
Journal of Computational Physics153,82–100 (1999)

Article ID jcph.1999.6265, available online at http://www.idealibrary.com on

Mixed Spectral-Boundary Element Embedding
Algorithms for the Navier–Stokes Equations in

the Vorticity-Stream Function Formulation

M. Elghaoui and R. Pasquetti

Laboratoire J. A. Dieudonńe, UMR CNRS 6621, Université de Nice Sophia-Antipolis,
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An embedding approach, based on Fourier expansions and boundary integral equa-
tions, is applied to the vorticity-stream function formulation of the Navier–Stokes
equations. The algorithm only requires efficient solvers of scalar elliptic equations
and, in an asymptotic version, the boundary element method is only needed to solve
the Laplace equation. The capabilities of this embedding method, in both its full and
asymptotic versions, are pointed out by considering the classical problem of the flow
between two eccentric cylinders.c© 1999 Academic Press

1. INTRODUCTION

An attractive way to solve partial differential equations in geometries of complex shape
consists in the use of embedding methods: the complex shaped domain is embedded in a
cartesian geometry for which efficient solvers are available. Many approaches have already
been suggested. Especially, one has to mention some earlier works [1, 2], some more recent
approaches [3, 4], and also those developed by Glowinsky and co-workers (see, e.g., [5–7]),
generally based on the use of a Lagrange multiplier defined on the boundary of the complex
domain to enforce the boundary conditions.

The idea that we have developed more recently [8, 9] is based on the splitting of the
original problem into two sub-problems, which are solved using a Fourier spectral method
in the cartesian geometry and a boundary element method to fulfill the boundary conditions.
Similar approaches were also suggested in [10, 11]. Let us recall the proposed algorithm
for the following problem: findu, in the bounded domainÄ such as

Lu = f in Ä

B(u) = g on0 = ∂Ä,
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whereL is an elliptic differential operator (e.g.,L =1− σ 2) andB is a linear operator
defined on0= ∂Ä.

Assume thatÄ is embedded in a cartesian domainÄ̃, and f extended tõÄ as a periodic
function f̃ . Let thenũ solve the “periodic problem”

Lũ = f̃ in Ä̃

andu′ the “homogeneous problem”

Lu′ = 0 inÄ

B(u′) = g− B(ũ) on0.

Then the solutionu is given by

u = ũ+ u′.

The main points associated with this algorithm are:

—The extension procedure( f −→ f̃ ), which should yield a very smooth extended
function f̃ . This point has been addressed in [8]. Assumingf sufficiently regular, it is based
on an efficient solution of the constrained optimization problem,

min|1p f̃ |L2
per(Ä̃)

, f̃ |Ä = f,

whereL2
per(Ä̃) is the space of the square integrable periodic functions inÄ̃ and p a para-

meter characteristic of the extension procedure. For a better computational efficiency, an
extension strip is generally used:f is only extended in a narrow strip aroundÄ, while the
values of f̃ are set equal to zero outsideÄ and the strip.

—Theu′ boundary value problem, which is solved with a boundary element method
(BEM) requiring only the discretization of the boundary0, since the forcing term has been
handled by the periodic problem.

First, in Section 2, we recall how the vorticity-stream function formulation of the incom-
pressible Navier–Stokes equations can be handled using such an embedding approach. The
crucial point of the calculation of the advection term, which must be accurately computed
but also obtained in an efficient way, is revisited in Section 3, where a new algorithm is
introduced. Furthermore, in the case of high values of the ratioRe/τ , Rebeing the Reynolds
number andτ the time step, we propose in Section 4 an asymptotic version of the method,
in which the BEM part of the algorithm is only applied to the Laplace equation; in that case
all calculations of the BEM matrices entries may be analytic and a lot of simplifications
and savings in time and memory storage are gained. Finally, to show the capabilities of
the method in both its full and asymptotic versions, we consider in Section 5 the classical
problem of the flow between two eccentric cylinders. The basic notions of potential theory
required for a good understanding of the paper are given in Appendix.
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2. ALGORITHM FOR THE ω-ψ FORMULATION OF THE

NAVIER–STOKES EQUATION

In the the vorticity (ω)-stream function (ψ) formulation, the incompressible Navier–
Stokes equations read

∂ω

∂t
+ EV · ∇ω = 1

Re
4ω + F

(1)
4ψ + ω = 0

with t for the time, EV = ( ∂ψ
∂y ,− ∂ψ

∂x ) for the velocity vector,Re for the Reynolds number,
andF for a given body force term.

