THE STABILIZATION PROBLEM ON SURFACES

LUDOVIC RIFFORD

ABSTRACT. We briefly recall some remarkable result on the stabilization
problem of driftless affine control systems on surfaces. Then we remark
that an interesting answer to the stabilization problem for such control
systems would be to construct what we call smooth repulsive stabilizing
feedbacks. Thus we discuss the existence of such feedbacks and present
a sufficient condition in the two dimensional case.

INTRODUCTION

Let M be a smooth manifold of dimension two. We are concerned with
the stabilization problem for control systems of the form

& =wu X(z) + uY (), (1)

where X,Y are smooth vector fields on the surface M and where the con-
trol u = (u1,u2) belongs to By the closed unit ball in R2. Such a control
system is said to be globally asymptotically controllable at the point O € M
(abreviated GAC in the sequel) if the two following properties are satisfied:

1. Attractivity: For each x € M there exists a control u(-) : [0,00) —
B, such that the corresponding trajectory z(-;z,u(-)) of (1) tends
to O as t tends to infinity.

2. Lyapunov stability: For each neighborhood V of O, there exists some
neighborhood U of O such that if z € U then the control u(-) above
can be chosen such that z(¢; z,u(-)) € V,Vt > 0.

Given a GAC control system of the form (1), the purpose of the sta-
bilization problem is to study the possible existence of a feedback k(:) =
(k1(-),k2(+)) : M — By which makes the closed-loop system

& = k() X (2) + ka(2)Y (z), (2)

globally asymptotically stable at the point O (abreviated GAS in the se-
quel); i.e. such that all the trajectories of the closed-loop system converge
asymptotically to the point O, and in addition such that the local property
of Lyapunov stability is satisfied. As it is widely known, control systems
as (1) which are globally asymptotically controllable at one point O € M,
do not admit in general a continuous stabilizing feedback. The Brockett’s
necessary condition makes local obstruction whereas Morse theory brings
a global obstruction (we refer the reader to [7] for a detailed exposition of
these results). In our paper [6], we proved that if the control system (1) is
GAC at O € M, then there exists a feedback k : M — By which satisfies
the following properties:
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A

FicUure 1. Different types of singularities

i) The closed-loop system (2) is GAS (at O) for Carathéodory solu-
tions.

ii) The feedback k is smooth outside a stratified set which is a locally
finite union (in M \ {O}) of points and of open submanifolds of
dimension one; moreover the type of singularities that appear can
be classified as shown in Figure 1.

The last type of singularity shown in Figure 1 is said to be of bifurcation
type. In that case, there exists one trajectory of the closed-loop system
which touches the set of singularities at one time and then go away from
this set. Notice that in the absence of bifurcation points (that is, when the
only types of singularities allowed are the four firsts given in Figure 1), the
Carathéodory solutions of the Cauchy problem

& =k1(z)X(z) + k2(2)Y (z),z(0) = zo

where zg € M do not cross the set of singularities at any positive time, and
then are smooth for ¢ > 0. In other terms as soon as a trajectory of the
closed-loop system (2) leaves the set of singularities, it does not touch it
anymore. In particular, this means that the open set defined as the comple-
ment (in M \ {O}) of the set of singularities, i.e. the set where & is smooth,
is invariant with respect to the system (2). So a question arises naturally:
Can we cancel the singularities of bifurcation? That is, does there exist some
feedback k : M — By which satisfies the properties (i) and (ii) above with-
out any singularity of bifurcation (such a feedback will be called a smooth
repulsive stabilizing feedback (abreviated SRS feedback))? As shows the
next example, the answer is no.

Example 1: Let ¢ : R> — R be a smooth function which equals 1 on the
ball B(0, 1) and 0 outside the open ball B(0,2). Set on M = R? the control
system

T =u1p(z) X (z) + uz(l — ¢())Y (),
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where the vectors fields X and Y are defined by

X(z1,29) = (x%—x%)%—?wlxga%z,
Y($1,$2) = J?laiwl—i-l‘gaiwz.

It is straightforward to show that this system is GAC at the origin. Moreover
it does not admit a Carathéodory stabilizing feedback without singularity
of bifurcation. As a matter of fact by construction of the function ¢, the
control system writes & = u2Y (z) outside the ball B(0,2). Hence such a
feedback should be smooth far from the origin and this would mean that an
open set minus a compact set is contractible!

From now, our objective is to show that the bifurcation points can be
eliminated under an additional assumption on (1). We prove that the
global asymptotic stabilization with SRS feedbacks can be achieved for lo-
cally controllable systems without drift on surfaces, that is which satisfy the
Hormander’s condition

Lie{X,Y Hz) =T, M, (3)
for all z in M.

Theorem 1. If the control system (1) satisfies the Hormander’s condition
(3) then it admits a SRS feedback on M. Moreover the feedback can be taken
to be continuous around the origin.

Example 2: We set on the plane

— 0 lé)
X((L‘l,flfg) = (x1—2)?+x203—m, )
Y(zy,29) = (0—1)3—,“4-(0—1)((!131—2)!132-1‘1)3—,02,
where 0 := (21 — 2)? + 23. We let the reader to verify that this control

system satisfies (3) on the plane. Let us prove that this control system does
not admit a continuous stabilizing feedback. If such a feedback k& = (k1, ko)
exists, then since X = 0 on the circle ¢ = 1, we have necessarly k; > 0 on
this circle. But since the vector field k1 X + ko X is continuous, it should
admit an equilibrium in the disc (z; — 2)? + 22 < 1, which contradicts the
asymptotic stability of the closed-loop system. However Theorem 1 asserts
that this control system admits a SRS feedback.

