Journal of Computational Physi&§3,82—-100 (1999)

®
Article ID jeph.1999.6265, available online at http://www.idealibrary.conl DE &l.

Mixed Spectral-Boundary Element Embedding
Algorithms for the Navier-Stokes Equations in
the Vorticity-Stream Function Formulation

M. Elghaoui and R. Pasquetti

Laboratoire J. A. Dieudons, UMR CNRS 6621, Universéitle Nice Sophia-Antipolis,
Parc Valrose, 06108 Nice Cedex 2, France

Received October 27, 1998; revised March 18, 1999

An embedding approach, based on Fourier expansions and boundary integral equa-
tions, is applied to the vorticity-stream function formulation of the Navier—Stokes
equations. The algorithm only requires efficient solvers of scalar elliptic equations
and, in an asymptotic version, the boundary element method is only needed to solve
the Laplace equation. The capabilities of this embedding method, in both its full and
asymptotic versions, are pointed out by considering the classical problem of the flow
between two eccentric cylindersg 1999 Academic Press

1. INTRODUCTION

An attractive way to solve partial differential equations in geometries of complex sh:
consists in the use of embedding methods: the complex shaped domain is embedde
cartesian geometry for which efficient solvers are available. Many approaches have alr
been suggested. Especially, one has to mention some earlier works [1, 2], some more
approaches [3, 4], and also those developed by Glowinsky and co-workers (see, e.g., [-
generally based on the use of a Lagrange multiplier defined on the boundary of the con
domain to enforce the boundary conditions.

The idea that we have developed more recently [8, 9] is based on the splitting of
original problem into two sub-problems, which are solved using a Fourier spectral met
in the cartesian geometry and a boundary element method to fulfill the boundary conditi
Similar approaches were also suggested in [10, 11]. Let us recall the proposed algol
for the following problem: findi, in the bounded domaif such as

Lu=f in Q
Bu) =g onl' =0€,
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wherelL is an elliptic differential operator (e.gl, = A —o?) and B is a linear operator
defined o™ = 9<2.

Assume thaf2 is embedded in a cartesian dom&inand f extended t&2 as a periodic
function f. Let then(i solve the “periodic problem”

La=f inQ
andu’ the “homogeneous problem”

Lu =0 in Q
B) =g— B0 onT.

Then the solutiom is given by
u=0+u.

The main points associated with this algorithm are:

—The extension procedure — f), which should yield a very smooth extendec
function f. This point has been addressed in [8]. Assumiirayfficiently regular, it is based
on an efficient solution of the constrained optimization problem,

min| AP f L2, flo=f,

WhereL%er(fz) is the space of the square integrable periodic functiorss &md p a para-
meter characteristic of the extension procedure. For a better computational efficienc
extension strip is generally usefl:is only extended in a narrow strip aroufy] while the
values off are set equal to zero outsigleand the strip.

—Theu’ boundary value problem, which is solved with a boundary element mett
(BEM) requiring only the discretization of the boundarysince the forcing term has been
handled by the periodic problem.

First, in Section 2, we recall how the vorticity-stream function formulation of the incol
pressible Navier—Stokes equations can be handled using such an embedding approac
crucial point of the calculation of the advection term, which must be accurately compt
but also obtained in an efficient way, is revisited in Section 3, where a new algorithn
introduced. Furthermore, in the case of high values of the Réia, Rebeing the Reynolds
number and the time step, we propose in Section 4 an asymptotic version of the mett
in which the BEM patrt of the algorithm is only applied to the Laplace equation; in that c:
all calculations of the BEM matrices entries may be analytic and a lot of simplificatic
and savings in time and memory storage are gained. Finally, to show the capabilitie
the method in both its full and asymptotic versions, we consider in Section 5 the clas:
problem of the flow between two eccentric cylinders. The basic notions of potential the
required for a good understanding of the paper are given in Appendix.
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2. ALGORITHM FOR THE w-9 FORMULATION OF THE
NAVIER-STOKES EQUATION

In the the vorticity {)-stream function ) formulation, the incompressible Navier—
Stokes equations read

d - 1
a—(f +V Vo= so+F
1)
AY+w=0
with t for the time,V = (— ——) for the velocity vectorRefor the Reynolds number,

andF for a given body force term.