The initial and boundary conditions must result from those imposed on the velocity.
The initial vorticity is thus taken as the curl of the initial velocity, and Dirichlet boundary
conditions on the velocity induce boundary conditions on the stream function and its normal
outward derivative (ψ0 and( ∂ψ

∂n )0), at least for a simply connected domain. The case of
multi-connected domains is a little less straightforward, as discussed later in the text.

Using in time a finite difference scheme which takes into account explicitly the non-linear
advection term and more or less implicitly the linear ones, at each time step we are led to
solve the so-called generalized Stokes problem (GSP),

4ω − σ 2ω = f in Ä

4ψ + ω = 0 inÄ
(2)

ψ |0 = ψ0
∂ψ

∂n

∣∣∣∣
0

=
(
∂ψ

∂n

)
0

,

whereσ and f depend on the considered scheme. For instance, for the AB/BE2 scheme
(second order backward-Euler for the time derivative and linear Adams–Bashforth extrapo-
lation for the advection term), at time indexn+ 1,

σ 2 = 3 Re

2τ

f = Re[(−4ωn + ωn−1)/2τ + 2( EV · ∇ω)n − ( EV · ∇ω)n−1− Fn+1].

If the body-force term, the initial and boundary conditions are regular, and if the domainÄ

is smooth (main restriction), the two-dimensional unsteady incompressible Navier–Stokes
equations yield a regular solution (see, e.g., [12]). Thenf is also regular and can be extended,
as described in Section 1, iñÄ. But the straight application to the GSP of the embedding
method described in the Introduction would requiref̃ to have a zero mean value, which
would add a constraint to the extension problem. To overcome this difficulty, the periodic
problem is modified slightly as

4ω̃ − σ 2ω̃ = f̃ in Ä̃
(3)4ψ̃ + ω̃ = ¯̃ω in Ä̃,

where ¯̃ω stands for the mean value of periodic part of the vorticity. Aδψ correction is then
added toψ̃ , to take into account̃̄ω. It has to verify1δψ =− ¯̃ω, e.g.,δψ =− 1

2
¯̃ωx2.
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The homogeneous problem then reads

4ω′ − σ 2ω′ = 0 inÄ

4ψ ′ + ω′ = 0 inÄ
(4)

ψ ′|0 = g1

∂ψ ′

∂n

∣∣∣∣
0

= g2,

whereg1 andg2 are given by

g1 = ψ0 − (ψ̃ |0 + δψ |0)

g2 =
(
∂ψ

∂n

)
0

−
(
∂ψ̃

∂n

∣∣∣∣
0

+ ∂δψ
∂n

∣∣∣∣
0

)
.

The solution of the GSP is obtained by superposition,

ψ = ψ̃ + δψ + ψ ′

ω = ω̃ + ω′.

The periodic problem is straightforward when it is solved in the Fourier spectral space,
using a regular mesh for̃Ä. In fact, ω̃ andψ̃ are evaluated from their modes which read,
with obvious notations,

ˆ̃ωk = − ˆ̃f k

|Ek|2+ σ 2

(5)
ˆ̃ψk =

ˆ̃ωk

|Ek|2 , |Ek| 6= 0, ¯̃ψ = 0.

For the homogeneous problem, to be solved, for the sake of efficiency, with only BEM
solver of homogeneous scalar elliptic equations, the Poisson equation onψ ′ must be trans-
formed. This can be achieved by introducing the variableϕ such asϕ= σ 2ψ ′ +ω′. Then,
the homogeneous problem becomes

4ω′ − σ 2ω′ = 0 inÄ

4ϕ = 0 inÄ
(6)

ϕ|0 − ω′|0 = σ 2g1

∂ϕ

∂n

∣∣∣∣
0

− ∂ω
′

∂n

∣∣∣∣
0

= σ 2g2.

