtain n ≥ 6 (see Remark 3.5). We point out that
when n is odd the only condition is n ≥ 3, for both the linear and the non linear cases.

Proof. The proof relies on dispersion estimates for the wave equation, that we shall
use in several places. Let us denote (

.
W,W ) the group of the wave equation (with

propagation speed c = 1): we write the solution of the Cauchy problem{
(∂2
tt − c2∆z)Υ(t, z) = 0,

(Υ, ∂tΥ)
∣∣
t=0 = (Υ0,Υ1).

(11)

as Υ(t, ·) =
.
W (ct)Υ0 + 1

cW (ct)Υ1. In terms of Fourier variable,
.
W (t) corresponds to

the multiplication by cos(|ζ|t) and W (t) to the multiplication by sin(|ζ|t)/|ζ|:

̂.
W (ct)Υ0(ζ) = cos(c|ζ|t)Υ̂(ζ) and 1

c
Ŵ (ct)Υ1(ζ) = sin(c|ζ|t)

c|ζ|
Υ̂(ζ).

11



Therefore, pc can be cast as

pc(t) = 1
c

ˆ
Rn
σ2W (ct)σ2 dz.

The dispersion estimates rely on the operators U±(t) defined by

Û±Υ(ζ) = e±i|ζ|t Υ̂(ζ).

Indeed, since
.
W (t) = (U+ + U−)/2 and W (t) = (U+ − U−)/(2i

√
−∆z) an estimate

with U±(t) can be translated into an estimate for
.
W (t) and W (t). The basic estimate

states as follows (see e. g. [16, Proof of Proposition 3.1] and the references therein): if
Υ has its Fourier transform supported in {ζ ∈ Rn | 2j−1 ≤ |ζ| ≤ 2j+1}, then

‖U±(t)Υ‖L∞z ≤ C min
(
2nj , 2

n+1
2 j |t|−

n−1
2
)
‖Υ‖L1

z
. (12)

Estimate (12) can be refined as follows, see [30, Proof Of Lemma 3.2],

|U±(t)Υ(z)| (13)
≤ CN min

(
2nj , 2

n+1
2 j |t|−

n−1
2 , 2(n+1

2 −N)j |t|−
n−1

2
∣∣ |t| − |z| ∣∣−N) ‖Υ‖L1

z
,

where N can be any integer. Such an estimate can be seen as a generalization of
Huygens’ principle which holds only in odd dimensions: it tells us that U±(t)Υ reaches
its maximum next to the cone t = |z|. In order to use these estimates, we introduce a
sequence ϕj ∈ S(Rn) such that

∑
j ϕ̂j(ζ) = 1 and for any j ∈ Z, supp(ϕ̂j) ⊂ {ζ | 2j−1 ≤

|ζ| ≤ 2j+1}. We set Υj = ϕj ?Υ so that Υ =
∑
j Υj and thanks to (12) we get

‖U±(t)Υ‖L∞z ≤ C min

∑
j∈Z

2nj‖Υj‖L1
z
, |t|−

n−1
2
∑

2
n+1

2 j‖Υj‖L1
z

 , (14)

where
∑
j 2sj‖Υj‖L1

z
is nothing but the

.
Bs,1

1 -norm of Υ. We refer the reader to [16] for
a thorough introduction to Besov spaces: the homogeneous Besov spaces

.
Bs,1

1 satisfy
a scale invariance property but there is no obvious embedding relations between

.
Bs,1

1
and

.
Bs′,1

1 for s ≥ s′ (if s′ ≥ 0, 2sj ≥ 2s′j for j ≥ 0 but 2sj < 2s′j for j < 0). In order
to make use of a single functional space, we prefer to work with the non homogeneous
Besov spaces Bs,1

1 : we have Bs,1
1 ⊂

.
Bs,1

1 for s ≥ 0 and Bs,1
1 embeds into Bs′,1

1 for s ≥ s′.
Therefore, we get

‖U±(t)Υ‖L∞z ≤ C min
(
1, |t|−

n−1
2
)
‖Υ‖

Bn,11
. 〈t〉−

n−1
2 ‖Υ‖

Bn,11
. (15)

Similarly, from (13) we get

|U±(t)Υ(z)| (16)

≤ CN min
(
‖Υ‖ .

Bn,11
, |t|−

n−1
2 ‖Υ‖ .

B
n+1

2 ,1
1

, |t|−
n−1

2
∣∣ |t| − |z| ∣∣−N‖Υ‖ .

B
n+1

2 −N,1
1

)
.

Note that we do not work with Besov space with negative regularity index s (which
would imply irrelevant conditions on ξ = 0). Assuming N ≤ (n+ 1)/2, we are led to

|U±(t)Υ(z)| ≤ CN min
(
1, |t|−

n−1
2 , |t|−

n−1
2
∣∣ |t| − |z| ∣∣−N) ‖Υ‖

Bn,11
. (17)

We can now finish the proof of Lemma 2.3. Since pc(t) = 1
c (
´
σ2W (ct)σ2 dz), we

12



have |pc(t)| ≤ 1
c‖σ2‖L1

z
‖W (ct)σ2‖L∞z . By applying (a variant with an extra factor

1/2j−1 of) (12), we obtain

‖W (ct)ϕj ? σ2‖L∞z ≤
C

2j−1 min
(
2nj , 2

n+1
2 j |ct|−

n−1
2
)
‖ϕj ? σ2‖L1

z
.

Summing over j ∈ Z yields

|pc(t)| ≤
K

c〈ct〉
n−1

2
‖σ2‖L1

z
‖σ2‖Bn−1,1

1
,

which proves (i). Estimate (ii) uses the refined estimate (13) which gives, for any
N ∈ N,

|W (ct)ϕj ? σ2(z)|

≤ CN
2j−1 min

(
2nj , 2

n+1
2 j |ct|−

n−1
2 , 2(n+1

2 −N)j |ct|−
n−1

2
∣∣ |ct| − |z| ∣∣−N) ‖ϕj ? σ2‖L1

z
.

With N = (n− 1)/2 and summing over j ∈ Z, we get

|pc(t)| ≤
2CN
c

(ˆ
Rn
|σ2(z)|min

(
1, |ct|−

n−1
2 , |ct|−

n−1
2
∣∣ |ct| − |z| ∣∣−n−1

2

)
dz
)
‖σ2‖Bn−1,1

1
.

We haveˆ
Rn
|σ2(z)|min

(
1, |ct|−

n−1
2 , |ct|−

n−1
2
∣∣ |ct| − |z| ∣∣−n−1

2

)
dz

.
ˆ
Rn
|σ2(z)|min

(
〈ct〉−

n−1
2 ,
〈
|ct|

∣∣ |ct| − |z| ∣∣〉−n−1
2

)
dz.

We split the integration domain into the ball B(0, |ct|/2) and its complementary and
we obtainˆ

Rn
|σ2(z)|min

(
〈ct〉−

n−1
2 ,
〈
|ct|

∣∣ |ct| − |z| ∣∣〉−n−1
2

)
dz

=
ˆ
B(0, |ct|2 )

|σ2(z)|
〈
|ct|

∣∣ |ct| − |z| ∣∣〉−n−1
2 dz +

ˆ
{B(0, |ct|2 )

|σ2(z)| 〈ct〉−
n−1

2 dz

≤
ˆ
B(0, |ct|2 )

|σ2|
〈
|ct|2

2

〉−n−1
2

dz + 〈ct〉−
n−1

2

(ˆ
{B(0, |ct|2 )

|σ2(z)| dz
)

.
〈 |ct|

2

〉−(n−1)
‖σ2‖L1

z
+ 〈ct〉−

n−1
2

〈 |ct|
2

〉−n−1
2
(ˆ

{B(0, |ct|2 )
|σ2(z)|〈z〉

n−1
2 dz

)
.

The assumption on σ2 ensures that the last integral is finite
We turn to the specific case of odd dimensions. The role of the Huygens principle

appears clearly with the estimate (v). Indeed the support assumption on σ2 implies,
when n is odd, that

if ct ≥ R2 + |z| then W (t)σ2(z) = 0.

Therefore, when t ≥ 2R2
c , the product σ2(z)W (ct)σ2(z) vanishes (see Fig. 1) and

pc(t) = 0. Bearing in mind that n ≥ 3, Hölder inequality yields

|pc(t)| ≤
1
c
‖σ2‖L2n/(n+2)‖W (ct)σ2‖L2n/(n−2) .

We conclude by combining the Sobolev embedding inequality, see e. g. [24, Lemma 8.3],

13



‖W (ct)σ2‖L2n/(n−2) ≤ CS‖∇zW (ct)σ2‖L2 , and the energy conservation for the wave
equation which implies

‖∇zW (ct)σ2‖2L2 ≤ ‖∂s(W (s)σ2)
∣∣
s=ct‖

2
L2 + ‖∇zW (ct)σ2‖2L2 ≤ ‖σ2‖2L2 .

t

x

T

B(0, R)

Figure 1: Propagation cone: the signal emanating from the ball B(0, R) cannot be felt in
this ball after time T

We turn to the proof of (iii). Consider t > 0 and 0 < R < ct. We split as follows

σ2 = σ21|z|≤R + σ21|z|>R := u1 + u2.

By linearity of the wave equation, we can write

pc(t) = 1
c

ˆ
Rn
σ2W (ct)u1 dz + 1

c

ˆ
Rn
σ2W (ct)u2 dz.

Since u1 is supported in B(0, R), the support of W (ct)u1 lies in {z | ct − R ≤ |z| ≤
ct+R}. Since ct−R > 0, the first integral is dominated as follows (we already know
from the proof of (i) that ‖W (ct)u1‖L∞z . ‖σ2‖Bn−1,1

1
)

∣∣∣∣ˆ
Rn
σ2W (ct)u1 dz

∣∣∣∣ = 〈ct−R〉−α
∣∣∣∣∣
ˆ
{B(0,ct−R)

〈ct−R〉ασ2(z)W (t)u1(z) dz
∣∣∣∣∣

. 〈ct−R〉−α
(ˆ

{B(0,ct−R)
〈z〉α|σ2(z)| dz

)
‖σ2‖Bn−1,1

1
.

By virtue of the assumptions on σ2, the right hand side is finite. The integral with u2
can be estimated by using Plancherel’s formula, which yieldsˆ

Rn
σ2W (ct)u2 dz =

ˆ
Rn
σ̂2(ζ)sin(c|ζ|t)

|ζ|
û2(ζ) dζ =

ˆ
Rn
u2W (ct)σ2 dz.
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It leads to∣∣∣∣ˆ
Rn
σ2W (ct)u2 dz

∣∣∣∣ =
∣∣∣∣ˆ

Rn
u2W (ct)σ2 dz

∣∣∣∣ . (ˆ
Rn
|σ2(z)|1|z|>R dz

)
‖σ2‖Bn−1,1

1

= 〈R〉−α
(ˆ

Rn
〈R〉α|σ2(z)|1|z|>R dz

)
‖σ2‖Bn−1,1

1

≤ 〈R〉−α
(ˆ

Rn
〈z〉α|σ2(z)|dz

)
‖σ2‖Bn−1,1

1
,

which is finite too. We have proved that

|pc(t)| .
1
c

(
〈ct−R〉−α + 〈R〉−α

)
and we conclude by setting R = ct/2. Item (iv) is justified similarly, just replacing the
polynomial weights by exponential weights.

Analogous conclusions apply to FI which can be cast as

FI(t, x) =
ˆ
Rn
σ2(z)

( .
W (ct)Ψ0(x, z) + 1

c
W (ct)Ψ1(x, z)

)
dz.

3 Linearized Landau Damping
3.1 The linearized system
In the expansion (6), let us assume that the fluctuations f and ψ remain small, so that
we neglect the quadratic term (with respect to the perturbations) ∇xΦ[ψ] · ∇vf in the
evolution equations (note in particular that this assumes the smallness of the initial
fluctuations (ψ0, ψ1)). We are thus led to the following linearized system

∂tf + v · ∇xf −∇xφ · ∇vM = 0, t ≥ 0, x ∈ Xd, v ∈ Rd, (18a)

φ(t, x) =
¨

Xd×Rn
σ1(x− y)ψ(t, y, z)σ2(z) dz dy, t ≥ 0, x ∈ Xd (18b)

∂2
ttψ − c2∆zψ = −σ2(z)

ˆ
Xd
σ1(x− y)%(t, y) dy, t ≥ 0, x ∈ Xd, z ∈ Rn, (18c)

%(t, x) =
ˆ
Rd
f(t, x, v) dv, t ≥ 0, x ∈ Xd. (18d)

The system is completed by initial conditions

f
∣∣
t=0 = f0, (ψ, ∂tψ)

∣∣
t=0 = (ψ0, ψ1). (19)

The expected result can be explained as follows: let us assume that the fluctuation
does not provide additional mass:

˜
f(0, x, v) dv dx = 0, and, to fix ideas, ψ0 = 0 and

ψ1 = 0. In such a case, linearized Landau damping asserts that % converges strongly
to 0, while f converges weakly to 0, as t→∞. Moreover, the potential φ also vanishes
for large times. We are going to establish that such a behavior holds for the system
(18)–(19).
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We start by applying the Fourier transform, with respect to x and v to (18a). It
yields

(∂t − k · ∇ξ)f̂(t, k, ξ) = −k · ξ φ̂(t, k) M̂ (ξ).

The equation can be integrated along characteristics, which leads to the following
Duhamel formula

f̂(t, k, ξ) = f̂0(k, ξ + tk)−
ˆ t

0

(
ξ + (t− τ)k

)
· k φ̂(τ, k) M̂

(
ξ + (t− τ)k

)
dτ. (20)

We turn to the expression of the Fourier coefficients of the potential. We remind the
reader that we can split the potential into

φ = φI + φS ,

where φI depends only on (ψ0, ψ1) as follows

φI(t, x) =
¨

Xd×Rn
σ1(x− y)σ2(z)

( .
W (ct)ψ0(y, z) + 1

c
W (ct)ψ1(y, z)

)
︸ ︷︷ ︸

=ψI(t,y,z)

dy dz (21)

and the coupling term reads

φS(t, x) = −
ˆ t

0
pc(t− τ)Σ ? %(τ, x) dτ.

Plugging the expression of φ = φI + φS into (20), we obtain

f̂(t, k, ξ) = f̂0(k, ξ + tk)−
ˆ t

0

(
ξ + (t− τ)k

)
· k φ̂I(τ, k) M̂

(
ξ + (t− τ)k

)
dτ

+|σ̂1(k)|2
ˆ t

0

(
ξ + (t− τ)k

)
· k

(ˆ τ

0
pc(τ − s)%̂(s, k) ds

)
M̂
(
ξ + (t− τ)k

)
dτ

= f̂0(k, ξ + tk)−
ˆ t

0

(
ξ + (t− τ)k

)
· k φ̂I(τ, k) M̂

(
ξ + (t− τ)k

)
dτ

+|σ̂1(k)|2
ˆ t

0

(ˆ t

s
pc(τ − s)

(
ξ + k(t− τ)

)
· k M̂

(
ξ + (t− τ)k

)
dτ
)
%̂(s, k) ds

= f̂0(k, ξ + tk)−
ˆ t

0

(
ξ + (t− τ)k

)
· k φ̂I(τ, k) M̂

(
ξ + (t− τ)k

)
dτ

+|σ̂1(k)|2
ˆ t

0

(ˆ t−s

0
pc(τ)

(
ξ + (t− [τ + s])k

)
· k M̂

(
ξ + (t− [τ + s])k

)
dτ
)
%̂(s, k) dς.

We are led to an integral equation for the (Fourier coefficients of) the macroscopic
density by considering this relation for ξ = 0. Let us set

a(t, k) = f̂0(k, tk)− |k|2
ˆ t

0
φ̂I(τ, k) (t− τ)M̂

(
(t− τ)k

)
dτ (22)

and
K (t, k) = |k|2 |σ̂1(k)|2

ˆ t

0
pc(τ) (t− τ)M̂

(
(t− τ)k

)
dτ. (23)
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Then, we obtain an integral equation for the fluctuation of the macroscopic density

%̂(t, k) = a(t, k) +
ˆ t

0
K (t− s, k)%̂(s, k) ds. (24)

The analysis of this relation makes use of the Laplace transform

ϕ : (0,∞)→ C, Lϕ(ω) =
ˆ +∞

0
e−ωtϕ(t) dt for ω ∈ C,

which is well defined for Re(ω) large enough.