The initial and boundary conditions must result from those imposed on the veloc
The initial vorticity is thus taken as the curl of the initial velocity, and Dirichlet boundal
conditions on the velocity induce boundary conditions on the stream function and its noi
outward derivative and(a‘/’)p) at least for a simply connected domain. The case
multi-connected domains is a little less straightforward, as discussed later in the text.

Using in time a finite difference scheme which takes into account explicitly the non-lin
advection term and more or less implicitly the linear ones, at each time step we are e
solve the so-called generalized Stokes problem (GSP),

Aw — o’w = f in Q
Ay +w=0 in Q
yre @)
Yir = ¥r
| (oY
Bnr_(8n>r’

whereos and f depend on the considered scheme. For instance, for the AB/BE2 sch
(second order backward-Euler for the time derivative and linear Adams—Bashforth extr:
lation for the advection term), at time indext 1,

> _3Re
27
f = RE(—40" + 0" 1) /21 + 2(V - Vo) — (V - Vo)1 — FNHY],

If the body-force term, the initial and boundary conditions are regular, and if the ddenait
is smooth (main restriction), the two-dimensional unsteady incompressible Navier—St
equationsyield aregular solution (see, e.g., [12]). Th&also regular and can be extended
as described in Section 1, f2. But the straight application to the GSP of the embeddir
method described in the Introduction would requfréo have a zero mean value, which
would add a constraint to the extension problem. To overcome this difficulty, the peric
problem is modified slightly as

2=Ff inQ -
o ing,

AD — o0

Ag[r—i—w—

whered stands for the mean value of periodic part of the vortlcnyﬁ#\correctlon is then
added toj, to take into accound. It has to verifyAsy = —&, e.g..8¢ = — 2 a)X2
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The homogeneous problem then reads

Ao —o?a =0 in Q

Ay +0 =0  inQ

, 4)
Yir=0
9y
an - - 927

whereg; andg, are given by

01 = Yr — (Wlr +8¥r)
_ (W) (W
gz_(an)r <3n

The solution of the GSP is obtained by superposition,

sy
L oan

)

V=" +8y+ v
w=0+w.
The periodic problem is straightforward when it is solved in the Fourier spectral spe

using a regular mesh fae. In fact, & andy are evaluated from their modes which reac
with obvious notations,

®)

For the homogeneous problem, to be solved, for the sake of efficiency, with only B
solver of homogeneous scalar elliptic equations, the Poisson equatipnomst be trans-
formed. This can be achieved by introducing the varigbtich asp = 0%y’ + «'. Then,
the homogeneous problem becomes

Aw —o?w =0 inQ

Ap =0 in Q

(6)
¢lr — o'Ir = o’
dp 0’
— — = 0’292.
onjp  an|p

Now, one can use the fact thatandw’ verify a Laplace and an homogeneous Helmholt
equation to solve the problem (6) without domain mesh. Many BEM algorithms are possi
but in any case, after discretization of the boundarpne may write (see the Appendix)

Ohw' = Apw’
(7)
an‘P = Ap(P,
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wherew’, ¢, Onw’, and 8, are the vectors gathering the values of each variable a
their normal derivatives at the boundary element nodgsand A, are the BEM boundary
matrices for the Helmholtz and Laplace operators. In our numerical implementatiol
collocation method is used with linear discontinuous elements so to enable jumps ir
normal derivative (e.g., to support geometries having corners).

In discrete form, the boundary conditions provided by problem (6) become

/ 2
p—w =0q
L (8)
Onp — O’ =070

Then using Egs. (7), (8), and the definitiongfthe boundary vorticity is obtained as
W' = 0%(An = Ap) H(Apd1 — Qo). ©

Oncey andw’ are known, one can evaluatgé, ¢, andy’ at the inner collocation points
of Q. This can be achieved using an indirect approach based on a single-layer pote
formulation, as described in the Appendix. The adoption of this formulation is motivat
by the fact that the integral kernef, is continuous whem passes through the boundary,
so that near-wall evaluation of the solution is more accurate. Moreover, the numel
computation of the solution in the domain requires only one matrix of dimerigjor N
(N, number of boundary collocation pointsl,, number of inner Fourier grid points) in
contrast to the usual mixed integral formulation which requires two. However, the sin
layer potential approach is to be used with care in the case of irregular geometries, be«
the resulting potential layer,, may be no longer regular.