Now, one can use the fact thatϕ andω′ verify a Laplace and an homogeneous Helmholtz
equation to solve the problem (6) without domain mesh. Many BEM algorithms are possible,
but in any case, after discretization of the boundary0, one may write (see the Appendix)

∂nω
′ = Ahω

′
(7)

∂nϕ = Apϕ,
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whereω′, ϕ, ∂nω
′, and∂nϕ are the vectors gathering the values of each variable and

their normal derivatives at the boundary element nodes;Ah andAp are the BEM boundary
matrices for the Helmholtz and Laplace operators. In our numerical implementation, a
collocation method is used with linear discontinuous elements so to enable jumps in the
normal derivative (e.g., to support geometries having corners).

In discrete form, the boundary conditions provided by problem (6) become

ϕ− ω′ = σ 2g1
(8)

∂nϕ− ∂nω
′ = σ 2g2.

Then using Eqs. (7), (8), and the definition ofϕ, the boundary vorticity is obtained as

ω′ = σ 2(Ah − Ap)
−1(Apg1− g2). (9)

Onceϕ andω′ are known, one can evaluateω′, ϕ, andψ ′ at the inner collocation points
of Ä. This can be achieved using an indirect approach based on a single-layer potential
formulation, as described in the Appendix. The adoption of this formulation is motivated
by the fact that the integral kernelu∗M is continuous whenM passes through the boundary,
so that near-wall evaluation of the solution is more accurate. Moreover, the numerical
computation of the solution in the domain requires only one matrix of dimensionNÄ× N
(N, number of boundary collocation points;NÄ, number of inner Fourier grid points) in
contrast to the usual mixed integral formulation which requires two. However, the single-
layer potential approach is to be used with care in the case of irregular geometries, because
the resulting potential layer,µ, may be no longer regular.

3. COMPUTATION OF THE ADVECTION TERM

As it may be expected, the main difficulty of the present method lies in the deter-
mination of the non-linear term (EV · ∇ω) since it requires the evaluation of the solu-
tion derivatives, i.e.,∇ω and EV = ( ∂ψ

∂y ,− ∂ψ

∂x ). Indeed, asω andψ are given by super-
position, their periodic and homogeneous parts should be differentiated independently.
But as it is well known, calculations of derivatives by BEM are not straightforward
[13].

Let us mention here that one can also evaluate the advection term without using the
BEM. Indeed, onceω andψ are obtained insideÄ, one can then find their extensions to
Ä̃ : ω̆ andψ̆ such that ˘ω|Ä=ω andψ̆ |Ä=ψ . Then it’s easy to differentiate in the Fourier
space to obtain the advection term (EV · ∇ω). This approach was used in [9]. Nevertheless
it suffers from a loss of regularity, especially near the boundary where the calculations of
the derivatives are no longer accurate.

Thus a good accuracy is expected by differentiating independently the periodic and
homogeneous parts ofω andψ , but the difficulty comes from the differentiation, with respect
to the space variablesxi , i = 1, 2, ofω′ andϕ which solve the homogeneous Helmholtz and
Poisson problems.

One way would be to differentiate the basic BIE (boundary integral equation), but this
yields hypersingular kernels which are difficult to handle numerically and requires consid-
erable memory storage for the associated matrices. As it has been done for the solution, one
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can also use the single-layer potential formulation to obtain, with the notations defined in
Appendix,

(∇u)M = (1− cM) µEn−
∫
0

∇u∗Mµ ds. (10)

Such an approach, which we used in [8], is to be preferred to the previous one, since∇u∗M
does not yield hypersingular kernels. Nevertheless, the memory storage requirements are
still important : oneNÄ× N matrix for each∂u

∂xi
derivative. Moreover, one serious difficulty

arises from the discontinuous character of∇u∗M through the boundary, leading to the de-
terioration of the near-wall accuracy. In order to overcome these difficulties, sophisticated
approaches, which basically rely on using a local Taylor approximation of the solution near
the boundary, have been suggested, as in [14]. But although such methods have shown
improvements in the overall accuracy, the obtained algorithms are usually highly complex,
which in our case is not what we are looking for.

The approach proposed hereafter does not suffer from the mentioned drawbacks, i.e.,
accuracy near the boundary is obtained and high memory storage is not necessary. However,
it requires more regularity on the computed solution. Coming back to the homogeneous
Helmholtz equation, if the solutionu is sufficiently regular then

1u− σ 2u = 0H⇒ 1

(
∂u

∂xi

)
− σ 2

(
∂u

∂xi

)
= 0.