3.2 Linearized Landau damping in finite regularity
The linearized Landau damping holds with an algebraic rate provided the solution %
of (24) satisfies

|%̂(t, k)| ≤ C〈tk〉−m (25)

(see for instance [27, section 3]) for a certain m > 0. For Volterra equations like (24)
we can establish (see [6, Lemma 4.1], [7, Proposition 2.2]) mode-by-mode estimates in
L2
t norm: for any k

ˆ +∞

0
〈tk〉2m |%̂(t, k)|2 dt ≤ C2

LD

ˆ +∞

0
〈tk〉2m |a(t, k)|2 dt, (26)

where CLD > 0 does not depend on k. From such an L2
t estimate, we get an L∞t

estimate as follows

〈tk〉m |%̂(t, k)| ≤ 〈tk〉m |a(t, k)|+
∣∣∣∣∣
ˆ t

0
〈(t− τ)k + τk〉mKk(t− τ, k)%̂(τ, k) dτ

∣∣∣∣∣
≤ 〈tk〉m |a(t, k)|+

(ˆ t

0
〈τk〉2m |K (τ, k)|2 dτ

)1/2(ˆ t

0
〈τk〉2m |%̂(τ, k)|2 dτ

)1/2

≤ 〈tk〉m |a(t, k)|+ CLD

(ˆ t

0
〈τk〉2m |K (τ, k)|2 dτ

)1/2(ˆ t

0
〈τk〉2m |a(τ, k)|2 dτ

)1/2

,

where we are left with the task of verifying that
sup
t≥0

k∈X?d\{0}

〈tk〉m |a(t, k)| < +∞,

sup
k∈X?d\{0}

(ˆ +∞

0
〈τk〉2m |K (τ, k)|2 dτ

)(ˆ +∞

0
〈τk〉2m |a(τ, k)|2 dτ

)
< +∞

(27)

hold. We are going to identify conditions on a(t, k) and K (t, k) such that (26) applies
and to justify that (27) is satisfied. We refer the reader to [7, Proof of Proposition 2.2]
for a proof of the following claim.
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Lemma 3.1 Let K satisfy

inf
k∈X?d\{0}

∣∣1−L K (ω, k)
∣∣ ≥ κ > 0 for Re(ω) ≥ 0, (L)

and for any 0 ≤ j ≤ m :

sup
k∈X?d\{0}
Re(ω)≥0

(
|k|j

∣∣∣∂jωL K (ω, k)
∣∣∣) < +∞.

Then there exists a constant CLD > 0, which does not depend on k, such that the
solutions of (24) satisfy (26).

Estimate (26) makes sense when t 7→ 〈tk〉ma(t, k) is square integrable, a property
that needs to be carefully checked in the current framework.
Condition (L) gives rise to a stability criterion on the stationary profile M . Since the
operator K involves the kernel pc the detailed condition substantially differs from the
usual Vlasov case. That this statement applies for our purpose relies on the following
assumptions:

(H1) n > m+ 5
2 ,

(H2) σ2 ∈ Bn−1,1
1 and |σ2(z)| ≤ C2〈z〉−m2 with m2 >

3n−1
2 ,

(H3) sup
k∈X?d

(∥∥∥ψ̂0(k)
∥∥∥
Bn,11,(z)

+
∥∥∥ψ̂1(k)

∥∥∥
Bn−1,1

1,(z)

)
< +∞,

(H4) |σ̂1(k)| ≤ C1〈k〉−m1 with m1 > m+ 1,

(H5)
∣∣∣M̂ (ξ)

∣∣∣ ≤ C〈ξ〉−m̄ with m̄ > m+ 2 and
∣∣∣f̂0(k, ξ)

∣∣∣ ≤ C0〈ξ〉−m0 with m0 > m+ 1
2 .

Proposition 3.2 Assume (H1)–(H5).
(i) There exists a constant A > 0 such that for any 0 ≤ j ≤ m, k ∈ X?d \ {0} and
ω ∈ C with Re(ω) ≥ 0, we have

|k|j
∣∣∣∂jωL K (ω, k)

∣∣∣ ≤ A.
(ii) For any k ∈ X?d \ {0},

ˆ +∞

0
|k|〈tk〉2m |a(t, k)|2 dt < +∞.

(iii) (27) holds.

The regularity of the data σ1, M and f0 is controlled by assumptions (H4)–(H5):
the higher the algebraic decay rate m requested on the Fourier modes of %, see (25),
the higher the regularity on the data. Assumption (H1) tunes the dimension n for the
wave equation: the decay of the Fourier modes of % is limited by the dispersion of the
wave equation, which is stronger as n increases.
However, as indicated in Lemma 2.3, for odd n the Huygens principle and the decay
of σ2 imply strengthened decay properties on pc. Accordingly, Proposition 3.2 applies
replacing (H1)–(H3) by
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(H1’) n ≥ 3 is odd,

(H2’) σ2 ∈ Bn−1,1
1 and |σ2(z)| ≤ C2〈z〉−m2 with m2 > n+m+ 3

2

(H3’) • sup
k∈X?d

(∥∥∥ψ̂0(k)
∥∥∥
Bn,11,(z)

+
∥∥∥ψ̂1(k)

∥∥∥
Bn−1,1

1,(z)

)
< +∞,

• there exists a constant C > 0 such that

sup
k∈X?d

(∣∣∣ψ̂0(k, z)
∣∣∣+ ∣∣∣ψ̂1(k, z)

∣∣∣) ≤ C〈z〉−m2 .

Hypothesis (H2) or (H2’) can be relaxed. Indeed, the decay imposed in (H2), (H2’)
on σ2 allows us to apply the refined dispersion estimates described in the proof of
Lemma 2.3. Nevertheless, we can simply use the standard estimates as in Lemma 2.3-
i). Then, the decay of pc is slower and, as a counterpart, the dimension n in (H1) is
more constrained. Proposition 3.2 applies replacing (H1)–(H2) by

(H1”) n > 2m+ 4,

(H2”) σ2 ∈ Bn−1,1
1 .

Before proving Proposition 3.2 let us detail a useful statement.

Lemma 3.3 Let α > 1 and β ≥ 0. For any γ ≥ 0 such that γ ≤ β et γ < α − 1, we
have ˆ t

0
〈t− τ〉−α〈τk〉−β dτ . 〈k〉γ〈tk〉−γ . (28)

Proof. We split the integral
ˆ t

0
〈t− τ〉−α〈τk〉−β dτ =

ˆ t/2

0
+
ˆ t

t/2
〈t− τ〉−α〈τk〉−β dτ

≤
ˆ t/2

0
〈t− τ〉−α dτ +

ˆ t

t/2
〈t− τ〉−α

〈
tk

2

〉−β
dτ.

The second integral is dominated byˆ t

t/2
〈t− τ〉−α

〈
tk

2

〉−β
dτ . 〈tk〉−β

ˆ +∞

0
〈u〉−α du

which is finite provided α > 1. For the first integral we observe that, for any 0 ≤ τ ≤
t/2,

〈tk〉 =
〈
t

k
2k
〉
≤
〈
t

2

〉
〈2k〉 ≤ 〈t− τ〉〈2k〉,

holds, and we infer thatˆ t/2

0
〈t− τ〉−α dτ ≤ 〈2k〉

γ

〈tk〉γ

ˆ +∞

0
〈u〉γ−α du.

The right hand side is finite when γ < α− 1, which finishes the proof.

19



Proof of Proposition 3.2. (i) We start from

∂jωL K (ω, k) = |k| |σ̂1(k)|2
ˆ +∞

0
(−t)je−ωt

(ˆ t

0
pc(τ)|k|(t− τ)M̂ ([t− τ ]k) dτ

)
dt.

Permuting integrals and with the change of variables u = t− τ , we get

|k|j
∣∣∣∂jωL K (ω, k)

∣∣∣
≤ |k| |σ̂1(k)|2

ˆ +∞

0

(ˆ +∞

0
|(u+ τ)k|j |pc(τ)| |uk|

∣∣∣M̂ (uk)
∣∣∣ du

)
dτ

. |σ̂1(k)|2
(ˆ +∞

0
|τk|j |pc(τ)|dτ

)(ˆ +∞

0
|uk|j+1

∣∣∣M̂ (uk)
∣∣∣ du|k|

)

= |k|j |σ̂1(k)|2
(ˆ +∞

0
|τ |j |pc(τ)|dτ

)(ˆ +∞

0
|s|j+1

∣∣∣∣M̂ (
k

|k|
s

)∣∣∣∣ ds
)
.

By (H4), |k|j |σ̂1(k)|2 is bounded. Then (H2) allows us to apply Lemma 2.3 and we
deduce that |pc(t)| . 〈t〉−(n−1). Owing to (H1) the second factor is finite. Finally,
(H5) implies that the last factor is finite too and remains uniformly bounded with
respect to k. We point out that the mechanisms of this estimate differs substantially
from the standard Vlasov case, where the decay rate improves with the mode. Here pc
does not not carry any frequency k, but the power of |k| are controlled by the decay
assumptions on σ̂1.

(ii) The term to be estimated can be cast as (we use 〈tk〉 . 〈τk〉〈(t− τ)k〉) :ˆ +∞

0
〈tk〉2 |a(t, k)|2 dt

.
ˆ +∞

0
〈tk〉2m

∣∣∣f̂0(k, tk)
∣∣∣2 dt+

ˆ +∞

0
〈tk〉−(1+)

∣∣∣ ˆ t

0
〈τk〉m+ 1

2
+
|k|φ̂I(τ, k)

×〈(t− τ)k〉m+ 1
2

+
(t− τ)|k|M̂ ([t− τ ]k) dτ

∣∣∣2 dt

.
1
|k|

ˆ +∞

0
〈u〉2m

∣∣∣∣f̂0(k, k
|k|
u)
∣∣∣∣2 du+ 1

|k|

(ˆ +∞

0
〈τk〉2m+1+ |k|

∣∣∣φ̂I(τ, k)
∣∣∣2 dτ

)

×
(ˆ +∞

0
〈sk〉2m+3+

∣∣∣M̂ (sk)
∣∣∣2 |k|ds)(ˆ +∞

0
〈u〉−(1+) du

)
.

Using (H5) we infer
1
|k|

ˆ +∞

0
〈u〉2m

∣∣∣∣f̂0(k, k
|k|
u)
∣∣∣∣2 du .

1
|k|

ˆ +∞

0
〈u〉−1+ dt . 1

|k|
,

and ˆ +∞

0
〈sk〉2m+3+

∣∣∣M̂ (sk)
∣∣∣2 |k| ds . ˆ +∞

0
〈u〉−(1+) dt . 1,

It remains to justify that ˆ +∞

0
〈τk〉2m+1+ |k|

∣∣∣φ̂I(τ, k)
∣∣∣2 dτ

is finite for any k ∈ X?d \ {0}. To this end we observe that the dispersion induced by
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the wave equation ensures∣∣∣φ̂I(τ, k)
∣∣∣ . |σ̂1(k)|

(
‖σ2‖L1

z
+ C2

)(
‖ψ̂0(k)‖

Bn,11,(z)
+ 1
c
‖ψ̂1(k)‖

Bn−1,1
1,(z)

) 1
〈cτ〉n−1 . (29)

This follows from

φ̂I(τ, k) = σ̂1(k)
ˆ
Rn
σ2(z)

( .
W (cτ)(ψ̂0(k)) + 1

c
W (cτ)(ψ̂1(k))

)
(z) dz

and reasoning as in the proof of Lemma 2.3-(ii). We conclude that
ˆ +∞

0
〈τk〉2m+1+ |k|

∣∣∣φ̂I(τ, k)
∣∣∣2 dτ

. |k| |σ̂1(k)|2
(
‖ψ̂0(k)‖

Bn,11,(z)
+ 1
c
‖ψ̂1(k)‖

Bn−1,1
1,(z)

) ˆ +∞

0

〈τ〉2m+1+〈k〉2m+1+

〈cτ〉2(n−1) dτ

. 〈k〉2m+2+ |σ̂1(k)|2
(
‖ψ̂0(k)‖

Bn,11,(z)
+ 1
c
‖ψ̂1(k)‖

Bn−1,1
1,(z)

) ˆ +∞

0

〈τ〉2m+1+

〈cτ〉2(n−1) dτ.

That this quantity is bounded uniformly with respect to k is a consequence of (H1),
(H3) and (H4).

(iii) We have obtained ˆ +∞

0
〈tk〉2m|a(t, k)|2 dt . 1

|k|
,

where the factor 1/|k| comes from a change of variables. We justify similarly that
supt,k 〈tk〉m|a(t, k)| < ∞. (There is no factor 1/|k| is this estimate.) It remains to
study

sup
k

(ˆ +∞

0
〈tk〉2m|K (t, k)|2 dt

)(ˆ +∞

0
〈tk〉2m|a(t, k)|2 dt

)
and to show that ˆ +∞

0
〈tk〉2m|K (t, k)|2 dt . |k|.

Observe that
K (t, k) = |k||σ̂1(k)|2

ˆ t

0
pc(t− τ) τ |k|M̂ (τk) dτ.

Based on (H2), (H5) and Lemma 2.3, we write∣∣∣∣∣
ˆ t

0
pc(t− τ) τ |k|M̂ (τk) dτ

∣∣∣∣∣ .
ˆ t

0
〈t− τ〉−(n−1)〈τk〉−(m̄−1) dτ.

Lemma 3.3 allows us to dominate this quantity by 〈k〉γ〈tk〉−γ for any γ ≥ 0 such
that γ ≤ m̄ − 1 and γ < n − 2. In particular, with (H1) and (H5) it applies with
γ = m+ 1+/2. We conclude thatˆ +∞

0
〈tk〉2m|K (t, k)|2 dt . |k|

(
sup
k
〈k〉2m+1+ |σ̂1(k)|4

)ˆ +∞

0
〈tk〉−(1+)|k|dt . |k|

which ends the proof.

We can now state the results for linearized Landau damping in finite regularity on
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the torus or the whole space. For the sake of conciseness we only mention the case of
Rd (see [33] for further results).

Proposition 3.4 (Linearized Landau damping on Rd with finite regularity)
Let Xd = Rd and m > 0. Let us assume (H1)–(H5) and (L). There exists a constant
C > 0 such that for every k ∈ Rd \ {0} and for every t ≥ 0,

|%̂(t, k)| ≤ C〈tk〉−m.

Moreover, if m is large enought, then, as t → +∞, the fluctuation of spatial density
%(t), the force terme ∇xφ and the fluctuation of media ψ(t) converge strongly to 0. To
be more specific:
• If m > d/2, then for every r ∈ [0,m− d

2) there exists a constant Cr > 0 such that

‖%(t)‖Hr
x
≤ Cr 〈t〉−

d
2 .

• If m > (d+ 2)/2, then for every r ∈ [0,m1 − d+2
2 ) there exists a constant C̄r > 0

such that
‖∇xφI(t)‖Hr

x
≤ C̄r 〈t〉−(n−1)

and for every r ∈ [0, 2m1 − d+2
2 ) there exists a constant C̄ ′r such that

‖∇xφS(t)‖Hr
x
≤ C̄ ′r 〈t〉−

d+2
2 .

• If m > d/2 and n > d+ 3, then for every r ∈ [0,m1 − d
2) there exists a constant

C̃r > 0 such that∥∥∥∥ψ(t)−
.
W (ct)ψ0 −

1
c
W (ct)ψ1

∥∥∥∥
L∞z H

r
x

≤ C̃r 〈t〉−
d
2 .

Remark 3.5 Let us detail a few examples:
(i) For the density, with d = 3, n ≥ 5, m = 2, m0 = 3, m1 = 4, m2 > (3n − 1)/2

and m̄ = 5, we get
‖%(t)‖L2

x
. 〈t〉−

3
2 .

Moreover, with d = 3, n ≥ 8, m = 5, m0 = 6, m1 = 7, m2 > (3n − 1)/2 and
m̄ = 8, we obtain

‖%(t)‖L∞x . ‖%(t)‖H3
x
. 〈t〉−

3
2 .

(ii) For the force, with d = 3, n ≥ 6, m = 3, m0 = 4, m1 = 5, m2 > (3n− 1)/2 and
m̄ = 6, we get

‖∇xφ(t)‖L2
x
. 〈t〉−

5
2 .

Moreover, with d = 3, n ≥ 6, m = 3, m0 = 4, m1 = 6, m2 > (3n − 1)/2 and
m̄ = 6, we obtain

‖∇xφ(t)‖L∞x . ‖∇xφ(t)‖H3
x
. 〈t〉−

5
2 .
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(iii) For the vibration field, with d = 3, n ≥ 7, m = 2, m0 = 3, m1 = 4, m2 >
(3n− 1)/2 and m̄ = 5, we get∥∥∥∥ψ(t)−

.
W (ct)ψ0 −

1
c
W (ct)ψ1

∥∥∥∥
L∞z L

2
x

. 〈t〉−
3
2 .

Moreover, with d = 3, n ≥ 7, m = 2, m0 = 3, m1 = 5, m2 > (3n − 1)/2 and
m̄ = 5, we have∥∥∥ψ(t)−

.
W (ct)ψ0 − 1

c W (ct)ψ1
∥∥∥
L∞z L

∞
x

.
∥∥∥ψ(t)−

.
W (ct)ψ0 − 1

c W (ct)ψ1
∥∥∥
L∞z H

3
x

. 〈t〉−
3
2 .

Remark 3.6 As explained in Proposition 3.2, the decay of %̂(t, k) is directly related to
the dispersion of the wave equation, and thus on n. This explains the constraints on the
dimension n. Nevertheless, when n ≥ 3 is odd, we can obtain the time decay of %̂(t, k)
without further restrictions on n. Accordingly, with (H1’)–(H3’) et (H4)–(H5) the
convergence to 0 of the density fluctuation % and the force ∇xφ can be established.
However, constraints appear when considering the fluctuation of the medium ψ: with
the norms we are using, we need n > d + 3. In dimension d = 3, this excludes n = 3
and n = 5. This restriction can be relaxed by considering instead the supremum over
a ball B(0, R) of finite radius. For instance, in dimension d = 3 with n = 3, assuming
(H1’)–(H3’) and (H4)–(H5), we can show that, for any 0 < R <∞

sup
z∈B(0,R)

∥∥∥∥ψ(t, z)−
.
W (ct)ψ0(z)− 1

c
W (ct)ψ1(z)

∥∥∥∥
Hr
x

≤ CR〈t〉−1.

where CR > 0 blows up as R→ +∞. Further details on this issue can be found in the
proof of Proposition 3.4.