3. COMPUTATION OF THE ADVECTION TERM

As it may be expected, the main difficulty of the present method lies in the det
mination of the non-linear term\7(~ Vw) since it requires the evaluation of the solu-
tion derivatives, i.e.Vo andV = (%, —2%). Indeed, as» andy are given by super-
position, their periodic and homogeneous parts should be differentiated independe
But as it is well known, calculations of derivatives by BEM are not straightforwal
[13].

Let us mention here that one can also evaluate the advection term without using
BEM. Indeed, oncev and are obtained insid&, one can then find their extensions tc
Qo ande such thaw]qg =w and1}|g =1. Then it's easy to differentiate in the Fourier
space to obtain the advection term {Vw). This approach was used in [9]. Nevertheles
it suffers from a loss of regularity, especially near the boundary where the calculation
the derivatives are no longer accurate.

Thus a good accuracy is expected by differentiating independently the periodic
homogeneous partsefandyr, but the difficulty comes from the differentiation, with respec
to the space variables, i =1, 2, of ®” andg which solve the homogeneous Helmholtz ant
Poisson problems.

One way would be to differentiate the basic BIE (boundary integral equation), but t
yields hypersingular kernels which are difficult to handle numerically and requires con
erable memory storage for the associated matrices. As it has been done for the solutiol
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can also use the single-layer potential formulation to obtain, with the notations define
Appendix,

(Vu)m = (1 —cy) ni —/ Vuyrds. (10)
r

Such an approach, which we used in [8], is to be preferred to the previous oneVsifjce

does not yield hypersingular kernels. Nevertheless, the memory storage requiremen
stillimportant : oneNg x N matrix for eachg’7“i derivative. Moreover, one serious difficulty
arises from the discontinuous characteiafy, through the boundary, leading to the de:
terioration of the near-wall accuracy. In order to overcome these difficulties, sophistic:
approaches, which basically rely on using a local Taylor approximation of the solution r
the boundary, have been suggested, as in [14]. But although such methods have <
improvements in the overall accuracy, the obtained algorithms are usually highly comg
which in our case is not what we are looking for.

The approach proposed hereafter does not suffer from the mentioned drawbacks
accuracy near the boundary is obtained and high memory storage is not necessary. Ho\
it requires more regularity on the computed solution. Coming back to the homogene
Helmholtz equation, if the solutiomis sufficiently regular then

au au
AU—c2U=0= A — | —c?( — ) =0.
9X%; 9X%;

One notices that once the trace(é;(“?) is known, ther(g—x“i) can be evaluated at the inner
points of Q in the same way as for the solutian The improvement of the near-wall
evaluation of the derivatives results, as for the solution, from the continuous charactt
the integral kernelry,. Furthermore, no extrég x N matrix is needed for inner point
evaluation of the derivatives. The problem then resumes to(fjﬁdp. This can be done
once the normal and tangential derivatives @ the boundary are known. The evaluatior
of the normal derivative of the solution is already dealt with as a result of the standard B
and so what remains is to determine the tangential derivative. One obvious way to pro
is by finite differences, using in our implementation the fact that the solutisrassumed
to be linear on each boundary element. But such a procedure shows a poor accurac
linear profiles assumed farcan only be justified as a mean to evaluate the integrals aris
from the BEM.

Finally, the BEM algorithm that we suggest for computing the tangential deri\(%\)e
is based on the following vectorial BIE, which results from a direct formulation and ho
for both the Helmholtz or Laplace equation (with=0),
auy, au

Vu— —Vuy, | d 11
an anu"">s (1)

cmVum =/<(02u Uy + Vu - Vup, )i —
r

The proofis, e.g., given in [15]. In 2D context, it is then easy to obtain an integral equa
for % Indeed, the BIE (11) can be projected on the tangehtab pointM, to obtain

au - L\ Ly ou 2, o N / o L ou
- . —“ds= . — .V -
CM<85)M+/F(1M (Vuy) )asds /Fo (i - Tm)u Uy, ds r(rM uM)an ds

(12)
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with (Vuj,)* defined as thé& rotation of the vectoWuy, andzy as the unit vector tangent
torl.
In the discrete frame work, such a BIE yields the matrix relation

HSdu = G%8,u + 02Q%u, (13)
where the BEM integrals associated with the new obtained matHée&S, and Q® are
related to the already evaluated integrals, so that no additional numerical quadratu
required [15].

By elimination of@,u, one can deduc@su fromu as
osu=Qu, (14)
whereQ is defined as

Q = HS (G°A + 02Q5).