One notices that once the trace of( ∂u
∂xi
) is known, then( ∂u

∂xi
) can be evaluated at the inner

points ofÄ in the same way as for the solutionu. The improvement of the near-wall
evaluation of the derivatives results, as for the solution, from the continuous character of
the integral kernelu∗M . Furthermore, no extraNÄ× N matrix is needed for inner point
evaluation of the derivatives. The problem then resumes to find( ∂u

∂xi
)0. This can be done

once the normal and tangential derivatives ofu on the boundary are known. The evaluation
of the normal derivative of the solution is already dealt with as a result of the standard BEM
and so what remains is to determine the tangential derivative. One obvious way to proceed
is by finite differences, using in our implementation the fact that the solutionu is assumed
to be linear on each boundary element. But such a procedure shows a poor accuracy: the
linear profiles assumed foru can only be justified as a mean to evaluate the integrals arising
from the BEM.

Finally, the BEM algorithm that we suggest for computing the tangential derivative( ∂u
∂s )0

is based on the following vectorial BIE, which results from a direct formulation and holds
for both the Helmholtz or Laplace equation (withσ = 0),

cM∇uM =
∫
0

((
σ 2u u∗M +∇u · ∇u∗M

)En− ∂u∗M
∂n
∇u− ∂u

∂n
∇u∗M

)
ds. (11)

The proof is, e.g., given in [15]. In 2D context, it is then easy to obtain an integral equation
for ∂u

∂s . Indeed, the BIE (11) can be projected on the tangent to0 at pointM , to obtain

cM

(
∂u

∂s

)
M

+
∫
0

(EτM ·
(∇u∗M

)⊥)∂u

∂s
ds=

∫
0

σ 2(En · EτM)u u∗M ds−
∫
0

(EτM · ∇u∗M
)∂u

∂n
ds

(12)
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with (∇u∗M)
⊥ defined as theπ2 rotation of the vector∇u∗M andEτM as the unit vector tangent

to 0.
In the discrete frame work, such a BIE yields the matrix relation

Hs∂su = Gs∂nu+ σ 2Qs u, (13)

where the BEM integrals associated with the new obtained matricesHs, Gs, andQs are
related to the already evaluated integrals, so that no additional numerical quadrature is
required [15].

By elimination of∂nu, one can deduce∂su from u as

∂su = Q u, (14)

whereQ is defined as

Q = Hs−1
(GsA+ σ 2Qs).

To conclude this section, we test the accuracy of the proposed differentiation method by
considering the following exact solution of the homogeneous Helmholtz equation,

u = I0
(
σ
√
(x− 0.1)2+ (y− 0.1)2

)
,

where I0 is the modified Bessel function of the first type and zero order. The domainÄ is
chosen as the square ]− 1

2,
1
2[2 andσ = 1.

Figure 1a shows the variations of the tangential derivative computed by the proposed
method and by finite differences. The corresponding errors are plotted in Fig. 1b. One
notices how the jumps of( ∂u

∂s )0 at the four corners of the domain are well described, and
how the proposed method is very accurate in contrast to the finite difference approximation.

In Fig. 2, we check the derivative calculation inside the domain, by showing the errors on
( ∂u
∂x ) along the diagonaly= x, 0≤ x≤ 1

2. One notices that even in the vicinity of the corner,
the calculation accuracy remains quite satisfactory. Such an accuracy is out of reach when
using Eq. (10), which yields quite false results forx in the range [0.48, 0.5], as shown in
[15].

The tests were made with 80 boundary elements of variable size (N= 160), by using,
for each side of the square, a Chebyshev–Gauss–Lobatto distribution for the endpoints of
the boundary elements.