1. LOCAL ASYMPTOTIC STABILIZATION

This section is principally based on the paper of Kawski [4]. Here we
prove that under the assumption of Theorem 1, there exists a continuous
feedback which stabilizes the control system (1) locally.

Since Hormander’s condition is satisfied at the origin we may without loss
of generality assume that X (0) # 0. Now by a change of local coordinates
(i.e. so that locally X = 3%1), we may transform the control system (1) to
the form

{ 1 = up +uYi(z1, x2),
.’,‘UQ = ’U,QYQ(xl,xQ),



4 LUDOVIC RIFFORD

where the vector field Y writes (in the new coordinates) ¥ = Yla%l +Y23%2.

Obviously, modifying the feedback if necessary (that is setting k] = k —
koY1, kly = ko), it is sufficient to stabilize locally the control system

{ jf‘l uy,

fI.IQ = UQYQ(xl,ZEQ).

On the other hand, in a suitable small neighborhood of the origin, both sets
Lie{X, (0,Y2)" }(z1,72) and Lie{X,Y }(x1,z2) coincide. This means that
the new control system above satisfies the Hormander’s condition at the
origin; in particular, there exists some integer » > 0 such that Eg;? # 0.

Therefore setting kz(z1,72) := 1 or z2, we deduce that the single-input
control system (with control u,)

jjl = ui,
Ty = ko(z1,12)Yo(71,72).
is small time locally controllable at the origin. Approximating the control

system by an analytic one (see [2, 3]), and applying the Kawski’s result (see
[4]), we get the

Proposition 1. If the control system (1) satisfies the Hormander’s condi-
tion at the origin, then it admits locally a continuous stabilizing feedback.

Remark 1. Actually, it can be proven that if the control system (1) is
analytic and GAC, then it can be stabilized locally by a SRS feedback. This

result does not hold globally; see for instance Example 1.

2. CANCELLATION OF BIFURCATION POINTS

Here we sketch the proof of Theorem 1. For sake of simplicity, we assume
that everything is analytic. From Proposition 1 and the main result of our
paper [6], there exists a feedback k : M — By which is continuous in some
neighborhood of the origin and wich satisfies properties (i) and (ii) that we
described in the introduction. Let us show how the singularities of bifurca-
tion can be eliminated.

Let us denote by S C M the set of singularities of the feedback k, which
is closed and stratified in M \ {O}. By (ii), we know that this set can be
stratified into a locally finite union of points and of open submanifolds of
dimension one. Let S be an open submanifold of dimension one in M asso-
ciated with some zp € M such that the set S U {zo} forms a singularity of
bifurcation as shown in figure 1 and such that the point zy is the point of
bifurcation. This means that there exists some Carathéodory trajectory z(-)
of the closed-loop system (2) and some constant § > 0 such that z(0) = zg
and z(t) ¢ S U {zo} for any t € (—6,0). Let T" < 0 be the infimum of
the set of ¢ < 0 such that z(s) ¢ S for all s € (¢,0); notice that without
loss of generality (multiplying the feedback k& by some positive function if
necessary), we can assume that the trajectory z(-) is defined on (—oo, +00).
Two cases appear.

First case: T # —oo.
Obviously, z(T') € S. Here, three cases appear. In each case, we show in
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Figures 2-4, how by pasting new strata to the set S amd modifying the
feedback in some regions, we can transform the feedback k in such a way
that the point z( is not a bifurcation point for the new closed-loop system.

Second case: T' = —o0
Note that this situation may appear only if the manifold M is noncompact.
Define for each z € M, the set of velocities given by (1) as,

F(z) := {u1 X (x) + u2Y (z) : (u1,u2) € By}

For any x € M this set is a convex subset of T, M of dimension at least
one. If the set F'(z(t)) has dimension two for some ¢t < 0 (for instance, it
is the case for ¢ = 0), then it is easy to modify locally the feedback in a
neighborhood of the trajectory z(-) in such way that the new feedback is
discontinuous on the trajectory as in the second type of singularity shown in
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FIGURE 5

Figure 1. However, this cannot be done if F(z(t)) has dimension one. But
since we assumed everything to be analytic and since the control system
(1) satisfies the Hérmander’s condition, the set of z € M where F(z) has
dimension one is analytic on the compact subsets of M. In addition, the set
of t € [—00,0] where the convex set F(z(t)) has dimension one is discrete.
Hence If z := z(¢) is such a point, this means that the trajectory crosses at
x the set of points in M where F(z) has dimension one. But this set can
be locally stratified by submanifolds of dimension zero and one. Assume
for example that this set consists in a single submanifold A of dimension
one in a neighborhood of z. In that case, as shown in Figure 5, we can
modify the initial feedback k into a new feedback associated to a new set of
singularities.

3. CONCLUDING REMARKS

We do not know if Theorem 1 holds in dimension greater than two. How-
ever we are able to prove the following :

Theorem 2. Assume that n = 3. If the control system (1) satisfies the
Hormander’s condition at the origin,

Lie {fla"' 7fm}(0) = RS?
then there exists a local SRS feedback.
Furthermore we can also prove the existence of SRS feedback in a very

special case of distributions; the result can be stated as follows (We refer the
reader to [1] and [9] for its proof and for the definition of fat distribution).

Theorem 3. If control system (1) defines a fat distribution then it admits
a SRS feedback.

This theorem applies for instance in the case of the nonholonomic inte-
grator.
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