To conclude this section, we test the accuracy of the proposed differentiation metho
considering the following exact solution of the homogeneous Helmholtz equation,

u=lo(cy/(x—0.12+ (y — 0.1)?),

where | is the modified Bessel function of the first type and zero order. The dofa&n
chosen as the square}, 1[? ando = 1.

Figure 1a shows the variations of the tangential derivative computed by the propc
method and by finite differences. The corresponding errors are plotted in Fig. 1b.
notices how the jumps c(%)r at the four corners of the domain are well described, ar
how the proposed method is very accurate in contrast to the finite difference approxima

In Fig. 2, we check the derivative calculation inside the domain, by showing the error:
(3—5) along the diagonal =x,0<x < % One notices that even in the vicinity of the corner
the calculation accuracy remains quite satisfactory. Such an accuracy is out of reach
using Eg. (10), which yields quite false results foin the range [0.48, 0.5], as shown in
[15].

The tests were made with 80 boundary elements of variable Kize360), by using,
for each side of the square, a Chebyshev-Gauss—Lobatto distribution for the endpoir
the boundary elements.

4. ASYMPTOTIC VERSION OF THE EMBEDDING METHOD

Until now the value of the parameter’ has been assumed arbitrary. However, i
real practical simulations, this coefficient? ~ %3, becomes generally high, typically
10° < o2 < 10P. With such a high value of, the fundamental solution of the Helmholtz
equation has a very small support and thus gives rise, for the homogeneous Helmholtz:
tion, to solutions which are very confined at the boundary: the solution is almost neglig
except in the vicinity of the boundaiy where a layer occurs. As described now, one cé
take advantage of this to develop an asymptotic version of the method.
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FIG.1. (a) Tangential derivative computed with BEM and with finite differences (symbols) vs the curviline
abscissa; (b) corresponding errors (BEM in full line and FD in dashed line).

Let us consider again the Dirichlet problem,

AU—c?u=0 inQ
U, = Ur (15)

with o > 1.
Suppose thaf2 is such that the last equation develops boundary layers which do
interact (for instance, interaction may happen in the case of some non-simply conne
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le-04 T T T T

1e-05 |

le-06 [

Error

1e-07 |

1e-08

16'09 1 1 1 L
0.0 0.1 0.2 0.3 0.4 0.5

FIG. 2. Accuracy ofg{ along the diagonal of the squarex:s

domain). Once Eg. (15) is written in thed¥rét local framen, 7), it reads

d%2u  du  d%u
W—FK%—F@—O’U:O, (16)

wherex stands for curvature.
Introduce the length%, ands, which characterize the variations in the normal and tange

directions §, <« §;). Then withii = §,i" andt = 8,7, Eq. (16) becomes
32u au <5n )2 32u

S on
tonka TG, ) as2

- = —80%u=0. 17)

This last equation shows that:

—The boundary layer thickness@(%).

—The term(8,,/8,)%(8%u/ds?) can be neglected.

—Theterms,« (du/9n") can also be neglected if one supposes further that the curvat
radius is sufficiently high.

With these approximations, the solution of (15) reads
u(d,s) = ur(s)e", (18)

whered is the distance from the boundary. Thus the resulting boundary layer is of ex
nential type and one can deduce

vu(d, s) ~ our(s)e ?f(s). (19)

Especially, at the boundary,

9
A~ our. (20)
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Such an equation shows that when the value of high, the BEM operatoAy, is approxi-
mately proportional to th&l x N identity matrix: A, ~ o 1r.

Coming back to the Navier—Stokes equation in thes formulation, Eqg. (9) can be
drastically simplified by assuming

An—Ap~olr
which satisfies both the limiting cage= 0 ando > 1. In that case, Eq. (9) simplifies to
W' =0 (A1 — 92). (21)

In fact, when assuming; =0, so thatw = —o @y, one recovers here the equation derive
in [16] following another integral formulation.

Oncew' is obtainedw’ andVe' are evaluated at the inner points@fusing Egs. (18)
and (19). The rest of the algorithm is then applied unchanged. For instasatisfies the
Laplace Dirichlet problem,

Ap =0 in Q

) 5 (22)
¢lr —o'Ir =001

which is the only problem that has to be solved by the BEM.

The resulting advantages of the asymptotic version of the method are important:

—The preliminary calculations of the BEM matrix entries only relate to the Lapla
equation. When using rectilinear boundary elements, all evaluations of integrals are
done analytically and so no numerical quadrature is needed.