4. ASYMPTOTIC VERSION OF THE EMBEDDING METHOD

Until now the value of the parameterσ 2 has been assumed arbitrary. However, in
real practical simulations, this coefficient,σ 2∼ Re

τ
, becomes generally high, typically

103≤ σ 2≤ 106. With such a high value ofσ , the fundamental solution of the Helmholtz
equation has a very small support and thus gives rise, for the homogeneous Helmholtz equa-
tion, to solutions which are very confined at the boundary: the solution is almost negligible
except in the vicinity of the boundary0 where a layer occurs. As described now, one can
take advantage of this to develop an asymptotic version of the method.
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FIG. 1. (a) Tangential derivative computed with BEM and with finite differences (symbols) vs the curvilinear
abscissa; (b) corresponding errors (BEM in full line and FD in dashed line).

Let us consider again the Dirichlet problem,

1u− σ 2u = 0 inÄ

u|0 = u0 (15)

with σ À 1.
Suppose thatÄ is such that the last equation develops boundary layers which do not

interact (for instance, interaction may happen in the case of some non-simply connected
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FIG. 2. Accuracy of ∂u
∂x

along the diagonal of the square vsx.

domain). Once Eq. (15) is written in the Fr´enet local frame(En, Eτ), it reads

∂2u

∂n2
+ κ ∂u

∂n
+ ∂

2u

∂s2
− σ 2u = 0, (16)

whereκ stands for curvature.
Introduce the lengthsδn andδτ which characterize the variations in the normal and tangent

directions (δn¿ δτ ). Then withEn= δnEn′ andEτ = δτ Eτ ′, Eq. (16) becomes

∂2u

∂n′2
+ δnκ

∂u

∂n′
+
(
δn

δτ

)2
∂2u

∂s′2
− δ2

nσ
2u = 0. (17)

This last equation shows that:

—The boundary layer thickness isO( 1
σ
).

—The term(δn/δτ )
2(∂2u/∂s′2) can be neglected.

—The termδnκ(∂u/∂n′)can also be neglected if one supposes further that the curvature
radius is sufficiently high.

With these approximations, the solution of (15) reads

u(d, s) = u0(s)e
−σd, (18)

whered is the distance from the boundary. Thus the resulting boundary layer is of expo-
nential type and one can deduce

∇u(d, s) ≈ σu0(s)e
−σdEn(s). (19)

Especially, at the boundary,

∂u

∂n

∣∣∣∣
0

≈ σu0. (20)
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Such an equation shows that when the value ofσ is high, the BEM operatorAh is approxi-
mately proportional to theN× N identity matrix:Ah≈ σ10.

Coming back to the Navier–Stokes equation in theω-ψ formulation, Eq. (9) can be
drastically simplified by assuming

Ah − Ap ≈ σ10

which satisfies both the limiting caseσ = 0 andσ À 1. In that case, Eq. (9) simplifies to

ω′ = σ(Apg1− g2). (21)

In fact, when assumingg1= 0, so thatω=−σg2, one recovers here the equation derived
in [16] following another integral formulation.

Onceω′ is obtained,ω′ and∇ω′ are evaluated at the inner points ofÄ using Eqs. (18)
and (19). The rest of the algorithm is then applied unchanged. For instance,ϕ satisfies the
Laplace Dirichlet problem,

4ϕ = 0 inÄ
(22)

ϕ|0 − ω′|0 = σ 2g1

which is the only problem that has to be solved by the BEM.
The resulting advantages of the asymptotic version of the method are important:

—The preliminary calculations of the BEM matrix entries only relate to the Laplace
equation. When using rectilinear boundary elements, all evaluations of integrals are then
done analytically and so no numerical quadrature is needed.

—The preliminary calculations no longer depend on the coefficientσ , i.e., on the the
Reynolds number and on the time step. Adaptability in the time step or variations in time
of the Reynolds number then become possible.

5. FLUID FLOW BETWEEN TWO ECCENTRIC CYLINDERS

To validate the proposed algorithms we consider the problem of the flow between two
eccentric cylinders of radiusR1 and R2 (R1< R2) and with eccentricitye defined as the
distance between the two cylinders’ centers. The case of the inner cylinder being rotating
is considered. For this kind of flow, the clearance defined byc= R2− R1 is chosen as the
characteristic length.

For the sake of comparison, the geometry and flow parameters are identical to those given
in [17]: R1= 1, R2= 2, e= 0.5, andRe= 37.2, the Reynolds number being based on the
inner cylinder tangential velocity.