Proof of Proposition 3.4. Owing to (H1)–(H5) we can apply Proposition 3.2
and Lemma 3.1. Proposition 3.2 ensures that (27) holds and from this, we can exhibit
C > 0, independent of k, such that for any k ∈ Rd \ {0},

〈tk〉m |%̂(t, k)| ≤ C.

That %(t) converges to 0 is a consequence of

‖%(t)‖2Hr
x
' ‖%(t)‖2L2

x
+ ‖%(t)‖2.

Hr
x

=
ˆ
Rd
|%̂(t, k)|2 dk +

ˆ
Rd
|k|2r |%̂(t, k)|2 dk

.
1
td

ˆ
Rd
〈tk〉−2m td dk + 1

td+2r

ˆ
Rd
|tk|2r〈tk〉−2m td dk

= 1
td

ˆ
Rd
〈x〉−2m dx+ 1

td+2r

ˆ
Rd
|x|2r〈x〉−2m dx,

where all integrals are finite provided 2r − 2m < −d, that is r < m− d/2.
Next, we estimate both terms of ∇xφ = ∇xφI +∇xφS . We have

‖∇xφI(t)‖2Hr
x
'
ˆ
Rd
|k|2

∣∣∣φ̂I(t, k)
∣∣∣2 dk +

ˆ
Rd
|k|2r+2

∣∣∣φ̂I(t, k)
∣∣∣2 dk,
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and, as noticed when proving Proposition 3.2, φ̂I(t, k) satisfies (29). It follows that

‖∇xφI(t)‖2Hr
x
.c

(ˆ
Rd
|k|2|σ̂1(k)|2 dk +

ˆ
Rd
|k|2r+2|σ̂1(k)|2 dk

)
〈t〉−2(n−1),

where the two integrals are finite, due to (H4), when r < m1 − 1 − d/2. Next, we
apply Lemma 2.3-(ii):

‖∇xφS(t)‖2Hr
x
'
ˆ
Rd
|k|2

∣∣∣φ̂S(t, k)
∣∣∣2 dk +

ˆ
Rd
|k|2r+2

∣∣∣φ̂S(t, k)
∣∣∣2 dk

=
ˆ
Rd

(
|k|2 + |k|2r+2)|σ̂1(k)|4

∣∣∣∣∣
ˆ t

0
pc(t− τ)%̂(τ, k) dτ

∣∣∣∣∣
2

dk

.c

ˆ
Rd

(
|k|2 + |k|2r+2)|σ̂1(k)|4

∣∣∣∣∣
ˆ t

0
〈t− τ〉−(n−1)〈τk〉−m dτ

∣∣∣∣∣
2

dk.

By Lemma 3.3, for any γ ≥ 0 such that γ ≤ m and γ < n− 2, we getˆ t

0
〈t− τ〉−(n−1)〈τk〉−m dτ . 〈k〉γ〈tk〉−γ ,

and we conclude with

‖∇xφS(t)‖2Hr
x
.c

ˆ
Rd

(
|k|2 + |k|2r+2)|σ̂1(k)|4〈k〉2γ〈tk〉−2γ dk

.
(

sup
k
〈k〉2r+2γ |σ̂1(k)|4

)
t−(d+2)

ˆ
Rd
|tk|2〈tk〉−2γ td dk

=
(

sup
k
〈k〉2r+2γ |σ̂1(k)|4

)
t−(d+2)

ˆ
Rd
|x|2〈x〉−2γ dx.

The last integral is finite when 2− 2γ < −d, that is γ > (d+ 2)/2 and the supremum
over k is finite too provided 2r + 2γ ≤ 4m1, that is r ≤ 2m1 − γ.

We turn to ψ. We have

ψ(t)−
.
W (ct)ψ0 −

1
c
W (ct)ψ1 = −1

c

ˆ t

0
W
(
c[t− τ ]

)
σ2 σ1 ? %(τ) dτ.

Hence, for any z ∈ Rn, we obtain

‖ψ(t, z)−
.
W (ct)ψ0(z)− 1

c
W (ct)ψ1(z)‖2Hr

x

'
ˆ
Rd

(
1 + |k|2r

)
|σ̂1(k)|2

∣∣∣∣∣1c
ˆ t

0
W
(
c[t− τ ]

)
σ2(z) %̂(τ, k) dτ

∣∣∣∣∣
2

dk.

We combine the dispersion estimate (15) to (25) and we arrive at∣∣∣∣∣1c
ˆ t

0
W
(
c[t− τ ]

)
σ2(z) %̂(τ, k) dτ

∣∣∣∣∣ .c

ˆ t

0
〈t− τ〉−

n−1
2 〈τk〉−m dτ.

Lemma 3.3 allows us to obtain, for any γ ≥ 0 such that γ ≤ m and γ < (n− 1)/2− 1,ˆ t

0
〈t− τ〉−

n−1
2 〈τk〉−m dτ . 〈k〉γ〈tk〉−γ .
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We deduce that

‖ψ(t, z)−
.
W (ct)ψ0(z)− 1

c
W (ct)ψ1(z)‖2Hr

x

.c

ˆ
Rd

(
1 + |k|2r

)
|σ̂1(k)|2〈k〉2γ〈tk〉−2γ dk

.
(

sup
k
〈k〉2r+2γ |σ̂1(k)|2

)
t−d
ˆ
Rd
〈tk〉−2γ td dk

=
(

sup
k
〈k〉2r+2γ |σ̂1(k)|2

)
t−d
ˆ
Rd
〈x〉−2γ dx.

The last integral is finite when γ > d/2 (this imposes m > d/2 and n > d + 3). The
supremum over k is finite provided 2r + 2γ ≤ 2m1, that is r ≤ m1 − γ.

The estimate in Remark 3.6 is obtained by restricting to the z’s in the ballB(0, |ct|/4).
We apply the refined estimate (17), gathered to (25). We get∣∣∣∣∣1c

ˆ t

0
W
(
c[t− τ ]

)
σ2(z) %̂(τ, k) dτ

∣∣∣∣∣
.

1
c
|k|−

1
2

ˆ t

0

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 〈τk〉−m dτ.

We proceed as for proving Lemma 3.3: for any γ ≥ 0 we obtainˆ t

0

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 〈τk〉−m dτ

.
〈2k〉γ

〈tk〉γ

ˆ t/2

0

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 〈t/2〉γ dτ

+
ˆ t

t/2

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 〈tk/2〉−m dτ

≤ 〈2k〉
γ

〈tk〉γ

ˆ t/2

0

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 〈t− τ〉γ dτ

+〈tk/2〉−m
ˆ t

t/2

〈
c|t− τ | ·

∣∣c|t− τ | − |z| ∣∣〉−n−1
2 dτ

= 〈2k〉
γ

〈tk〉γ

ˆ t

t/2

〈
cu ·

∣∣cu− |z| ∣∣〉−n−1
2 〈u〉γ du

+〈tk/2〉−m
ˆ t/2

0

〈
cu ·

∣∣cu− |z| ∣∣〉−n−1
2 du.

First, ct/2 ≤ cu ≤ ct and 0 ≤ |z| ≤ ct/4 imply |cu− |z| | ≥ ct/4 ≥ cu/2 so that

〈
cu ·

∣∣cu− |z| ∣∣〉−1 ≤
〈
c2u2

2

〉−1

.c 〈u〉−2.

We thus deduce thatˆ t

t/2

〈
cu ·

∣∣cu− |z| ∣∣〉−n−1
2 〈u〉γ du .

ˆ +∞

0
〈u〉−(n−1)〈u〉γ du
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which is finite when γ < n− 2. Second, we haveˆ t/2

0

〈
cu ·

∣∣cu− |z| ∣∣〉−n−1
2 du .c

ˆ
R

〈
u ·
∣∣u− |z| ∣∣〉−n−1

2 du.

As |u| → +∞, we have 〈
u ·
∣∣u− |z| ∣∣〉−n−1

2 '|z| 〈u〉−(n−1)

which is finite provided n ≥ 3. However, we should make precise how it depends on
|z|. To this end, we write
ˆ
R

〈
u ·
∣∣u− |z| ∣∣〉−n−1

2 du =
ˆ
R
〈(u+ |z|/2) · (u− |z|/2)〉−

n−1
2 du

=
ˆ
R

〈
u2 − |z|2/4

〉−n−1
2 du =

ˆ
R

( 〈
u2〉

〈u2 − |z|2/4〉

)n−1
2 〈

u2
〉−n−1

2 du.

A mere function analysis shows that, for any a ≥ 0.

x 7→ 〈x〉2

〈x− a〉2

reaches its maximum over [0,+∞) for x = (a+
√
a2 + 4)/2, which leads to( 〈

u2〉
〈u2 − |z|2/4〉

)n−1
2

. |z|n−1.

It follows that̂

R

〈
u ·
∣∣u− |z| ∣∣〉−n−1

2 du . |z|n−1
ˆ
R
〈u〉−(n−1) du . |z|n−1.

Therefore, when n ≥ 3, for any γ ∈ [0, n− 2) and z ∈ B(0, ct/4), we have∣∣∣∣∣1c
ˆ t

0
W
(
c[t− τ ]

)
σ2(z) %̂(τ, k) dτ

∣∣∣∣∣ .c 〈k〉γ〈tk〉−γ + |z|n−1〈tk〉−m.

We infer that

‖ψ(t, z)−
.
W (ct)ψ0(z)− 1

c
W (ct)ψ1(z)‖2Hr

x

.c

ˆ
Rd

(
1 + |k|2r

)
|σ̂1(k)|2

(
〈k〉2γ〈tk〉−2γ + |z|2(n−1)〈tk〉−2m

)
dk

.
〈z〉2(n−1)

td

(
sup
k
〈k〉2r+2γ |σ̂1(k)|2

) ˆ
Rd

(
〈tk〉−2γ + 〈tk〉−2m

)
td dk

= 〈z〉
2(n−1)

td

(
sup
k
〈k〉2r+2γ |σ̂1(k)|2

) ˆ
Rd

(
〈x〉−2γ + 〈x〉−2m

)
dx

where the last integral is finite when γ,m > d/2. When n is even, we can use (H1’)–
(H3’) instead: the condition on m imposes regularity on the data but no further
restriction on n. Such restriction arise from the condition on γ: we already have
γ ∈ [0, n− 2). To be more specific, we have n > (d+ 4)/2. For d = 1 this holds for any
n ≥ 3; but, for for d = 2 or for the most relevant case d = 3, we should assume n ≥ 4
and n ≥ 5, respectively. Nonetheless, it is equally possible to make use of the decay of
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σ̂1 in order to obtain a singularity which remains integrable at 0 and and gives more
integrability at +∞. The price to be paid is the strengthening of the regularity of σ1
and, more importantly, a reduced convergence rate for large times. To be specific, we
get

‖ψ(t, z)−
.
W (ct)ψ0(z)− 1

c
W (ct)ψ1(z)‖2Hr

x

.c

ˆ
Rd

(
1 + |k|2r

)
|σ̂1(k)|2

(
〈k〉2γ〈tk〉−2γ + |z|2(n−1)〈tk〉−2m

)
dk

=
ˆ
Rd

(
|k|d−1 + |k|2r+d−1

)
|k|−(d−1)|σ̂1(k)|2

(
〈k〉2γ〈tk〉−2γ + |z|2(n−1)〈tk〉−2m

)
dk

.
〈z〉2(n−1)

t

(
sup
k
〈k〉2r+2γ+d−1|σ̂1(k)|2

) ˆ
Rd
|tk|−(d−1)

(
〈tk〉−2γ + 〈tk〉−2m

)
td dk

= 〈z〉
2(n−1)

t

(
sup
k
〈k〉2r+2γ+d−1|σ̂1(k)|2

) ˆ
Rd
|x|−(d−1)

(
〈x〉−2γ + 〈x〉−2m

)
dx.

The last integral is finite when γ > 1/2. This is compatible with the condition γ < n−2
provided n ≥ 3. It is possible to optimize this approach in order to find a sharp decay
rate.

3.3 Linearized Landau damping in analytic regularity
That the linearized Landau damping holds with an exponential rate relies, from (24),
on an estimate on % like

|%̂(t, k)| ≤ C e−λ|tk| (30)

(see [27, section 3]) for some λ > 0. To this end we shall use the analog in analytic
regularity of Lemma 3.1.

Lemma 3.7 Suppose that L K (ω|k|, k)is well-defined on k ∈ X?d \ {0} et ω ∈ {z ∈
C | Re(z) > −Λ} for a certain Λ > 0. We also suppose that

inf
k∈X?d\{0}

∣∣1−L K (ω|k|, k)
∣∣ ≥ κ > 0 for Re(ω) > −Λ, (L′)

is fulfilled. Then, for any 0 < λ < Λ we can find CLD > 0, which does not depend on
k, such that any solution of (24) satisfies, for any k ∈ X?d \ {0},

ˆ +∞

0
e2λ|tk| |%̂(t, k)|2 dt ≤ C2

LD

ˆ +∞

0
e2λ|tk| |a(t, k)|2 dt. (31)

We refer the reader to [32, Proof of Lemma 3.5] or [6, Section 4] for details on this
statement. It allows us to derive the following estimate in L∞t norm

eλ|tk| |%̂(t, k)| ≤ eλ|tk| |a(t, k)|

+ CLD

(ˆ +∞

0
e2λ|τk| |K (τ, k)|2 dτ

)1/2(ˆ +∞

0
e2λ|τk| |a(τ, k)|2 dτ

)1/2

.

27



It remains to check that the data satisfy
sup
t≥0

k∈X?d\{0}

eλ|tk| |a(t, k)| < +∞,

sup
k∈X?d\{0}

(ˆ +∞

0
e2λ|τk| |K (τ, k)|2 dτ

)(ˆ +∞

0
|k|e2λ|τk| |a(τ, k)|2 dτ

)
< +∞.

(32)
In order to apply Lemma 3.7 and to check that (32) holds, we assume

(K1) n ≥ 3 is odd,
(K2) σ2 ∈ C0

c (Rn) with supp(σ2) ⊂ B(0, R2),

(K3) we have supp(ψ0, ψ1) ⊂ Xd ×B(0, RI), for some 0 < RI <∞, and

sup
k∈X?d

{ˆ
Rn

(
|ψ̂1(k, z)|2 + c2|∇zψ̂0(k, z)|2

)
dz
}

= EI <∞,

(K4) the function σ1 : Xd → (0,∞) is radially symmetric and real analytic, and in
particular (see [32, Proposition 3.16]) there exists C1, λ1 > 0 such that, for any
k ∈ X?d, |σ̂1(k)| ≤ C1 e

−λ1|k|.
(K5) there exists C0, λ0 > 0 such that for any ξ ∈ Rd, k ∈ X?d we have

|M̂ (ξ)| ≤ C e−λ̄|ξ|, |f̂0(k, ξ)| ≤ C0 e
−λ0|ξ|.

Namely, we assume analytic regularity on the data with (K4) and (K5). Note
that (K4) is not a strong restriction in the present context, contrarily to what it
could be for the Vlasov case, since for this model σ1 is naturally smooth. Moreover,
physically the form function σ1 would naturally be compactly supported (the support
being interpreted as the “domain of influence” of the particle), which does not make
sense in the analytic framework. Thus, we should here think σ1 as a peaked bump
function. We also bear in mind the fact that σ1 is radially symmetric: its Fourier
coefficients are real and we have σ̂1 ? σ1(k) = |σ̂1(k)|2 ≥ 0. These assumptions, together
with the finite speed of propagation for the wave equation, allow us to control the
“initial data” contribution in (22) and the kernel (23). Let us explain the role of
(K3) for the associated contribution to (21) in (22). In (21), ψI is the solution of the
wave equation on Rn, starting form initial data (ψ0, ψ1). The space variable x ∈ Xd
appears only as a parameter in this equation. Assumption (K3)means that the Fourier
transform (with respect to the parameter) of the initial data has finite and uniformly
bounded energy. When Xd = Td, (K3) holds under the condition

¨
Xd×Rn

(
|ψ1(x, z)|2 + c2|∇zψ0(x, z)|2

)
dz dx = EI <∞,

which implies that the Fourier coefficients of the energy lies in `2(Zd), and thus in
`∞(Zd). This assumption is quite natural since this quantity is involved in the global
energy balance for (2a)–(2d), see [9, 10, 31]. Working in Rd, this has to be replaced by
condition (K3).
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A naive intuition would relate the damping rate to the decay rate of pc. In finite
regularity, we indeed obtained a polynomial damping rate assuming the polynomial
decay of pc. The analytic framework is more demanding and it is not enough to
assume the exponential decay of pc. The proof of Lemma 3.9 below will make the role
of the stronger assumptions (K1)-(K2) clear.

Proposition 3.8 Suppose (K1)–(K5). The quantity L K (ω|k|, k) is well-defined for
any ω ∈ C such that Re(ω) > −λ̄ and (32) holds for any λ > 0 such that

λ < min
(
λ0, λ̄,

cλ1
R2

,
cλ1

RI +R2

)
.

The statement follows from a direct application of the following claim, and repro-
ducing the computations of the proof of Proposition 3.2.