—The preliminary calculations no longer depend on the coeffieient., on the the
Reynolds number and on the time step. Adaptability in the time step or variations in t
of the Reynolds number then become possible.

5. FLUID FLOW BETWEEN TWO ECCENTRIC CYLINDERS

To validate the proposed algorithms we consider the problem of the flow between
eccentric cylinders of radiuB; and R, (R; < R;) and with eccentricitye defined as the
distance between the two cylinders’ centers. The case of the inner cylinder being rot:
is considered. For this kind of flow, the clearance defined 8yR, — R; is chosen as the
characteristic length.

For the sake of comparison, the geometry and flow parameters are identical to those
in[17]: Ri=1, R,=2,e=0.5, andRe=37.2, the Reynolds number being based on th
inner cylinder tangential velocity.

The main features of this flow are known to be controlled by the Taylor number defi
as Tn=Re/c/R;. When the inner cylinder is the one rotating, the flow remains tw
dimensional and laminar up fon=416. Note that for the case consideree: R; and
consequentiyf n=Re

As it is well known, the doubly connected feature of the geometry induces a difficL
when using the-y formulation: the value of the stream function can be taken to be arbitre
on one of the two cylinders, e.g/, =0 on the fixed one, but the other value, then equal 1
the flowrate, has to be determined.
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To overcome this difficulty, we proceed as in [17, 18]. The Navier—Stokes equatic
written in the primitive variables and restricted at the boundary of the fixed cylivder0),
simplify to, with p for the pressure

ReVp = AV. (23)
For a divergence free fieldV = —V x V x V, so that Eqg. (23) becomes
ReVp = Vo x &, (24)

whereg, is the unit vector normal to the flow plane.
The projection of this equation on the tangential direction of the bouridan§the outer
cylinder yields

0 d
Re2P _ 9@ (25)
0S an
Integrating this equation on, gives
0
/ % 4s=o0. (26)
r, N

This equation is then used to determine the valuey |r,.
In the framework of the present embedding method, Eg. (26) becomes

0w’ 0w
ds= —/ — = 8. 27
/Fz an b, AN p 27)

In order to calculate, a functiond defined ol is introduced:

1 if MonTI'y
o(M) = {O otherwise

Then the basic equation far reads
w' = S(Ap(d; +ab) — 0o), (28)

whereg; is evaluated assuming|r = 0 and wheres= o2(A, — Ap)*l orS=o1r, forthe
full and asymptotic versions of the method, respectively.
When put in discrete form, Eq. (27) is used to obtajn

_ B=RAS(Ap: — &)

s 29
RAS A0 (29)
whereR is the discrete integration operator B
For the asymptotic version, this equation simplifies to
— Ro%(A.O, —
o = PR (Peth — ) (30)

Ro?Ap0

sinceS~ A, ~o1r.
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FIG. 3. Schematic of the geometry and visualisation of the grid-points of the extension band.

Using the AB/BE2 scheme mentioned in Section 2, simulations have been conducte
both the full and asymptotic versions of the method.

Figure 3 shows a schematic of the geometry, embedded in the squa@%]2.24[,
with the distribution of the grid-points inside the extension strip. From our experience
the method, the thickness of the extension strip must be at least 5 Fourier grid-points
the embedding domaife may fit the union of2 and this strip. The extension paramete
was taken equal tp = 3. Higher values are to be avoided, because independently of

0.3

0.25

02

0.15 |

Flowrate

0.05

0 2 4 6 8 10
time

FIG. 4. Flowrate vs time, computed with the full and asymptotic (dashed line) versions of the method.
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FIG. 5. Stream function and vorticity in the narrow gap, as computed at different times with the full a
asymptotic (symbols) versions of the method.

GSP source terni, numerical difficulties may arise with the extension procedure, whi
involve terms likelk|2P [8]. In any case one has to check that the periodic variable Four
spectra show satisfactory decays. For the Fourier grid we Nged 72 Fourier points in
each direction. Then one gdtk, = 2406 inner grid-points. For the boundary element mes
we used 300 elements, i.&\,= 600 boundary collocation points (400 on the big cylinde
and 200 on the small one), in such a way that the boundary element size approxim
equaled the Fourier mesh step. The calculations were done with the time-stg02,
i.e.,t ~0.5t¢rr (torL, the Courant—Friedrichs—Lewy critical time-step). For this value
7, with Re=37.2, one gets ~43.1.
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FIG. 6. Stream function and vorticity in the wide gap, as computed at different times with the full a
asymptotic (symbols) versions of the method.