The main features of this flow are known to be controlled by the Taylor number defined
as T n= Re

√
c/R1. When the inner cylinder is the one rotating, the flow remains two

dimensional and laminar up toT n= 41.6. Note that for the case consideredc= R1 and
consequentlyT n= Re.

As it is well known, the doubly connected feature of the geometry induces a difficulty
when using theω-ψ formulation: the value of the stream function can be taken to be arbitrary
on one of the two cylinders, e.g.,ψ = 0 on the fixed one, but the other value, then equal to
the flowrate, has to be determined.
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To overcome this difficulty, we proceed as in [17, 18]. The Navier–Stokes equations,
written in the primitive variables and restricted at the boundary of the fixed cylinder( EV = 0),
simplify to, with p for the pressure

Re∇ p = 1 EV . (23)

For a divergence free field,1 EV =−∇ ×∇ × EV , so that Eq. (23) becomes

Re∇ p = ∇ω × Eez, (24)

whereEez is the unit vector normal to the flow plane.

The projection of this equation on the tangential direction of the boundary02 of the outer
cylinder yields

Re
∂p

∂s
= ∂ω

∂n
. (25)

Integrating this equation on02 gives∫
02

∂ω

∂n
ds= 0. (26)

This equation is then used to determine the valueα=ψ |01.
In the framework of the present embedding method, Eq. (26) becomes∫

02

∂ω′

∂n
ds= −

∫
02

∂ω̃

∂n
= β. (27)

In order to calculateα, a functionθ defined on0 is introduced:

θ(M) =
{

1 if M on01

0 otherwise.

Then the basic equation forω′ reads

ω′ = S(Ap(g′1+ αθ)− g2), (28)

whereg′1 is evaluated assumingψ |0 = 0 and whereS= σ 2(Ah− Ap)
−1 or S= σ10, for the

full and asymptotic versions of the method, respectively.
When put in discrete form, Eq. (27) is used to obtainα,

α = β −RAhS(Apg′1− g2)

RAhS Apθ
, (29)

whereR is the discrete integration operator on02.
For the asymptotic version, this equation simplifies to

α = β −Rσ 2(Apg′1− g2)

Rσ 2Apθ
(30)

sinceS≈ Ah≈ σ10.
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FIG. 3. Schematic of the geometry and visualisation of the grid-points of the extension band.

Using the AB/BE2 scheme mentioned in Section 2, simulations have been conducted for
both the full and asymptotic versions of the method.

Figure 3 shows a schematic of the geometry, embedded in the square ]−2.24, 2.24[2,
with the distribution of the grid-points inside the extension strip. From our experience of
the method, the thickness of the extension strip must be at least 5 Fourier grid-points and
the embedding domaiñÄ may fit the union ofÄ and this strip. The extension parameter
was taken equal top= 3. Higher values are to be avoided, because independently of the

FIG. 4. Flowrate vs time, computed with the full and asymptotic (dashed line) versions of the method.
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FIG. 5. Stream function and vorticity in the narrow gap, as computed at different times with the full and
asymptotic (symbols) versions of the method.

GSP source termf , numerical difficulties may arise with the extension procedure, which
involve terms like|Ek|2p [8]. In any case one has to check that the periodic variable Fourier
spectra show satisfactory decays. For the Fourier grid we usedNF = 72 Fourier points in
each direction. Then one getsNÄ= 2406 inner grid-points. For the boundary element mesh
we used 300 elements, i.e.,N= 600 boundary collocation points (400 on the big cylinder
and 200 on the small one), in such a way that the boundary element size approximately
equaled the Fourier mesh step. The calculations were done with the time-stepτ = 3.10−2,
i.e.,τ ≈ 0.5τCFL (τCFL, the Courant–Friedrichs–Lewy critical time-step). For this value of
τ , with Re= 37.2, one getsσ ≈ 43.1.
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FIG. 6. Stream function and vorticity in the wide gap, as computed at different times with the full and
asymptotic (symbols) versions of the method.

Figure 4 shows the flowrate, as computed with both the expressions 29 and 30. On
such a graphic it is not possible to discern the two corresponding curves, except fort ≈ 0,
essentially because at the first time-step the approximate formula yields an erroneous (but
well understood) result:α= 0.