Lemma 3.9 Suppose (K1)–(K5).
(i) Let a(t, k) be defined by (22). Then, there exists α > 0 such that for every

0 < λ < min(λ0, λ̄, cλ1/(RI + R2)), |a(t, k)| ≤ αe−λ|k|t holds for any t ≥ 0,
k ∈ X?d.

(ii) Let K (t, k) be defined by (23). Then, there exists C > 0 such that for every
0 < λ < min(λ̄, cλ1/R2), |K (t, k)| ≤ Ce−λ|k|t holds for any t ≥ 0, k ∈ X?d.

Proof. We start with the proof of (i). First of all, assumption (K5) tells us that

|f̂0(k, tk)| ≤ C0 e
−λ0t|k|

and since

|a(t, k)| . |f̂0(k, tk)|+ |k|2
ˆ t

0

∣∣∣φ̂I(τ, k)
∣∣∣ (t− τ)

∣∣∣M̂ (
(t− τ)k

)∣∣∣ dτ,

we only have to deal with second term. Then, relation (21) can be recast as

φI(t, x) =
ˆ
Xd
σ1(x− y)

(ˆ
Rn
σ2(z)ψI(t, x, z) dz

)
dy

with ψI the solution of the free wave equation
(∂2
tt − c2∆z)ψI = 0,

(ψI , ∂tψI)
∣∣
t=0 = (ψ0, ψ1).

Assumptions (K1) and (K3) allow us to make use of Huygens’ principle which tells
us that

supp(ψI(t, x, ·)) ⊂
{
z ∈ Rn, ct−RI ≤ |z| ≤ ct+RI

}
.

Therefore, by virtue of (K2), the product σ2(z)ψI(t, x, z) vanishes when t ≥ RI+R2
c =

S0 for any x ∈ Xd, z ∈ Rn (see Fig. 1). Hence, φI is supported in [0, S0]× Xd and we
can write

φ̂I(τ, k) = σ̂1(k)
(ˆ

Rn
σ2 ψ̂I(τ, k) dz

)
1t≤S0 .
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Moreover, thanks to Sobolev’s embedding, energy conservation for the wave equation
and assumption (K3), we have∣∣∣∣ˆ

Rn
σ2 ψ̂I(τ, k) dz

∣∣∣∣ ≤ ‖σ2‖
L

2n
n+2
z

‖ψ̂I(τ, k)‖
L

2n
n−2
z

. ‖σ2‖
L

2n
n+2
z

‖∇zψ̂I(τ, k)‖L2
z
≤ 1
c
‖σ2‖

L
2n
n+2
z

(
‖∂tψ̂I(τ, k)‖2L2

z
+ c2‖∇zψ̂I(τ, k)‖2L2

z

) 1
2

= 1
c
‖σ2‖

L
2n
n+2
z

(
‖ψ̂1(k)‖2L2

z
+ c2‖∇zψ̂0(k)‖2L2

z

) 1
2 ≤ 1

c
‖σ2‖

L
2n
n+2
z

√
EI .

From these two facts, and thanks to (K4)–(K5), we can eventually conclude as follows:
for every 0 < λ < min(λ̄, λ1/S0),

|k|2
ˆ t

0

∣∣∣Φ̂I(τ, k)
∣∣∣ (t− τ)

∣∣∣M̂ (
(t− τ)k

)∣∣∣ dτ . |k|2e−λ1|k|
ˆ S0

0
|t− τ |e−λ̄(t−τ)|k| dτ

= |k|2e−λ1|k|
ˆ S0

0
|t−τ |e−λ(t−τ)|k|e−(λ̄−λ)(t−τ)|k| dτ ≤ S2

0

(
sup
k
|k|2e−(λ1−λS0)|k|

)
e−λ|tk|.

Accordingly, a(t, k) is dominated by O(e−λ|k|t), uniformly with respect to k, for 0 <
λ < min(λ0, λ̄, λ1/S0). (Note that S0 behaves like 1/c; as c becomes large, only λ0 and
λ̄ are relevant in this condition.)

We turn now on the estimate on K . With (K4), (K5) and Lemma 2.3 (we use
(K1) and (K2) in order to apply this lemma), we can estimate K as follows: for
every 0 < λ < min(λ̄, cλ1/R2),

|K (t, k)| ≤ |k|2|σ̂1(k)|2
ˆ 2R2

c

0
|pc(τ)| (t− τ)

∣∣∣M̂ (
(t− τ)k

)∣∣∣ dτ

. |k|2e−2λ1|k|
ˆ 2R2

c

0
(t− τ)e−λ(t−τ)|k|e−(λ̄−λ)|k| dτ .

(
sup
k
|k|2e−2(λ1−

R2
c
λ)|k|

)
e−λ|tk|

which tells us that K (t, k) is dominated by O(e−λ|k|t), uniformly with respect to k,
provided 0 < λ < min

(
λ̄, cλ1

R2

)
.

Hence, assuming (K1)–(K5) and (L′), the solution of (18)–(19) satisfies (30). We
deduce the convergence of the fluctuation of density %(t), force ∇xφ(t), and medium
ψ(t) (with exponential rate on the torus and polynomial rate for the free space prob-
lem), like in Proposition 3.4 and [27, Theorem 3.1].

3.4 Stability criterion for large wave speeds
We turn to investigate the “(L)-condition” made on the Laplace transform of K (see
(L) and (L′)), where

L K (ω, k) = |σ̂1(k)|2 L pc(ω)L (|k|2tM̂ (kt))(ω).

In fact, for the Vlasov equation, such a property holds under a smallness assumption,
see [27, Condition (a) in Proposition 2.1]. Here, this condition can be rephrased by
means of a condition on the wave speed c � 1. The latter confirms the intuition
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that the damping is related to the ability to evacuate the particles energy through the
membranes, see [8]. (It also raises the issue to determine whether or not there exist
stable equilibrium for c � 1.) A similar smallness condition on 1/c appears in the
asymptotic statements for a single particle [8, Theorem 2, 3 & 4], for the analysis of the
relaxation to equilibrium for the Vlasov-Wave-Fokker-Planck model [2, Theorem 2.3],
and the stability analysis in [10]. Moreover, as mentioned in the Introduction, up to
a suitable c-dependent rescaling of the coupling, the regime c→∞ leads to the usual
Vlasov system [8], and it can be checked that the stability criterion for large c’s is
consistent to the condition exhibited for the Vlasov equation. The role of the wave
speed c on the damping phenomena is investigated on numerical grounds in [18].

Proposition 3.10 (Stability criterion for large c’s) (i) Assume (H1)–(H2) and
(H4)–(H5). There exists c0 > 0 such that if c > c0 then condition (L) is fulfilled.
(ii) Assume (K1)–(K2) and (K4)–(K5). There exists c0 > 0 such that if c > c0 then
condition (L′) is fulfilled.

Proof. We only detail the proof of (ii), the former item being justified by a similar
approach. Let 0 < Λ < min(λ̄, cλ1/R2) and let ω be a complex number such that
Re(ω) > −Λ. On the one hand, we have, for any k 6= 0,∣∣∣L (

|k|2tM̂ (tk)
)
(ω|k|)

∣∣∣ =
∣∣∣∣ˆ ∞

0
sM̂

( k
|k|
s
)
e−ωs ds

∣∣∣∣ . ˆ ∞
0

se−λ̄seΛs ds . 1.

On the other hand, Lemma 2.3 allows us to estimate the Laplace transform of the
kernel pc as follows∣∣L pc(ω|k|)

∣∣ ≤ ‖pc‖L∞ ˆ 2R2/c

0
eΛ|k|s ds . 1

c

e
2R2
c

Λ|k|

c
.

Owing to (K4), we obtain

|σ̂1(k)|2
∣∣L pc(ω|k|)

∣∣ . 1
c2 e
−2(λ1−

R2
c

Λ)|k|.

We observe that the right hand side tends to 0 as c→∞. Therefore, for any κ ∈ (0, 1),
provided c is large enough, we have

sup
k 6=0
|L K (ω|k|, k)| ≤ 1− κ

for any ω ∈ C with Re(ω) > −Λ, which implies infk 6=0 |L K (ω|k|, k)− 1| ≥ κ > 0.

Section 5 provides a thorough discussion of the stability criterion, beyond the mere
assumption of large wave speeds c.

4 Nonlinear Landau Damping
In this Section, we briefly explain how the non linear Landau damping can be justi-
fied. We consider two distincts geometrical and functional frameworks: the free space
problem can be handled by working with Sobolev spaces [7], while on the torus the
dispersion effects of the transport operator do not operate and we work with analytic
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regularity [6, 27]. We point out the new difficulties compared to the Vlasov case and
explain how the arguments can be adapted for our purposes. Fully detailed proofs and
further comments can be found in [33].

4.1 The free space problem
We shall see that the damping in Rd occurs with a restriction on the space dimension:
we should assume d ≥ 3. As in [7], the analysis in the whole space relies on dispersive
phenomena attached to the free transport operator; these effects are indeed strong
enough to dominate the plasma echoes when d ≥ 2, and a further technical restriction
arises in the bootstrap argument, that leads to impose d ≥ 3.

4.1.1 Functional framework

We shall make use of Sobolev-type spaces. For s ∈ R, m ∈ N \ {0}, we denote

Hs(Rm) =
{
u : Rm → R,

ˆ
Rm
〈x〉2s|û(x)|2 dx

}
.

Given x and y in Rd, x, y stands for the vector in R2d that results from the concatenation
of x and y. Consequently, we can set 〈x, y〉 = (1+|x|2+|y|2)1/2.With α = (α1, . . . αd) ∈
Nd, we introduce the differential operator

Dα
ξ = (−i∂α1

ξ1
) · · · (−i∂αdξd ).

For s ≥ 0, Hs stands for the standard Sobolev space. We shall make use of the norms
introduced in [7]. We deal with functions f : (0,∞) × Rd × Rd → R, and for P ∈ N,
s ≥ 0, we denote

‖f(t)‖2Hs
P

=
∑
α∈Nd
|α|≤P

‖(x, v) 7→ vαf(t, x, v)‖2Hs =
∑
α∈Nd
|α|≤P

¨
Rd×Rd

〈k, ξ〉2s
∣∣∣Dα

ξ f̂(t, k, ξ)
∣∣∣2 dk dξ.

(33)
It is also convenient to consider

‖〈t∇x,∇v〉f(t)‖2Hs
P

=
∑
α∈Nd
|α|≤P

‖(x, v) 7→ 〈t∇x,∇v〉vαf(t, x, v)‖2Hs

=
∑
α∈Nd
|α|≤P

¨
Rd×Rd

〈tk, ξ〉2〈k, ξ〉2s
∣∣∣Dα

ξ f̂(t, k, ξ)
∣∣∣2 dk dξ

(there is a slight abuse of notation here since the right hand side is actually equivalent
to the definition of ‖〈t∇x,∇v〉f(t)‖2Hs

P
based on (33)) and∥∥∥ |∇x|δf(t)

∥∥∥2

Hs
P

=
∑
α∈Nd
|α|≤P

‖(x, v) 7→ |∇x|δvαf(t, x, v)‖2Hs

=
∑
α∈Nd
|α|≤P

¨
Rd×Rd

|k|2δ〈k, ξ〉2s
∣∣∣Dα

ξ f̂(t, k, ξ)
∣∣∣2 dk dξ.
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We shall also use L∞-type estimate on Fourier transforms; we set∥∥∥ ̂〈∇x,v〉sf
∥∥∥
L∞(t)L

∞
(k,ξ)

= sup
t∈[0,T ]

(
sup
k,ξ∈Rd

{
〈k, ξ〉s

∣∣∣f̂(t, k, ξ)
∣∣∣}) .

For a function (t, x) ∈ (0,∞) × Rd 7→ %(t, x) ∈ R we introduce the modified Sobolev
norm ˆ

Rd
|k|〈k, tk〉2s|%̂(t, k)|2 dk = ‖As(t)%̂(t)‖L2

(k)
,

where we have set
As(t, k) = |k|1/2〈k, tk〉s,

and we shall also use

‖As%̂‖L2
(k,t)

=
ˆ T

0

ˆ
Rd
|k|〈k, tk〉2s|%̂(t, k)|2 dk dt,

and

‖As%̂‖L∞(k)L
2
(t)

= sup
k∈Rd

(ˆ T

0
|k|〈k, tk〉2s|%̂(t, k)|2

)1/2

.

The norms defined on the macroscopic density % equally apply to the kinetic quantity
g, replacing %̂(t, k) by ĝ(t, k, tk).

We go back to the formulation (9). Compared to the usual Vlasov equation, the
expression of the potential Φ[ψ] now involves the contribution of the initial data FI ,
and the self-consistent part G% presents a memory effect, through the kernel pc. It is
convenient to think of the problem with some generality on these quantities. Thus,
let us collect the hypothesis on the data of the problem: FI , pc and σ1. We refer the
reader to the previous section in order to translate these assumption on the original
data σ2, ψ0 and ψ1.

(A1) There exists an exponent αI > 0 sufficiently large such that

sup
k∈Rd

∣∣∣F̂I(t, k)
∣∣∣ . 〈t〉−αI ,

(A2) There exists an exponent αc > 0 sufficiently large such that

|pc(t)| . 〈t〉−αc ,

(A3) σ1 ∈ S (Rd): for any α ≥ 0 we have

lim
|k|→+∞

〈k〉α|σ̂1(k)| = 0.

This formulation of the hypothesis has the advantage of pushing the generality of
the result, both on the “linear” perturbation due to the data through FI and on the
memory effects in the self-consistent potential through pc. The following claims are
crucial for our purposes: roughly speaking, they explain why the situation is not very
different from the Vlasov case, once the role of FI(t) and pc well understood, and it
justifies that the approach of [7] is robust enough to be adapted. Note that (A1) is
the assumption that makes the constants C1(FI) and C2(FI) below meaningful.
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Proposition 4.1 Let (A1)–(A3) be fulfilled. Then for any 0 < T < ∞ and any
s ≥ 0 such that s < αI − 1/2 and s < (αc − 1)/2, the following three estimates hold∥∥∥Asσ̂1

(
F̂I − σ̂1Ĝ%

)∥∥∥2

L2
(t)L

2
(k)

. C1(FI) + ‖As%̂‖2L2
(t)L

2
(k)
, (34a)∥∥∥Asσ̂1

(
F̂I − σ̂1Ĝ%

)∥∥∥2

L∞(k)L
2
(t)

. C1(FI) + ‖As%̂‖2L∞(k)L
2
(t)
, (34b)

sup
t∈[0,T ]

sup
k∈Rd

〈k, tk〉s|σ̂1(k)|
∣∣∣F̂I(t, k)− σ̂1(k)Ĝ%(t, k)

∣∣∣ (34c)

. C2(FI) + sup
t∈[0,T ]

sup
k∈Rd

〈k, tk〉s |%̂(t, k)| ,

with

C1(FI) =
ˆ +∞

0
〈t〉2s sup

k

∣∣∣F̂I(t, k)
∣∣∣2 dt and C2(FI) = sup

t,k
〈t〉s

∣∣∣F̂I(t, k)
∣∣∣ .

Remark 4.2 We shall use the following variant of the statement : for any polynomial
k 7→ P (k), we have∥∥∥PAsσ̂1

(
F̂I − σ̂1Ĝ%

)∥∥∥2

L2
(t)L

2
(k)

. C1(FI) + ‖As%̂‖2L2
(t)L

2
(k)
, (35a)∥∥∥PAsσ̂1

(
F̂I − σ̂1Ĝ%

)∥∥∥2

L∞(k)L
2
(t)

. C1(FI) + ‖As%̂‖2L∞(k)L
2
(t)
, (35b)

sup
t∈[0,T ]

sup
k∈Rd

〈k, tk〉sP (k)|σ̂1(k)|
∣∣∣F̂I(t, k)− σ̂1(k)Ĝ%(t, k)

∣∣∣ (35c)

. C2(FI) + sup
t∈[0,T ]

sup
k∈Rd

〈k, tk〉s |%̂(t, k)| ,

These estimates can be justified since σ1 lies in the Schwartz class and thus P (k)σ̂1(k)
remains a function with fast decay.

Proof. In order to prove (34a), we analyse separately the contribution from F̂I and
Ĝ% as follows∥∥∥Asσ̂1

(
F̂I − σ̂1Ĝ%

)∥∥∥2

L2
(t)L

2
k

.
ˆ T

0

ˆ
Rd
k

|k|〈k, tk〉2s|σ̂1(k)|2|F̂I(t, k)|2 dk dt︸ ︷︷ ︸
=I

+
ˆ T

0

ˆ
Rd
k

|k|〈k, tk〉2s|σ̂1(k)|4|Ĝ%(t, k)|2 dk dt︸ ︷︷ ︸
=II

.

For I, by using 〈k, tk〉2 ≤ 〈k〉2〈t〉2, we readily obtain

I ≤
(ˆ

Rd
k

|k|〈k〉2s|σ̂1(k)|2 dk
)(ˆ +∞

0
〈t〉2ssup

k

∣∣∣F̂I(t, k)
∣∣∣2 dt

)
.
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For II we start by applying Cauchy-Schwarz’ inequality

|Ĝ%(t, k)|2 =
∣∣∣∣∣
ˆ t

0
pc(t− τ)%(τ, k) dτ

∣∣∣∣∣
2

≤
(ˆ t

0
|pc(t− τ)| dτ

)(ˆ t

0
|pc(t− τ)||%̂(τ, k)|2 dτ

)
.