Figure 4 shows the flowrate, as computed with both the expressions 29 and 30
such a graphic it is not possible to discern the two corresponding curves, exceptor
essentially because at the first time-step the approximate formula yields an erroneou:
well understood) result: = 0.

In order to compare the full and asymptotic approaches, the profiles of the vorticity
of the stream function, in the narrow and wide gap between the two cylinders, are sh
in the Figs. 5 and 6. These profiles are given at the different time$0.75, 1.2, 1.8, 2.7,
3.75, 6., 25.. At the wall of the inner cylinder{= —1.5 andx = 0.5), both the vorticity
and the stream function are increasing with time. Notice that the vorticity values are c
given wherew has been computed, i.e., at the grid-points of the Fourier mesh, whel
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FIG. 7. Stream function and its periodic part.

the boundary values of the stream function are well knoye: « and+ =0, along the
inner and outer cylinder, respectively. Once again, the agreement appears to be very
since the differences, which are less thanlif relative values, cannot be discerned on th
figures.

To get insight into the method, the final time solutionyofandw is shown in Figs. 7
and 8 along with their periodic parts and. These results have been obtained with th
asymptotic version of the method, but as shown in Fig. 9 the results are quite similar witt
full one. As expectedy andw are nearly the same, except close to the boundary where
homogeneous part of the vorticity is no longer negligible. This behavior is not followed
by the stream function and its periodic part.
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FIG. 8. \orticity and its periodic part.

Finally, let us mention that our results agree well with those presented in [17]. Especi
the two stagnation points on the outer cylinder are located at ab@86 degree and the
separation stream line intersects the horizontal axis at aboit. 16.

6. CONCLUSION

The embedding method proposed in [8, 9] has been applied to the incompressible Na
Stokes equations in the— i formulation. Especially we have focused on the computatic
of the advection term, by using here an approach showing some major advantages:
wall accuracy calculations and low memory storage requirements. Moreover, an asymy
version of the method has been proposed, in such a way that the BEM is only use
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FIG. 9. Stream function and vorticity, computed with the full version of the method.

solving the Laplace equation. By considering the classical problem of the flow between
eccentric cylinders, we have pointed out that the proposed embedding method can pre
satisfactory results and constitutes, especially in its asymptotic version, an efficient we
solve the Navier—Stokes equations in complex geometries, at least at moderate Rey

numbers.
APPENDIX

The homogeneous Poisson and Helmholtz equations,Lsay=0, with L for the
Laplacian or for the elliptic Helmholtz operatoA — o), can be recast into a boundary
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integral equation (BIE) involving no domain integrals,

auy au
cuu u ds= [ u},—d
M M+/r an /F Man S,

whereM is a point iNg2, uy the value ofu at pointM, cy a coefficient equal to 1 iM is
inQ,andsuchas@cy <1if MisonI' (cy =0.5, if " is smooth at M). The so-called
fundamental solutiony, is the Green function such as in an unbounded domain,

L(uy) +dm =0,
wheresdy, is the Dirac distribution at poiri¥i:

—for the 2D Poisson equation;, = ;—ﬂl In(p)
—for the 2D elliptic Helmholtz equation;, = % Ko(x/o p)

with p being the distance to poiM and whereKy is the modified Bessel function of the
second kind and zero order, which presentspfer0, a logarithmic singularity and which
exponentially vanishes at infinity.

The discrete equations are obtained by discretizing the boundary into boundary elen
and by expressing the BIE at their boundary nodes. This can be done in several way:
in any case, withu anddnu for the vectors of the boundary node values of the numeric
approximations ofi andf’—ﬁ, one gets a matricial relation of the form (see, e.qg., [19]),

Hu = Goyu

or, with A= G~1H, 8,u= Au.

In the framework of an “indirect approach,” one has also the single-layer potential 1
mulation, which states that there exigtsuch that, up to a constant in case of the Laplacic
operator,

Um = / uyuds
r
In discrete form, this equation yields for the boundary node values
u==Gu.
Similarly, for the internal points,
U = GQ/J, = GQGilU,

whereug stands for the values af at the collocation points inside and whereGg, is a
matrix which only depends on the geometry. In case of the Laplace equation the adc
constant is calculated from the Gauss condition,

/uds:O.
r
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