In order to compare the full and asymptotic approaches, the profiles of the vorticity and
of the stream function, in the narrow and wide gap between the two cylinders, are shown
in the Figs. 5 and 6. These profiles are given at the different times,t ={0.75, 1.2, 1.8, 2.7,
3.75, 6., 25.}. At the wall of the inner cylinder (x=−1.5 andx= 0.5), both the vorticity
and the stream function are increasing with time. Notice that the vorticity values are only
given whereω has been computed, i.e., at the grid-points of the Fourier mesh, whereas
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FIG. 7. Stream function and its periodic part.

the boundary values of the stream function are well known:ψ =α andψ = 0, along the
inner and outer cylinder, respectively. Once again, the agreement appears to be very good,
since the differences, which are less than 10−3 in relative values, cannot be discerned on the
figures.

To get insight into the method, the final time solution ofψ andω is shown in Figs. 7
and 8 along with their periodic parts̃ψ andω̃. These results have been obtained with the
asymptotic version of the method, but as shown in Fig. 9 the results are quite similar with the
full one. As expected,ω andω̃ are nearly the same, except close to the boundary where the
homogeneous part of the vorticityω′ is no longer negligible. This behavior is not followed
by the stream function and its periodic part.
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FIG. 8. Vorticity and its periodic part.

Finally, let us mention that our results agree well with those presented in [17]. Especially
the two stagnation points on the outer cylinder are located at about±98.6 degree and the
separation stream line intersects the horizontal axis at aboutx≈ 1.16.

6. CONCLUSION

The embedding method proposed in [8, 9] has been applied to the incompressible Navier–
Stokes equations in theω−ψ formulation. Especially we have focused on the computation
of the advection term, by using here an approach showing some major advantages: near-
wall accuracy calculations and low memory storage requirements. Moreover, an asymptotic
version of the method has been proposed, in such a way that the BEM is only used for
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FIG. 9. Stream function and vorticity, computed with the full version of the method.

solving the Laplace equation. By considering the classical problem of the flow between two
eccentric cylinders, we have pointed out that the proposed embedding method can produce
satisfactory results and constitutes, especially in its asymptotic version, an efficient way to
solve the Navier–Stokes equations in complex geometries, at least at moderate Reynolds
numbers.

APPENDIX

The homogeneous Poisson and Helmholtz equations, sayL(u)= 0, with L for the
Laplacian or for the elliptic Helmholtz operator(1− σ 2), can be recast into a boundary
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integral equation (BIE) involving no domain integrals,

cMuM +
∫
0

u
∂u∗M
∂n

ds=
∫
0

u∗M
∂u

∂n
ds,

whereM is a point inǞ, uM the value ofu at pointM , cM a coefficient equal to 1 ifM is
in Ä, and such as 0< cM < 1 if M is on0 (cM = 0.5, if 0 is smooth at M). The so-called
fundamental solutionu∗M is the Green function such as in an unbounded domain,

L(u∗M)+ δM = 0,

whereδM is the Dirac distribution at pointM :

—for the 2D Poisson equation,u∗M = −1
2π ln(ρ)

—for the 2D elliptic Helmholtz equation,u∗M = 1
2π K0(

√
σρ)

with ρ being the distance to pointM and whereK0 is the modified Bessel function of the
second kind and zero order, which presents, forρ= 0, a logarithmic singularity and which
exponentially vanishes at infinity.

The discrete equations are obtained by discretizing the boundary into boundary elements
and by expressing the BIE at their boundary nodes. This can be done in several ways, but
in any case, withu and∂nu for the vectors of the boundary node values of the numerical
approximations ofu and ∂u

∂n , one gets a matricial relation of the form (see, e.g., [19]),

Hu = G∂nu

or, with A=G−1H , ∂nu= Au.
In the framework of an “indirect approach,” one has also the single-layer potential for-

mulation, which states that there existsµ such that, up to a constant in case of the Laplacian
operator,

uM =
∫
0

u∗Mµ ds.

In discrete form, this equation yields for the boundary node values

u = Gµ.

Similarly, for the internal points,

uÄ = GÄµ = GÄG−1u,

whereuÄ stands for the values ofu at the collocation points insideÄ and whereGÄ is a
matrix which only depends on the geometry. In case of the Laplace equation the additive
constant is calculated from the Gauss condition,∫

0

µ ds= 0.
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