Going back to II, we are led to

II ≤ ‖pc‖L1

ˆ T

0

ˆ t

0
|pc(t− τ)|

(ˆ
Rd
k

|k|〈k, τk〉2s 〈k, tk〉
2s

〈k, τk〉2s
|σ̂1(k)|4|%̂(t, k)|2 dk

)
dτ dt.

A simple study of function shows that (for t ≥ τ)

sup
k∈Rd

〈k, tk〉2s

〈k, τk〉2s
≤ 〈t〉

2s

〈τ〉2s
.

Since |σ̂1(k)| ≤ ‖σ1‖L1 . 1, and using Fubini’s theorem, we obtain

II . ‖pc‖L1

ˆ T

0

(ˆ T

τ
|pc(t− τ)| 〈t〉

2s

〈τ〉2s
‖As%̂(τ)‖2L2

(k)
dt
)

dτ

. ‖pc‖L1

ˆ T

0
‖As%̂(τ)‖2L2

(k)

(ˆ T−τ

0
|pc(u)| 〈u+ τ〉2s

〈τ〉2s
du
)

dτ.

Since 〈u+ τ〉2s . 〈u〉2s〈τ〉2s, we arrive at

II . ‖pc‖L1

(ˆ +∞

0
〈u〉2s|pc(u)|du

)
‖As%̂‖2L2

(t)L
2
(k)
.

It ends the proof of (34a).
Estimate (34b) follows the same strategy: for k ∈ Rd, we split as follows
ˆ T

0
|k|〈k, tk〉2s|σ̂1(k)|2

∣∣∣F̂I(t, k)− σ̂1(k)Ĝ%(t, k)
∣∣∣2 dt

≤
ˆ T

0
|k|〈k, tk〉2s|σ̂1(k)|2|F̂I(t, k)|2 dt︸ ︷︷ ︸

=J

+
ˆ T

0
|k|〈k, tk〉2s|σ̂1(k)|4|Ĝ%(t, k)|2 dt︸ ︷︷ ︸

=JJ

.

Proceeding as above, we obtain

J ≤
(

sup
k∈Rd

|k|〈k〉2s|σ̂1(k)|2
)(ˆ +∞

0
〈t〉2ssup

k

∣∣∣F̂I(t, k)
∣∣∣2 dt

)
and

JJ . ‖pc‖L1

ˆ T

0

(ˆ T

τ
|pc(t− τ)| 〈t〉

2s

〈τ〉2s
|k|〈k, τk〉2s|%̂(τ, k)|2 dt

)
dτ

. ‖pc‖L1

(ˆ +∞

0
〈u〉2s|pc(u)|du

)(ˆ T

0
|k|〈k, τk〉2s|%̂(τ, k)|2 dτ

)
.

We proceed with a slightly different approach for (34c) when dealing with the contri-
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bution involving Ĝ%. For any t ∈ [0, T ] and k ∈ Rd, we write

〈k, tk〉s|σ̂1(k)|
∣∣∣F̂I(t, k)− σ̂1(k)Ĝ%(t, k)

∣∣∣
.

(
sup
k∈Rd

〈k〉s|σ̂1(k)|
)(

sup
t∈[0,T ]

〈t〉ssup
k

∣∣∣F̂I(t, k)
∣∣∣)+ 〈k, tk〉s|Ĝ%(t, k)|.

Since

〈k, tk〉s|Ĝ%(t, k)| ≤
ˆ t

0
|pc(t− τ)| 〈k, tk〉

s

〈k, τk〉s
〈k, τk〉s|%̂(τ, k)| dτ

.

(ˆ t

0
|pc(t− τ)| 〈t〉

s

〈τ〉s
dτ
)(

sup
τ∈[0,T ]

sup
k∈Rd

〈k, τk〉s|%̂(τ, k)|
)
,

it suffices to observe that ˆ t

0
|pc(t− τ)| 〈t〉

s

〈τ〉s
dτ <∞

by virtue of (A2).

Proposition 4.3 Let (A1)–(A3) be fullfiled. Assume that M ∈ H s̃
P with P > d/2

and s̃ ≥ 0. Then for any s ≥ 0 such that s < s̃− 2d and s < αI − 1, we have∥∥∥∥∥(t, k) 7→ As(t, k)
ˆ t

0
∇̂xσ1(k)F̂I(τ, k)∇̂vM

(
(t− τ)k

)
dτ
∥∥∥∥∥
L2

(t)L
2
(k)

(36a)

.
ˆ +∞

0
〈t〉2s+1+ sup

k

∣∣∣F̂I(t, k)
∣∣∣2 dt∥∥∥∥∥(t, k) 7→ As(t, k)

ˆ t

0
∇̂xσ1(k)F̂I(τ, k)∇̂vM

(
(t− τ)k

)
dτ
∥∥∥∥∥
L∞(k)L

2
(t)

(36b)

.
ˆ +∞

0
〈t〉2s+1+ sup

k

∣∣∣F̂I(t, k)
∣∣∣2 dt

Proof. First, let us introduce the following notation

I(t, k) = As(t, k)
ˆ t

0
∇̂xσ1(k)F̂I(τ, k)∇̂vM

(
(t− τ)k

)
dτ

and estimate for every k ∈ Rd the L2
(t) norm of t 7→ I(t, k). By using the relations
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〈k, tk〉 . 〈k, τk〉〈[t− τ ]k〉 and 〈k, τk〉 ≤ 〈k〉〈τ〉, we obtainˆ T

0
|I(t, k)|2 dt . |k|3|σ̂1(k)|2

ˆ T

0
〈tk〉−(1+)

×
(ˆ t

0
〈τk〉

1
2

+
〈k, τk〉s

∣∣∣F̂I(τ, k)
∣∣∣ 〈(t− τ)k〉s+

1
2

+ ∣∣∣∇̂vM (
(t− τ)k

)∣∣∣)2

dt

. |k||σ̂1(k)|2
ˆ T

0
〈tk〉−(1+)

(ˆ +∞

0
〈τk〉1+〈k, τk〉2s

∣∣∣F̂I(τ, k)
∣∣∣2 dτ

)

×
(ˆ +∞

0
〈(t− τ)k〉2s+1+

∣∣∣∇̂vM (
(t− τ)k

)∣∣∣2 |k|dτ) |k|dt
. |k|〈k〉2s+1+ |σ̂1(k)|2

(ˆ +∞

0
〈τ〉2s+1+sup

k
|F̂I(τ, k)|2 dτ

)

×
(ˆ +∞

0
〈u〉2s+1+

∣∣∣∣∇̂vM (
u
k

|k|
)∣∣∣∣2 du

)ˆ T

0
〈u〉−(1+) du.

Since M ∈ H s̃
P , we have ξ 7→ 〈ξ〉s̃M̂ (ξ) ∈ HP , where P > d/2, and Sobolev’s embed-

ding yields |M̂ (ξ)| . ‖M̂ ‖HP 〈ξ〉−s̃. Then, as soon as s < s̃ − (1+), this ensures that
the integral involving M is uniformly bounded with respect to k. Eventually (A3)
ensures that both L2

(k)L
2
(t) and L∞(k)L

2
(t)-norm of I(t, k) are dominated as asserted.

The analysis of the Landau Damping, as it is already clear for the linearized prob-
lem, relies heavily on the formulation of the problem by means of the Fourier variables.
Let us collect the useful formula from which the reasoning starts. Integrating (10a)–
(10b) over [0, t], we get

g(t, x, v) = f0(x, v)+
ˆ t

0
∇xσ1?(FI−σ1?G%)(τ, x+τv)·(∇v−τ∇x)(M (v)+g(τ, x, v)) dτ.

We check thatˆ
R2d

u(x+ τv, v)e−ik·xe−iξ·v dv dx =
ˆ
R2d

u(y, v)e−ik·ye−i(ξ−τk)·v dv dx = û(k, ξ − τk).

We also bear in mind that 1̂(v)(ξ) = δ(ξ = 0) and 1̂(x)(k) = δ(k = 0). We thus obtain

ĝ(t, k, ξ) = f̂0(k, ξ)

−
ˆ t

0

ˆ
R2d

nσ̂1(n)(F̂I − σ̂1Ĝ%)(τ, n)δ(ζ = τn) · (ξ − ζ)M̂ (ξ − ζ)δ(n = k) dn dζ dτ

−
ˆ t

0

ˆ
R2d

nσ̂1(n)(F̂I − σ̂1Ĝ%)(τ, n)δ(ζ = τn)

·(ξ − ζ − τ(k − n))ĝ(τ, k − n, ξ − ζ) dn dζ dτ

= f̂0(k, ξ)−
ˆ t

0
kσ̂1(k)(F̂I − σ̂1Ĝ%)(τ, τk) · (ξ − τk)M̂ (ξ − τk) dτ

−
ˆ t

0

ˆ
Rd
nσ̂1(n)(F̂I − σ̂1Ĝ%)(τ, n) · (ξ − τk)ĝ(τ, k − n, ξ − τn) dn dτ.

(37)
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Eventually, the macroscopic density is evaluated by

%̂(t, k) =
ˆ
R2d

f(t, x, v)e−ik·x dv dx =
ˆ
R2d

g(t, x− tv, v)e−ik·x dv dx

=
ˆ
R2d

g(t, y, v)e−ik·ye−itk·v dv dy = ĝ(t, k, tk).

Going back to (37) with ξ = tk, we arrive at

%̂(t, k) = f̂0(k, tk)−
ˆ t

0
kσ̂1(k)(F̂I − σ̂1Ĝ%)(τ, τk) · (t− τ)kM̂ ((t− τ)k) dτ

−
ˆ t

0

ˆ
Rd
nσ̂1(n)(F̂I − σ̂1Ĝ%)(τ, n) · ((t− τ)k)ĝ(τ, k − n, tk − τn) dn dτ (38)

4.1.2 Main result

We are ready now to state the main result about the non linear Landau damping. As
said above, the proof makes the constraint d ≥ 3 on the space dimension appear.

Theorem 4.4 (Landau damping in Rd) Let d ≥ 3. Suppose (A1)–(A3). There
exists universal constants ε0, R0 > 0 and r ∈ (0, R0) such that if s > R0,

∑
α∈Nd
|α|≤P

‖xαf0‖2Hs
P
≤ ε2

0

ˆ +∞

0
〈t〉2s sup

k

∣∣∣F̂I(t, k)
∣∣∣2 dt ≤ ε2

0, sup
t,k
〈t〉s

∣∣∣F̂I(t, k)
∣∣∣ ≤ ε0,

and M ∈ H s̃
P (Rdv) with P > d/2 and s̃ ≥ s+ 2d satisfies (L), then, the unique solution

g of (10a)–(10b) is globally defined. Moreover, there exists g∞ ∈ Hr
P such that

‖g(t)− g∞‖Hσ
P

. ε0〈t〉−
d
2 for 0 ≤ σ ≤ r, (39a)

|ĝ(t, k, tk)| . ε0〈k, tk〉−(r+d+2) (39b)
‖〈∇x〉σ∇σ1 ? (FI(t)− σ1 ? Gg(t))‖L∞( dx) . ε0〈t〉−d−1 for σ ≥ 0 (39c)

holds.

Remark 4.5 Estimate (39c) holds because σ1 is assumed to be in the Schwartz class;
this assumption can be relaxed at the price of introducing constraints on the regularity
exponent σ.

Estimate (39b) provides a decay of %̂(t, k) with rate 〈k, tk〉−(r+d+2); the statement
can be completed by the convergence to 0 of the fluctuations ψ of the medium state, see
Proposition 3.4.

The proof of the Landau Damping in fact relies on a bootstrap estimate, see [7,
Proposition 2.5], which states as follows.

Proposition 4.6 (Bootstrap) Let the hypothesis of Theorem 4.4 be fulfilled and let
0 < δ < 1/2. There exists real numbers 2(d + 1) + 1 < s1 < s2 < s3 < s4 < s and
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K1, ...,K5 ≥ 1 such that, for any g ∈ C0([0, T ], Hs
P ) solution of (10a)–(10b) on the

time interval [0, T ] verifying

‖〈t∇x,∇v〉g(t)‖2
H
s4
P
≤ 4K1ε

2〈t〉5, (40a)

‖As4 %̂‖2L2
(t)L

2
(k)
≤ 4K2ε

2, (40b)

‖|∇x|δg(t)‖2
H
s3
P
≤ 4K3ε

2, (40c)

‖As2 %̂‖2L∞(k)L
2
(t)
≤ 4K4ε

2, (40d)

‖ ̂〈∇x,v〉s1g(t)‖L∞(k,ξ) ≤ 4K5ε, (40e)

for 0 < ε ≤ ε0 small enough, the following estimates hold on [0, T ]

‖〈t∇x,∇v〉g(t)‖2
H
s4
P
≤ 2K1ε

2〈t〉5, (41a)

‖As4 %̂‖2L2
(t)L

2
(k)
≤ 2K2ε

2, (41b)

‖|∇x|δg(t)‖2
H
s3
P
≤ 2K3ε

2, (41c)

‖As2 %̂‖2L∞(k)L
2
(t)
≤ 2K4ε

2, (41d)

‖ ̂〈∇x,v〉s1g(t)‖L∞(k,ξ) ≤ 2K5ε. (41e)

Remark 4.7 We shall see within the proof how the si’s are chosen, according to some
compatibility conditions. This choice determines the possible value for R0 that arises
in Theorem 4.4 as a threshold for the Sobolev regularity in which the damping is eval-
uated. To be specific, Proposition 4.6 holds for s > s4 + 2d and si > si−1 + 2d and in
Theorem 4.4, we can set

R0 = s4 + 2d, r = s1 − d− 2.

The condition on ε0 imposes a smallness constraint on the initial perturbation.

Remark 4.8 It might be surprising that the half-convolution with respect to time plays
a relatively weak role in this statement, compared to the Vlasov case. At first sight, we
would suspect that the memory effect changes a lot the control of the force terms, or
that it imposes further restrictions. In fact, the heart of the proof relies on the estimates
in Proposition 4.1, and the main impact of the memory term is rather on the stability
condition, where it completely modifies, in a quite intricate way, the expression of the
symbol L K . This can be seen as a confirmation of the robustness of the approach
designed in [27, 6, 7].

The proof of the Landau damping from the bootstrap follows closely [7]; full details
can be found in [33]. The bootstrap argument in itself is adapted from [7] by taking ad-
vantage of the analogies with the Vlasov equation. There are two main differences that
require some care: the additional term FI(t) should be controlled with the bootstrap
norms and all quantities where ‖%(t)‖ arises in [7] should be controlled here by ‖G%‖.
Both ‖FI(t)‖ and the estimates of ‖G%‖ by ‖%(t)‖ should be evaluated by using the
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norms involved in Proposition 4.6. These issues are the motivation for Proposition 4.1
and Proposition 4.3. For instance, let us detail this strategy for the estimate of As4 %̂ in
the L2

(k)L
2
(t) norm. The other estimates proceed similarly, by combining the arguments

of [7] to Propositions 4.1 and 4.3, see [33].

4.1.3 Estimate of the L2
(k)L

2
(t) norm of As4 %̂.

The estimate of As4 %̂ is a consequence of the following two claims, for which we refer
the reader to [7, Section 2.3 and 3]. The former is a version of Lemma 3.1 adapted to
the norms of the bootstrap.

Proposition 4.9 (Linearized damping on Rd) Let the assumptions of Theorem 4.4
be fulfilled. We consider a family of functions {t ∈ [0, T ] 7→ a(t, k), k ∈ Rd}. We sup-
pose that, for any k ∈ Rd,

ˆ T

0
|k|〈k, tk〉2s|a(t, k)|2 dt < +∞,

holds. Then, we can find a constant CLD (which does not depend on k and T ) such
that any solution (t, k) 7→ φ(t, k) of the system

φ(t, k) = a(t, k) +
ˆ t

0
K (t− τ, k)φ(τ, k) dτ

= a(t, k) +
ˆ t

0
|σ̂1(k)|2|k|2(t− τ)M̂ ([t− τ ]k)

(ˆ τ

0
pc(τ − σ)φ(σ, k) dσ

)
dτ,

on [0, T ] satisfies the following estimate: for any k ∈ Rd

ˆ T

0
|k|〈k, tk〉2s|φ(t, k)|2 dt ≤ CLD

ˆ T

0
|k|〈k, tk〉2s|a(t, k)|2 dt.

The second estimate is concerned with the time-response kernel

K̄(t, τ, k, n) = |k|
1/2|n|1/2|k(t− τ)|

〈n〉2
|ĝ(t, k − n, tk − τn)| .

which is a crucial quantity for the analysis of the echo phenomena. It leads to the
constraint on s1 involved in Proposition 4.6. Technically, this statement is substantially
different when Xd = Td or when Xd = Rd. In the torus, the proof needs analytic
regularity but is free of constraint on the space dimension d (see [6, Section 6]). For
the free space problem, the argument relies on dispersion mechanisms of the transport
operator which are strong enough only when d ≥ 2; in this situation it is thus possible
to work in finite regularity.

Proposition 4.10 Let 0 < T <∞. Let s1 > 2(d+1)+1. The following two estimates
hold

sup
t∈[0,T ]

sup
k∈Rd

ˆ t

0

ˆ
Rd
K̄(t, τ, k, n) dn dτ . sup

τ∈[0,T ]
sup
k,ξ∈Rd

〈k, ξ〉s1 |ĝ(τ, k, ξ)|
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and

sup
τ∈[0,T ]

sup
n∈Rd

ˆ T

τ

ˆ
Rd
K̄(t, τ, k, n) dk dt . sup

τ∈[0,T ]
sup
k,ξ∈Rd

〈k, ξ〉s1 |ĝ(τ, k, ξ)| .

Remark 4.11 The factor 1/〈n〉2 in the kernel K̄ comes from the convolution kernel
used in [7]. Here, since σ1 is Schwartz class, this factor can be replaced by 1/〈n〉m with
m ∈ N as large as we wish.

We follow closely the arguments of [7], up to the perturbation due to FI and Gg; as
pointed out above, these perturbations do not substantially modify the analysis, owing
to Proposition 4.1 and Proposition 4.3.

We start from the expression of %̂(t, k) in (38) and we apply Proposition 4.9 in order
to estimate the L2

(t) norm of Asi %̂ (with i ∈ {2, 4}). We get

‖Asi %̂(·, k)‖2L2
(t)

.
ˆ T

0
|k|〈k, tk〉2si |f̂0(k, tk)|2 dt

+
ˆ T

0

∣∣∣∣∣
ˆ t

0
|k|1/2〈k, tk〉s4k σ̂1(k)F̂I(τ, k) · [t− τ ]kM̂ ([t− τ ]k) dτ

∣∣∣∣∣
2

dt

+
ˆ T

0

∣∣∣ ˆ t

0

ˆ
Rdn
|k|1/2〈k, tk〉s4n σ̂1(n)

(
F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)

)
· [t− τ ]k ĝ(τ, k − n, tk − τn) dτ dn

∣∣∣2 dt. (42)

Integrating (42) with respect to k yields

‖As4 %̂‖2L2
(k)L

2
(t)

.
ˆ
Rd

ˆ T

0
|k|〈k, tk〉2s4

∣∣∣f̂0(k, tk)
∣∣∣2 dk dt

+
ˆ
Rd

ˆ t

0

∣∣∣∣∣
ˆ t

0
|k|1/2〈k, tk〉s4kσ̂1(k)F̂I(τ, k) · (t− τ)kf̂0([t− τ ]k) dτ

∣∣∣∣∣
2

dk dt

+
ˆ
Rd

ˆ T

0

∣∣∣ ˆ t

0

ˆ
Rd
|k|1/2〈k, tk〉s4nσ̂1(n)

(
F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)

)
· (t− τ)kĝ(τ, k − n, tk − τn) dτ dn

∣∣∣2 dk dt.

We denote the three terms in the right hand side as CT1, CT2 and NLT, respectively
(for “constant term 1 and 2, non linear term”). In what follows, we are going to split
the discussion according to the estimate NLT . NLTT + NLTR, where NLTT (for
transport) and NLTR (for reaction) stand for the contributions that arise from the
following decomposition

〈k, tk〉s4 . 〈k − n, tk − τn〉s4 + 〈n, τn〉s4 .

Estimate on CT1 and CT2. Thanks to [7, Lemma 2.6] we have
CT1 .

∑
α∈Nd
|α|≤P

‖(x, v) 7→ xαf0(x, v)‖2Hs
P
≤ ε2.

In Proposition 4.3, we already obtained CT2 . ε2.
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Estimate on NLTT. As said above, having Proposition 4.1 at hand permits us to
readily adapt the arguments of [7]. The Cauchy-Schwarz inequality yields

NLTT ≤
ˆ
Rd

ˆ T

0

(ˆ t

0

ˆ
Rd
〈τ〉5/2|n||σ̂1(n)||F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)| dτ dn

)

×
( ˆ t

0

ˆ
Rd
〈τ〉−5/2|n||σ̂1(n)|

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣ k|〈k − n, tk − τn〉2s4

× |(t− τ)k|2|ĝ(τ, k − n, tk − τn)|2 dτ dn
)

dk dt.

Now, (34c) and (40e) ensure that

〈n, τn〉s1 |σ̂1(n)||F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)| . (1 +K5)ε.

Since |n|〈τ〉 ≤ 〈n, τn〉, we get

ˆ t

0

ˆ
Rd
〈τ〉5/2|n||σ̂1(n)||F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)| dτ dn

.

(ˆ t

0
〈τ〉5/2

ˆ
Rdn
|n|〈n, τn〉−s1 dn dτ

)
(1 +K5)ε

.

(ˆ +∞

0
〈τ〉5/2−d−1 dτ

)
(1 +K5)ε . (1 +K5)ε

where the last estimate assumes the condition 5/2− d− 1 < −1, that is d > 5/2. This
is one of the constraints on the space dimension d which imply that the analysis applies
only when d ≥ 3.
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Going back to NLTT we are led to (by using (|t− τ)k| ≤ 〈τ(k − n), tk − τn〉)

NLTT . (1 +K5)ε
ˆ
Rd

ˆ T

0

( ˆ t

0

ˆ
Rd
〈τ〉+5/2|n||σ̂1(n)|

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣

×〈τ〉−5|k|〈k − n, tk − τn〉2s4〈τ(k − n), tk − τn〉2|ĝ(τ, k − n, tk − τn)|2 dτ dn
)

dk dt

. (1 +K5)ε
ˆ
Rd

ˆ T

0
〈τ〉+5/2|n||σ̂1(n)|

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣

×
( ˆ T

τ

ˆ
Rd
〈τ〉−5|k|〈k − n, tk − τn〉2s4〈τ(k − n), tk − τn〉2

×|ĝ(τ, k − n, tk − τn)|2 dt dk
)

dn dτ

. (1 +K5)ε
(ˆ

Rd

ˆ T

0
〈τ〉+5/2|n||σ̂1(n)|

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣ dn dτ

)
×
(

sup
0≤τ≤T

sup
n∈Rd
〈τ〉−5

ˆ
Rd

ˆ +∞

−∞
〈k − n, tk − τn〉2s4〈τ(k − n), tk − τn〉2

×|ĝ(τ, k − n, tk − τn)|2|k|dt dk
)

. (1 +K5)2ε2
(

sup
0≤τ≤T

sup
n∈Rd
〈τ〉−5

ˆ
Rd
|k|
ˆ +∞

−∞

∣∣〈τ(k − n), tk − τn〉〈k − n, tk − τn〉s4

×ĝ(τ, k − n, tk − τn)
∣∣2 dtdk

)
.

With two changes of variables and by applying [7, Lemma 2.8], we obtain
ˆ
Rd
|k|
ˆ +∞

−∞
|〈τ(k − n), tk − τn〉〈k − n, tk − τn〉s4 ĝ(τ, k − n, tk − τn)|2 dt dk

=
ˆ
Rd

ˆ +∞

−∞

∣∣∣∣〈τ(k − n), t k
|k|
− τn〉〈k − n, t k

|k|
− τn〉s4 ĝ(τ, k − n, tk − τn)

∣∣∣∣2 dt dk

≤ sup
ω∈Sd−1

sup
x∈Rd

ˆ
Rd

ˆ +∞

−∞
|〈τ(k − n), tω + x〉〈k − n, tω + x〉s4 ĝ(τ, k − n, tω + x)|2 dtdk

≤ sup
ω∈Sd−1

sup
x∈Rd

ˆ
Rd

ˆ +∞

−∞
|〈τk, tω + x〉〈k, tω + x〉s4 ĝ(τ, k − n, tω + x)|2 dt dk

. ‖〈τ∇x,∇v〉g(τ)‖2Hs4
P
.

Finally, combining this with (40a) we obtain

NLTT . (1 +K5)2K1ε
4.
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Estimate on NLTR. We make the time-response kernel K̄ appear:

NLTR =
ˆ
Rd

ˆ T

0

( ˆ t

0

ˆ
Rd
K̄(t, τ, k, n)〈n, τn〉s4 |n|1/2〈n〉2|σ̂1(n)|

×
∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)

∣∣∣ dτ dn
)2

dk dt.

Then, Cauchy-Schwarz’ inequality and Fubini’s theorem allow us to obtain

NLTR .
ˆ
Rd

ˆ T

0

(ˆ t

0

ˆ
Rd
K̄(t, τ, k, n) dτ dn

)(ˆ t

0

ˆ
Rd
K̄(t, τ, k, n)

×〈n, τn〉2s4 |n|〈n〉4|σ̂1(n)|2
∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)

∣∣∣2 dτ dn
)

dk dt

.

(
sup
t∈[0,T ]

sup
k∈Rd

ˆ t

0

ˆ
Rd
K̄(t, τ, k, n) dτ dn

) ˆ T

0

ˆ
Rd

(ˆ T

τ

ˆ
Rd
K̄(t, τ, k, n) dt dk

)
×〈n, τn〉2s4 |n|〈n〉4|σ̂1(n)|2

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣2 dτ dn

.

(
sup
t∈[0,T ]

sup
k∈Rd

ˆ t

0

ˆ
Rd
K̄(t, τ, k, n) dτ dn

)(
sup

τ∈[0,T ]
sup
n∈Rd

ˆ T

τ

ˆ
Rd
K̄(t, τ, k, n) dtdk

)

×
ˆ T

0

ˆ
Rd
〈n, τn〉2s4 |n|〈n〉4|σ̂1(n)|2

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣2 dτ dn.

By using (34a) and (40b), we obtain
ˆ T

0

ˆ
Rd
〈n, τn〉2s4 |n|〈n〉4|σ̂1(n)|2

∣∣∣F̂I(τ, n)− σ̂1(n)Ĝ%(τ, n)
∣∣∣2 dτ dn . (1 +K2)ε2.

Gathering this with Lemma 4.10 and (40e), we are led to

NLTR . (1 +K2)K2
5ε

4.

Recap. We have shown that, if g is a solution of (10a)–(10b) satisfying (40a)–(40e)
on [0, T ], then

‖As4 %̂‖2L2
(k)L

2
(t)

.
(
1 + (1 +K5)2K1ε

2 + (1 +K2)K2
5ε

2
)
ε2.

Let us denote C1 the constant hidden in the symbol . of this estimate. Choosing
K2 ≥ C1 and ε� 1 so that

(1 +K5)2K1ε
2 + (1 +K2)K2

5ε
2 ≤ 1

allows us to conclude that (41b) holds.
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4.2 Periodic framework
The dispersive effect which has been used for proving the Landau damping on Rd does
not exist on the torus. For this reason, in order to control the echoes, we shall work in
the analytic framework, following [6]. For the Vlasov-Poisson problem, the analysis of
[4] is a hint that this regularity could be necessary. As a counterpart of this regularity,
there is no restriction on the space dimension d.

The proof still relies on a bootstrap argument, see [6]. There are two main argu-
ments, like on Rd: firstly, the force term ∇σ1 ? (FI(t)− σ1 ? G%(t)) can be controlled,
in suitable norms, by the macroscopic density %(t), and, secondly, the contribution
associated to the initial data

´ t
0 ∇σ1 ?FI(τ, x+ τv) · ∇vM (v) dτ does not perturb too

much the bootstrap property (here, we refer the reader to the remarks made when
analyzing the whole space problem).

4.2.1 Functional framework

We start by introducing several Gevrey norms. Let g : (0,∞)t × Tdx × Rdv → R. The
Gevrey norm ‖ · ‖Gλ,σ;s is defined by

‖g(t)‖2Gλ,σ;s =
∑
k∈Zd

ˆ
Rd
ξ

〈k, ξ〉2σe2λ〈k,ξ〉s |ĝ(t, k, ξ)|2 dξ

and we also need the Gevrey norm ‖ · ‖Fλ,σ;s given by

‖g(t)‖2Fλ,σ;s =
∑
k∈Zd
〈k, tk〉2σe2λ〈k,tk〉s |ĝ(t, k, tk)|2 .

Let % : Rt × Tdx → R. The Gevrey norm ‖ · ‖Fλ,σ;s reads

‖%(t)‖2Fλ,σ;s =
∑
k∈Zd
〈k, tk〉2σe2λ〈k,tk〉s |%̂(t, k)|2 .

In what follows, we always assume λ, σ ≥ 0 and 0 < s ≤ 1.
As a warm-up, we observe that, with g(t, x, v) = f(t, x + tv, v) and %(t, x) =´

f(t, x, v) dv, we have
‖%(t)‖Fλ,σ;s = ‖g(t)‖Fλ,σ;s .

Moreover, assuming σ > d/2 we have a σ−ring property: with h(t, x, v) = %(t, x +
tv)g(t, x, v), we have

‖h(t)‖Gλ,σ;s . ‖%(t)‖Fλ,σ;s‖g(t)‖Gλ,σ;s .

Finally, we shall also need the following Gevrey norm: for P ∈ N, we define the norm
‖ · ‖Gλ,σ;s

P
of a function (t, x, v) 7→ g(t, x, v) by

‖g(t)‖2Gλ,σ;s
P

=
∑
α∈Nd
|α|≤P

‖(x, v) 7→ vαg(t, x, v)‖2Gλ,σ;s

=
∑
α∈Nd
|α|≤P

∑
k∈Zd

ˆ
Rd
ξ

〈k, ξ〉2σe2λ〈k,ξ〉s
∣∣∣Dα

ξ ĝ(t, k, ξ)
∣∣∣2 dξ.
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The σ−ring estimate equally applies to this norm.
From now on, we assume that

σ > d/2, P > d/2, 0 < s ≤ 1.

We shall consider the parameter λ as a function of the time variable λ : t 7→ λ(t) ∈
(0,∞), continuous and decreasing.

In contrast to what we did for the problem on Rd, we do not express general
conditions on FI and pc. Instead, we shall use the same assumptions as in the case of
the linearized Landau damping. For the sake of convenience, let us recall them here.

(K1) n ≥ 3 is odd,
(K2) σ2 ∈ C0

c (Rn) with supp(σ2) ⊂ B(0, R2).

(K3) supp(ψi) ⊂ Td ×B(0, RI), i = 1, 2 and

EI =
¨

Td×Rn

(
|ψ1(x, z)|2 + c2|∇zψ0(x, z)|

)
dx dz < +∞.

(K4) σ1 : Td → R+ is radially symmetry and analytic; in particular there exist C1, λ1 >

0 such that |σ̂1(k)| ≤ C1 exp(−λ1|k|) holds for any k ∈ Zd.

Note theat assumption (K5) on M and f0 will be replaced by M , f0 ∈ Gλ̃0,0;s
P .

As a consequence of (K1) and (K2) the kernel pc has a compact support: supp(pc) ⊂
[0, 2R2/c], see Lemma 2.3. By virtue of (K2) and (K3), FI is compactly supported
too: supp(FI) ⊂ [0, (RI + R2)/c], as pointed out in the proof of Lemme 3.9. In what
follows, the following parameters will play an important role

2R2/c, S0 = (RI +R2)/c.

The following statement, analog for the torus of Proposition 4.1, is a crucial ingre-
dient to justify the boostrap property.

Proposition 4.12 Let (K1)–(K4) be fulfilled. Let t 7→ λ(t) > 0 be a continuous and
decreasing function. For any σ ≥ 0 and 0 < s ≤ 1, we get

‖∇σ1 ? (FI(t)− σ1 ? G%(t))‖2Fλ(t),σ;s

. EI10≤t≤S0 +
ˆ t

0
|pc(t− τ)| ‖%(τ)‖2Fλ(τ),σ;s dτ, (43)

Consequently, the following estimates hold

‖∇σ1 ? (FI(t)− σ1 ? G%(t))‖2Fλ(t),σ;s . EI +
ˆ t

0
‖%(τ)‖2Fλ(τ),σ;s dτ, (44a)

sup
τ∈[0,t]

‖∇σ1 ? (FI(τ)− σ1 ? G%(τ))‖2Fλ(τ),σ;s . EI + sup
τ∈[0,t]

‖%(τ)‖2Fλ(τ),σ;s , (44b)
ˆ t

0
‖∇σ1 ? (FI(τ)− σ1 ? G%(τ))‖2Fλ(τ),σ;s dτ . EI +

ˆ t

0
‖%(τ)‖2Fλ(τ),σ;s dτ. (44c)
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Remark 4.13 The following observations will be useful:
i) In the specific case s = 1 we shall need a further assumption on λ(0): for this

situation, we assume λ(0) < C(λ1, 2R2/c, S0) = min(λ1/〈S0〉, 2λ1/〈2R2/c〉).
ii) In contrast to the analysis of the Vlasov-Poisson problem, a control of

´
‖%‖ dτ

ensures a pointwise control of the force term. This fact, which can be seen as a
kind of regularizing effect of the half-time-convolution, simplifies the proof of the
bootstrap property.

iii) Like for the whole space problem, the exponential decay of σ̂1(k) can be used to ab-
sorb any polynomial with respect to k that arises in the estimates, see Remark 4.2.

Proof. We estimate separately the contributions from FI and G%:

‖∇σ1 ? (FI(t)− σ1 ? G%(t))‖2Fλ(t),σ;s . ‖∇σ1 ?FI(t)‖2Fλ(t),σ;s + ‖∇Σ ? G%(t)‖2Fλ(t),σ;s .

For the former, we use supp(FI) ⊂ [0, S0] × Td and the estimate (see the proof of
Lemma 3.9)

|k| |σ̂1(k)| |F̂I(t, k)| ≤ C1|k|e−λ1|k|‖σ2‖L2n/(n+2)
√

EI10≤t≤S0 . (45)

We obtain

‖∇σ1 ?FI(t)‖2Fλ(t),σ;s .

∑
k∈Zd
〈k, tk〉2σe2λ(t)〈k,tk〉s |k|2e−2λ1|k|2

EI10≤t≤S0

.

∑
k∈Zd
〈k〉2σ〈S0〉2σe2λ(0)〈k〉s〈S0〉s |k|2e−2λ1|k|2

EI10≤t≤S0 .

When 0 < s < 1 the sum is finite; when s = 1 we should impose the additional
condition λ1 > λ(0)〈S0〉.

For the latter, we apply the Cauchy-Schwarz inequality, so that

‖∇Σ ? G%(t)‖2Fλ(t),σ;s =
∑
k∈Zd
〈k, tk〉2σe2λ(t)〈k,tk〉s |k|2|σ̂1(k)|4

∣∣∣∣∣
ˆ t

0
pc(t− τ)%̂(τ, k) dτ

∣∣∣∣∣
2

≤ ‖pc‖L1

ˆ t

0
|pc(t− τ)|

∑
k∈Zd
〈k, tk〉2σe2λ(t)〈k,tk〉s |k|2|σ̂1(k)|4|%̂(τ, k)|2

 dτ

= ‖pc‖L1

ˆ t

0
|pc(t− τ)|

∑
k∈Zd

Ik(t, τ)〈k, τk〉2σe2λ(t)〈k,τk〉s |%̂(τ, k)|2
 dτ.

It follows that

Ik(t, τ) = |k|2|σ̂1(k)|4 〈k, tk〉
2σ

〈k, τk〉2σ
e2(λ(t)−λ(τ)〈k,tk〉seλ(τ)(〈k,tk〉s−〈k,τk〉s).

Therefore if Ik(t, τ) is bounded uniformly with respect to k, t and τ , then we get

‖∇Σ ? G%(t)‖2Fλ(t),σ;s .
ˆ t

0
|pc(t− τ)| ‖%(τ)‖2Fλ(τ),σ;s dτ.

We are left with the task of justify a uniform bound on Ik(t, τ). To this end, we
remember that pc has a compact support: we can restrict the time integration to
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0 ≤ t− τ ≤ 2R2/c. For t ≥ τ , a simple analysis of function shows that

sup
k∈Zd

〈k, tk〉2σ

〈k, τk〉2σ
≤ 〈t〉

2σ

〈τ〉2σ
≤ 〈t− τ〉2σ ≤ 〈2R2/c〉2σ.

Since t 7→ λ(t) is decreasing, we have exp(2(λ(t) − λ(τ))〈k, tk〉s) ≤ 1. Finally, with
0 < s ≤ 1, we have (see [6, Lemma 3.2])

|〈x〉s − 〈y〉s| ≤ 〈x− y〉s,

so that 〈k, tk〉s−〈k, τk〉s ≤ 〈(t−τ)k〉s ≤ 〈2R2
c k〉s and exp(2λ(τ) (〈k, tk〉s − 〈k, τk〉s)) ≤

exp(2λ(0)〈2R2
c 〉

s〈k〉s). We conclude with

Ik(t, τ) ≤ C4
1 |k|2e−4λ1|k|〈2R2/c〉2σe2λ(0)〈 2R2

c
〉s〈k〉s ,

when 0 < s < 1, while for s = 1 we further assume 4λ1 > 2λ(0)〈2R2/c〉.

We turn to the estimate of the force term
´ t

0 ∇σ1 ?FI(τ, x + τv) · ∇vM (v) dτ by
means of the norms involved in the bootstrap.

Proposition 4.14 Let (K1)–(K4). Assume that M ∈ Gλ̃0,0;s
P for some integer P >

d/2. Let t 7→ λ(t) > 0 be continuous, decreasing, and such that λ(0) < λ̃0. Then for
any σ ≥ 0 and 0 < s ≤ 1, we have

ˆ T

0

∥∥∥∥∥
ˆ t

0
∇σ1 ?FI(τ, x+ τ v) · ∇vM (v) dτ

∥∥∥∥∥
2

Fλ(t),σ;s

dt . EI . (46)

Remark 4.15 Again, when s = 1 a constraint on λ(0) like λ(0) < C ′(λ1, S0) =
λ1/〈S0〉 should be imposed.

Proof. We start withˆ T

0

∥∥∥∥∥
ˆ t

0
∇σ1 ?FI(τ, x+ τ v) · ∇vM (v) dτ

∥∥∥∥∥
2

Fλ(t),σ;s

dt

≤
ˆ T

0

∑
k∈Zd\{0}

( ˆ t

0
〈k, tk〉σeλ(t)〈k,tk〉s |k| |σ̂1(k)|

∣∣∣F̂I(τ, k)
∣∣∣

×
∣∣(t− τ)k

∣∣ ∣∣∣M̂ (
(t− τ ])k

)∣∣∣ dτ
)2

dt,

and we define I(t, k) as follow

I(t, k) =
ˆ t

0
〈k, tk〉σeλ(t)〈k,tk〉s |k| |σ̂1(k)|

∣∣∣F̂I(τ, k)
∣∣∣ ∣∣(t− τ)k

∣∣ ∣∣∣M̂ (
(t− τ ])k

)∣∣∣ dτ.

For any k 6= 0, we have 〈t〉 ≤ 〈k, tk〉, and since λ is decreasing, we obtain

I(t, k) ≤ 〈t〉−1
ˆ t

0
〈k, τk〉σ+1eλ(τ)〈k,τk〉s |k| |σ̂1(k)|

∣∣∣F̂I(τ, k)
∣∣∣

× 〈[t− τ ]k〉σ+1eλ(τ)〈[t−τ ]k〉s |t− τ | |k|
∣∣∣M̂ ([t− τ ]k)

∣∣∣ dτ.
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Since ‖ξ 7→ exp(λ̃0〈ξ〉s)M̂ (ξ)‖HP . ‖M ‖
Gλ̃0,0;s
P

and P > d/2, the Sobolev embedding

HP ↪→ C0 ensures that
|M̂ (ξ)| . e−λ̃0〈ξ〉s .

Then, by using (45), we arrive at

I(t, k) . 〈t〉−1〈k〉σ+1〈S0〉σ+1eλ(0)〈k〉s〈S0〉s |k|e−λ1|k|

×
(ˆ t

0
〈[t− τ ]k〉σ+1eλ(0)〈[t−τ ]k〉s |t− τ | |k|e−λ̃0〈[t−τ ]k〉s dτ

)√
EI .

Since λ(0) < λ̃0 we haveˆ t

0
〈[t− τ ]k〉σ+1eλ(0)〈[t−τ ]k〉s |t− τ | |k|e−λ̃0〈[t−τ ]k〉s dτ ≤

ˆ
R
〈u〉σ+2e−(λ̃0−λ(0))〈u〉s du . 1.

Therefore, when 0 < s < 1 we obtain
´ T

0
∑
k I(t, k)2 dt . EI and for s = 1 we conclude

similarly at the price of a constraint like λ1 > λ(0)〈S0〉.

4.2.2 Main result

That the Landau damping holds on the torus can be formulated as follows.

Theorem 4.16 (Landau damping in Td) Let (K1)–(K4) be fullfield. Let P >

d/2 be an integer, 0 < s ≤ 1 be a real number and M , f0 ∈ Gλ̃0,0;s
P with λ̃0 > 0. We

also assume (without any loss of generality) that the space average of
´
f0 dv is equal

to 0. There exists a universal constant ε0, such that if

‖f0‖
Gλ̃0,σ;s
P

≤ ε0 ; EI ≤ ε2
0

and M satisfies (L), then, the unique solution g of (10a)–(10b) is globally defined. To
be more specific, for any 0 < λ′ < λ̃0, we have g ∈ C0(R+;Gλ′,0;s) and there exists an
asymptotic density g∞ ∈ Gλ′,0;s, the space average of which vanishes, such that

‖g(t)− g∞‖Gλ′,0;s . ε0e
− 1

2 (λ̃0−λ′)〈t〉s , (47a)

‖%(t)‖Fλ′,0;s . ε0e
− 1

2 (λ̃0−λ′)〈t〉s , (47b)

‖∇σ1 ? (FI(t)− σ1 ? G%(t))‖Fλ′,0;s . ε0e
− 1

2 (λ̃0−λ′)〈t〉s . (47c)

Remark 4.17 When s = 1 the constraint on λ′ becomes

λ′ < min
(
λ̃0,

λ1
〈S0〉

,
2λ1
〈2R2/c〉

)
.

Remark 4.18 Estimate (47b) can be rephrased as a decay of %̂(t, k) like exp(−λ′〈tk〉s).
This can be used to establish also that fluctuation of the medium ψ tends to 0, see
Proposition 3.4).
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Like for the problem set on Rd, the proof relies on a bootstrap argument, which, in
this context, states as follows.

Proposition 4.19 (Bootstrap) Let the assumptions of Theorem 4.16 be fulfilled. Let
α0 = (λ̃0 + λ′)/2 and σ > d/2 + 6. There exists a function λ : R+ → (α0, λ̃0),
continuous and decreasing, a real β > 2 and constants K1,K2,K3,K4 > 0 such that if
g is a solution of (10a)–(10b) on the time interval [0, T ] verifying

‖g(t)‖2
Gλ(t),σ+1;s
P

≤ 4K1〈t〉7ε2 (48a)

‖g(t)‖2
Gλ(t),σ−β;s
P

≤ 4K2ε
2 (48b)

ˆ T

0
‖%(t)‖2Fλ(t),σ;s dt ≤ 4K3ε

2 (48c)

for 0 < ε ≤ ε0 small enough, then g also satisfies, on [0, T ], the estimates

‖g(t)‖2
Gλ(t),σ+1;s
P

≤ 2K1〈t〉7ε2 (49a)

‖g(t)‖2
Gλ(t),σ−β;s
P

≤ 2K2ε
2 (49b)

ˆ T

0
‖%(t)‖2Fλ(t),σ;s dt ≤ 2K3ε

2 (49c)

‖%(t)‖2Fλ(t),σ;s ≤ 2K4〈t〉ε2 (49d)

Remark 4.20 The role of (49d) is a bit different from its analog for the Vlasov-
Poisson problem. Indeed, the interest of this estimate is to provide a pointwise control
on the force term. However, here, as said above, such a control can be obtained by
estimating

´
‖%(t)‖2Fλ(t),σ;s dt. Consequently (49c) is enough to finish the proof, with-

out using (49d) and the proof slightly simplifies. Nevertheless, we keep (49d) in the
statement since it is useful to justify (47b).

The justification of the bootstrap follows the same approach than for the problem
on Rd. Since the structure of the Vlasov-Wave equation is close to the structure of the
Vlasov-Poisson equation, we can perform the same estimates than in [6]. The price to
be paid is to replace terms of the form ‖%(t)‖F by

‖∇σ1 ? (FI(t)− σ1 ? G%(t))‖F . (50)

Then all the difficulty consists in controlling (50) by means of ‖%(t)‖F . Since Proposi-
tion 4.12 allows us to perform this kind of estimate, we have a complete proof of the
Proposition 4.19 by applying this strategy. Details can be found in [33].

5 Discussion of the stability criterion
In this section we come back to the stability criteria (L) and (L′) which are absolutely
crucial for justifying the Landau damping. We already know that a large wave speed
guarantees the damping, see Proposition 3.10. Nevertheless, we may also wonder, for
a given wave speed c, whether or not an equilibrium M is stable or unstable.
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5.1 Towards a Landau-Penrose criterion
For the usual Vlasov equation, a “practical” condition on the equilibrium M — the
Penrose criterion, see [27, Condition (c) in Proposition 2.1] — can be exhibited to
ensure the linearized stability. By following a similar approach we expect to find a
criterion with the same flavor for the Vlasov-Wave problem. However we shall see that
the half-convolution with respect to time that defines pc makes the criterion much more
intricate.

Throughout this section we assume that

σ1 and σ2 are radially symmetric,

which makes the computation more explicit. With a slight abuse, we shall use the same
notation for radially symmetric functions and their radial representation. As a warm-
up, let us briefly recall why it suffices to check that ω ∈ iR 7→ L (ω|k|, k) ∈ C never
crosses the real-axis beyond 1, see details in [32, Section 3.4] for the Vlasov-Poisson
equation and [33] for the Vlasov-wave model.

The first step of the reasoning consists in showing that it is sufficient to check that
L K (ω|k|, k) 6= 1 for every k and ω ∈ C with Re(ω) ≥ 0. Let us distinguish four
different cases, depending if Xd = Td or Rd and depending if we are considering (L) or
(L′).
First case: Xd = Td and (L). In this case we check that L K

(
(α + iβ)|k|, k

)
converges to 0 when |k| → +∞, uniformly with respect to α + iβ and it converges
to 0 when α → +∞, uniformly with respect to k and β. Moreover, thanks to the
Riemann-Lebesgue Lemma, we can also prove that L K

(
(α+ iβ)|k|, k

)
converges to 0

when |β| → +∞. There is a priori no reason for the latter convergence to be uniform
with respect to k and α. However, since we consider an infimum over all k ∈ Zd \ {0},
the first convergence ensures us that we can restrict to a finite number of modes k and
the convergence when |β| → +∞ is indeed uniform with respect to k. We can also
justify that this convergence is uniform with respect to α. To this end, we show that
α 7→ L K

(
α + iβ)|k|, k

)
is uniformly continuous with respect to k and β. Since the

convergence of L K to 0 when α→ +∞ is uniform with respect to β, we can consider
α in a compact subset of (0,∞) and then (by uniform continuity) only a finite number
of α’s. Now, we know that outside of a compact of {ω ∈ C , Re(ω) ≥ 0}×Zd \ {0} the
application (ω, k) 7→ L K (ω|k|, k) is far from 1. Since in a compact of this set there is
a finite number of modes k and since the application ω 7→ L K (ω|k|, k) is continuous,
condition (L) is satisfied if and only if L K (ω|k|, k) 6= 1 for every k ∈ Zd \ {0} and
every ω ∈ C such that Re(ω) ≥ 0.
Second case: Xd = Rd and (L). This case is not far from the previous one, we only
have to understand what happens when k lives in a continuum space like Rd \ {0}. If
we fix some δ > 0 arbitrarily small and if we only consider the infimum over {|k| ≥ δ},
then we can follow the same strategy, up to the fact that we have now to justify the
uniform continuity of k 7→ L K

(
(α+ iβ)|k|, k

)
with respect to β.

Next, we study what happens when k goes to 0 (this point is irrelevant for the usual
Vlasov case: since the potential is singular at 0 the symbol L K can not reach 1 when
k → 0). It is not possible to extend k 7→ L K (ω|k|, k) by continuity at 0, but for
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every sequence (kn)n∈N such that kn → 0, up to a sub-sequence, we can assume that
(kn/|kn|)n∈N converges to a certain σ∞. Then we are led to

lim
n→+∞

L K (ω|kn|, kn) = |σ̂1(0)|2
(ˆ +∞

0
pc(t) dt

)(ˆ +∞

0
e−ωu u M̂ (uσ∞) du

)
.

Since
´∞

0 pc dt = κ/c2, we conclude that (L) is satisfied if and only if for every k ∈
Rd \ {0}, σ ∈ Sd−1, ω ∈ C with Re(ω) ≥ 0,

L K (ω|k|, k) 6= 1 and L(ω, σ) = κ

c2 |σ̂1(0)|2
(ˆ +∞

0
e−ωu u M̂ (uσ) du

)
6= 1.

Third case: Xd = Td and (L′). In this case, we show the uniform continuity with
respect to k and β of α 7→ L K

(
(α + iβ)|k|, k

)
when α lies in an interval of the form

(−λ,+∞) with λ > 0. Then, if the criterion (L′) is satisfied for a certain κ > 0 for all
ω = α+ iβ with α ≥ 0, we can find 0 < Λ < λ such that (possibly replacing κ by κ/2)
criterion (L′) is satisfied for all ω = α+ iβ with α > −Λ.
From that point we can apply the arguments of the first case in order to conclude that
(L′) is satisfied if and only if L K (ω|k|, k) 6= 1 for every k ∈ Zd \ {0} and ω ∈ C with
Re(ω) ≥ 0.
Fourth case: Xd = Rd and (L′). By combining the arguments of the third and second
cases we obtain that (L′) is satisfied if and only if for every k ∈ Rd \ {0}, σ ∈ Sd−1,
ω ∈ C with Re(ω) ≥ 0,

L K (ω|k|, k) 6= 1 and L(ω, σ) 6= 1.

The second step of the argument consists in applying Rouché’s theorem in order to
compute the number of zeros of ω 7→ L K (ω|k|, k) − 1 in a certain compact of {ω ∈
C , Re(ω) ≥ 0} (note that is possible to justify that ω 7→ L K (ω|k|, k) is holomorphic).
To be more specific, the previous step allows us to find a radius Ω > 0 such that L K
is far from 1 for every k and ω ∈ C with Re(ω) ≥ 0 and |ω| ≥ Ω. If we assume, for
every k, that ω 7→ L K (ω|k|, k) never achieves the value 1 on the imaginary axis, then
Rouché’s theorem tells us that the number of zeros of ω 7→ L K (ω|k|, k) − 1 is equal
to

N = 1
2iπ

ˆ
ΓΩ

∂ωL K (ω|k|, k)
L K (ω|k|, k)− 1 dω

where ΓΩ = CΩ ∪ [−iΩ, iΩ] with CΩ = {Ωeiθ , θ ∈ [π/2, 3π/2]}. We split the integral
over the path ΓΩ into a contribution over CΩ and an other contribution over [−iΩ, iΩ]
and we let Ω go to +∞: we can justify that the integral over CΩ goes to 0 and we
eventually obtain

N = 1
2iπ

ˆ
L K (i|k|R,k)

1
z − 1 dz.

Since L K (iβ|k|, k) → 0 when β → ±∞, L K (i|k|R, k) ∪ {0} is a closed path in
C (which does not cross 1) and we deduce that L K (iω|k|, k) 6= 1 for every k and
ω ∈ C with Re(ω) ≥ 0 if and only if L K (iβ|k|, k) 6= 1 for every k and β ∈ R
and the winding number of the path L K (i|k|R, k)∪{0} around 1 is equal to 0. This
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formulation eventually allows us to obtain the announced sufficient (but not necessary)
criterion: if for every k and β ∈ R

Im (L K (iβ|k|, k)) = 0 =⇒ Re (L K (iβ|k|, k)) < 1,

then the linear stability criterion is satisfied.

Remark 5.1 For Xd = Rd the second step has to be performed also on the symbol
L. Then the complete sufficient condition is: if for every k ∈ Rd \ {0} and σ ∈ Sd−1,
β ∈ R 7→ L K (iβ|k|, k) and β ∈ R 7→ L(iβ, σ) never crosses the real-axis beyond 1,
then the linear stability criterion is satisfied.

5.2 Computations of Laplace transforms for the Penrose
criterion
In order to find an expression for the stability criterion, we compute L K (ω|k|, k) on
the imaginary axis: namely, with β ∈ R, we consider

L K
(
iβ|k|, k

)
= lim

α→0
α>0

L K
(
(α+ iβ)|k|, k

)
= ρ0|σ̂1(k)|2

{
lim
α→0
α>0

L pc
(
(α+ iβ)|k|

)}{
lim
α→0
α>0

L
(
t|k|2M̂(tk)

)(
(α+ iβ)|k|

)}
.

where
v 7→M (v) = ρ0M(v), ρ0 > 0,

ˆ
M(v) dv = 1.

The computation of the Laplace transform of t 7→ t|k|2 M̂(tk) is based on the Plemelj
formula; see [14, Example 5.2], which leads to (see [27, Proposition 2.1])

lim
α→0
α>0

L
(
t|k|2M̂(kt)

)(
(α+ iβ)|k|, k

)
= −P.V.

ˆ
R

µ′k/|k|(r)
r + β

dr − iπµ′k/|k|(−β),

where P.V. denotes the usual principal value operator and where µk/|k| is the one-
dimensional marginal of M defined by

µk/|k|(r) =
ˆ
v⊥·k=0

M
(
r
k

|k|
+ v⊥

)
dv⊥.

Next, the Laplace transform of pc can be determined by using the classical result [28,
Formula (VI,2;13)]

L
(
1t≥0 sin(θt)

)
(ω) = θ

ω2 + θ2 , for Re(ω) > 0.

For α > 0, β ∈ R, we thus get (we recall that pc is defined by (5))

L pc
(
(α+ iβ)|k|

)
= 1

(2π)n

ˆ
Rn

|σ̂2(ζ)|2

(α+ iβ)2|k|2 + c2|ζ|2
dζ.
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Since σ2 is radially symmetric, its Fourier transform is radially symmetric too and we
can write

L pc
(
(α+ iβ)|k|

)
= |S

n−1|
(2π)n

ˆ +∞

0

rn−1|σ̂2(r)|2

(α2 − β2)|k|2 + c2r2 + 2iαβ|k|2 dr.

In order to compute this integral we will apply the following Plemelj-like formula.

Lemma 5.2 Let n ≥ 3. Let f : R→ R be Schwartz class. We have for any κ 6= 0,

lim
λ→0
λ>0

ˆ +∞

0

rn−1f(r)
r2 − κ2 + λ2 + 2iκλ dr = P.V.

ˆ +∞

0

rn−1f(r)
r2 − κ2 dr − sgn(κ) iπ2 κ

n−2f(|κ|).

We postpone the proof of this claim at the end of the section. We apply this formula
with f(r) = |σ̂2(r)|2, λ = α|k|/c and κ = β|k|/c in order to obtain

lim
α→0
α>0

L pc
(
(α+ iβ)|k|

)

= 1
c2
|Sn−1|
(2π)n

P.V.
ˆ +∞

0

rn−1|σ̂2(r)|2

r2 − β2|k|2
c2

dr − sgn(β) iπ2
(β|k|
c

)n−2 ∣∣∣σ̂2
( |βk|
c

)∣∣∣2
 .

We point out that Lemma 5.2 cannot be applied with β = 0, nevertheless the previous
formula makes sense even when β = 0: in this case a direct application of the dominated
convergence theorem allows us to obtain

lim
α→0
α>0

L pc(α|k|) = 1
(2π)n

ˆ
Rn

|σ̂2(ζ)|2

c2|ζ|2
dζ = κ

c2 .

which is consistent with the general formula.
Therefore, we obtain the following expression for L K (iβ|k|, k) which identifies the

real and imaginary parts

L K (iβ|k|, k) = ρ0
c2
|Sn−1|
(2π)n |σ̂1(k)|2 (R(β|k|, k) + iI (β|k|, k)) ,

where

R(β|k|, k) = −

P.V.
ˆ +∞

0

rn−1|σ̂2(r)|2

r2 − β2|k|2
c2

dr

(P.V.
ˆ
R

µ′k/|k|(r)
r + β

dr
)

− sgn(β)π
2

2
(β|k|
c

)n−2 ∣∣∣σ̂2
( |βk|
c

)∣∣∣2 µ′k/|k|(−β),

and

I (β|k|, k) = −π µ′k/|k|(−β)

P.V.
ˆ +∞

0

rn−1|σ̂2(r)|2

r2 − β2|k|2
c2

dr


+ sgn(β)π2

(β|k|
c

)n−2 ∣∣∣σ̂2
( |βk|
c

)∣∣∣2(P.V.
ˆ
R

µ′k/|k|(r)
r + β

dr
)
.
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It leads to the Penrose stability criterion, hereafter denoted (P):
If

sgn(β)
2

(β|k|
c

)n−2 ∣∣∣σ̂2
( |βk|
c

)∣∣∣2(P.V.
ˆ
R

µ′k/|k|(r)
r + β

dr
)

= µ′k/|k|(−β)

P.V.
ˆ +∞

0

rn−1|σ̂2(r)|2

r2 − β2|k|2
c2

dr

 ,
then

− ρ0
c2
|Sn−1|
(2π)n |σ̂1(k)|2


P.V.

ˆ +∞

0

rn−1|σ̂2(r)|2

r2 − β2|k|2
c2

dr

(P.V.
ˆ
R

µ′k/|k|(r)
r + β

dr
)

+ sgn(β)π
2

2
(β|k|
c

)n−2 ∣∣∣σ̂2
( |βk|
c

)∣∣∣2 µ′k/|k|(−β)
}
< 1.

When Xd = Rd, the Penrose criterion (P) has to be completed with the following
criterion (hereafter denoted (P’)): for all ω ∈ Sd

if µ′ω(−β) = 0 then − ρ0κ

c2 |σ̂1(0)|2
(

P.V.
ˆ
R

µ′ω(r)
r + β

dr
)
< 1,

We conclude that, when (P) (resp. (P) and (P’)) is satisfied, then (L) holds. This
criterion is much more involved than the Penrose criterion for the Vlasov equation,
because the memory term pc completely changes the evaluation of the symbol L K
and does not keep a simple separation between the real and imaginary parts.

Remark 5.3 Let us rescale the problem as in [9]: roughly speaking, it amounts to
replace the wave equation by

∂2
ttψ − c2∆zψ = −c2σ2 σ1 ? ρ.

Letting c run to +∞, the problem looks like the Vlasov equation where the self-consistent
potential is defined by the convolution −κσ1 ? σ1 ? ρ. According to [27], the stability
criterion for this limiting problem reads

if µ′k/|k|(−β) = 0, then − ρ0κ |σ̂1(k)|2
(

P.V.
ˆ
R

µ′k/|k|(r)
r + β

dr
)
< 1,

which corresponds to the limit c → +∞ in the rescaled version of (P) (note that in
this scaling the symbol L K is muitliplied by c2). In particular, mind the minus sign
in front of the coefficient ρ0|σ̂1(k)|2: it makes the situation very similar to those of the
attractive Vlasov-system.

We finish this section with the proof of the Plemelj like formula that we used in
order to compute the Laplace transform of pc.
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Proof of Lemma 5.2. Let us denote by I(λ) the quantity under consideration and
f(r) = g(r2); with the change of variable u = r2 we get

I(λ) = 1
2

ˆ +∞

0

γ(u)
u− κ2 + λ2 + 2iκλ du,

where γ(u) = un/2−1g(u). We adapt the computations that lead to Plemelj’s formula.
It is crucial to remark that

γ′ ∈ Lp((0,∞)) for some 1 < p < 2. (51)

(At worst, γ′(u) has the same singularity as 1/
√
u as u→ 0.) We start with

I(λ) = 1
2

ˆ +∞

0

γ(u)
(u− κ2 + λ2)2 + 4κ2λ2 (u− κ2 + λ2) du

− 2iκλ
2

ˆ +∞

0

γ(u)
(u− κ2 + λ2)2 + 4κ2λ2 du.

Setting v = u− κ2 + λ2, and w = v/(2|κ|λ), the second term recasts as

− i2
κ

|κ|

ˆ +∞

−κ2+λ2

γ(v + κ2 − λ2)(
v

2|κ|λ

)2
+ 1

dv
2|κ|λ = −sgn(κ) i2

ˆ +∞

− 1
2

(
λ
|κ|−

|κ|
λ

) γ(2|κ|λw + κ2 − λ2)
w2 + 1 dw

which tends to −i sgn(κ)π γ(κ2)/2 as λ→ 0. Similarly, we consider

J(λ) =
ˆ +∞

−κ2+λ2

v

v2 + 4κ2λ2 γ(v + κ2 − λ2) dv.

Since λ is intended to tend to 0, we can consider κ2 � λ2 > 0 Given 0 < δ < κ2 − λ2,
we split into 2 parts

J(λ) =
ˆ
|v|>δ

...dv +
ˆ +δ

−δ
...dv = Jδ(λ) + Jδ(λ).

First, we show that Jδ(λ) tends to 0 as δ → 0, uniformly with respect to λ. Indeed,
since v 7→ v/(v2 + λ2) is odd and thanks to (51), we have

|Jδ(λ)| =
∣∣∣∣∣
ˆ +δ

−δ

v

v2 + 4κ2λ2

[
γ(v + κ2 − λ2)− γ(κ2 − λ2)

]
dv
∣∣∣∣∣

≤ ‖γ′‖Lp
ˆ +δ

−δ

1
|v|1/p

dv −−−→
δ→0

0.

By dominated convergence, we get (owing to the fast decay at infinity of γ′)

lim
λ→0

Jδ(λ) =
ˆ
|v|>δ

1v≥−κ2
γ(v + κ2)

v
dv

=
ˆ −δ
−κ2

γ(v + κ2)− γ(κ2)
v

dv +
ˆ κ2

δ

γ(v + κ2)− γ(κ2)
v

dv +
ˆ +∞

κ2

γ(v + κ2)
v

dv.

The same reasoning shows that this quantity admits a limit as δ goes 0, that we write
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with the shorthand notation

lim
δ→0

lim
λ→0

Jδ(λ) = P.V.
ˆ ∞
−κ2

γ(v + κ2)
v

dv.

5.3 Stable and unstable states
The criterion (P) is a bit ugly and not that practical. Nevertheless, some relevant
information can be extracted from the formula, showing again the similarity with the
attractive Vlasov-Poisson equation.

Proposition 5.4 Let Xd = Rd with d ≥ 3. Let M be a spatially homogeneous and
radially symmetric equilibrium. Then, there exists a threshold for the wave speed
c0(M , σ1, σ2) > 0 such that for any 0 < c < c0(M , σ1, σ2), M in an unstable equilib-
rium state.

Proof. We find k and β such that L K (iβ|k|, k) = 1. To this end, we use the fact
that L pc(iβ|k|) belongs to R for β = 0 and the radial symmetry of M which implies
that L (|k|2tM̂(tk))(iβ|k|, k) is real too when β = 0:

L K (0, k) = −ρ0 |σ̂1(k)|2
(

P.V.
ˆ
R

µ′k/|k|(r)
r

dr
)
κ

c2 . (52)

Moreover, the symmetry of M (and the condition on the dimension d, see Remark 5.5
below) also ensures (except for M = 0, but 0 is obviously a stable state)

−
(

P.V.
ˆ
R

µ′k/|k|(r)
r

dr
)
> 0.

Now let us pick a vector k0 such that σ̂1(k0) 6= 0. As far as c is small enough, we have
L K (0, k0) > 1. Next,

L K (0, λk0) −→
λ→+∞

0

and the continuity of λ ∈ R 7→ σ̂1(λk0) (observe that λk0/|λk0| does not depend on λ
and thus only σ̂1 depends on λ in the expression of L K (0, λk0)), allow us to exhibit
a λ0 ∈ R such that L K (0, λ0k0) = 1.

Remark 5.5 The condition d ≥ 3 ensures that all marginals of a non negative radially
symmetric function M are non increasing function of |v|, see [27, Remark 2.2], which
yields

−
(

P.V.
ˆ
R

µ′k/|k|(r)
r

dr
)
≥ 0. (53)

When d = 1 or d = 2 this does not hold in full generality. Nevertheless, Proposition 5.4
still holds provided (53) is fulfilled.
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Remark 5.6 When Xd = Td, the same proof shows that, for any spatially homoge-
neous and radially symmetric equilibrium, we can find some wave speed c such that M
is unstable. However, since k ∈ Zd, it is not clear that we can exhibit a non trivial
interval [0, c0(M )] such that instability occurs.

To identify a threshold on c determining whether or not the stability criterion holds
can be interpreted by means of Jeans’ criterion, a standard criterion for the Vlasov-
Poisson system, see [27, Proposition 2.1 & Remark 2.2]). To be more specific, let
us consider a form function σ1 defined on Rd, the Fourier transform of which has a
singularity at ξ = 0: typically σ̂1(k) = |k|−α for some α > 1. Of course, such singular
potential is beyond the analysis detailed in this paper; we only use this assumption to
establish a parallel with the usual Jeans’ criterion. Let σ(L)

1 be the periodic potential
defined on TdL = (R/(2πLZ))d by

σ
(L)
1 (x) =

∑
k∈Zd

σ1(x+ 2πLk).

Observing that σ̂(L)
1 (k) = σ̂1(k/L), (52) becomes

L K (0, k) = −ρ0
L2α

|k|2α

(
P.V.

ˆ
R

µ′k/|k|(r)
r

dr
)
κ

c2 ,

where L has a role similar to 1/c. In particular, for any spatially homogeneous equilib-
rium M , there exists a critical length LJ beyond which the equilibrium can be unstable,
this defines Jeans’ length.

Remark 5.7 Denoting M = ρ0M , with M being normalized, we can equally say (with
the same arguments) that, for any fixed wave speed c we can find a mass threshold
m0(M, c, σ1, σ2) > 0 such that for any ρ0 > m0(M, c, σ1, σ2), M is unstable. Never-
theless we point out that, for c fixed, the mass ρ0 of the profile M is not the unique
quantity that governs the stability of M , as indicated by the following claim

Proposition 5.8 Let M be a spatially homogeneous equilibrium. We can find two
positive constants C1 = C1(c, σ1, σ2) and C2 = C2(c, σ1, σ2) such that

if, for any ω ∈ Sd, we have
ˆ +∞

0
u
∣∣∣M̂ (uω)

∣∣∣ du ≤ C1(c, σ1, σ2), then M is stable,

if there exists ω ∈ Sd such that
ˆ +∞

0
uM̂ (uω) du ≥ C2(c, σ1, σ2), then M is unstable .

This statement can be interpreted as follows. For fixed c, σ1 and σ2 there always
exist stable spatially homogeneous equilibria with an arbitrarily large mass (resp. ki-
netic energy), and there always exist unstable spatially homogeneous equilibria with
an arbitrarily small mass (resp. kinetic energy). This comes from the fact that the
constant C1 and C2 in Proposition 5.8 are left invariant by the rescalingM →Mλ(v) =
λd−2M (λv), while the associated mass (resp. kinetic energy) is invariant for the scal-
ing M → λdM (λv) (resp. M → λd+2M (λv)). These findings are investigated on
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numerical grounds in [18].

Proof. The first part of the statement is a direct consequence of Proposition 3.10,
which tells us that a given profile M is stable provided c is large enough. The second
part of the statement is a direct consequence of Proposition 5.4 and it comes from the
formula

L (|k|2tM̂ (tk))(0, k) = ρ0

(
P.V.

ˆ
R

µ′k/|k|(r)
r

dr
)

=
ˆ +∞

0
uM̂ (uω) du.
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