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Abstract

Given a globally asymptotically controllable control system, we construct a control-
Lyapunov function which is stratified semiconcave; that is, roughly speaking whose
singular set has a Whitney stratification. Then we deduce the existence of smooth
feedbacks which make the closed-loop system almost globally asymptotically stable.
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Introduction

This paper is concerned with the stabilization problem for control systems of
the form

&= f(z,0) =) aifi(x), (1)

i=1
where fi,---, fm are locally Lipschitz vector fields on RY and where the con-
trol & = (a,-- -, o) belongs to By, the closed unit ball in R™. We focus on

control systems which are globally asymptotically controllable.

Definition 1 The system (1) is said to be globally asymptotically controllable
(abreviated GAC) if the two following conditions are satisfied:
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1. (Attractivity) For each v € RN there exists a control a(-) : Rsg — By, such
that the corresponding trajectory x(-; a, x) tends to 0.

2. (Lyapunov stability) For each € > 0, there is a 6 > 0 such that for each
z € RY with ||z|| < § there exists a control a(-) : Rsg — By, such that
the corresponding trajectory z(-; a,z) converges to the origin and satisfies
|z(t; o, 2)|| < € for allt > 0.

Given a GAC control system of the form (1), the purpose of the stabilization
problem is to study the possible existence of a feedback a(-) : RY — B,, which
makes the closed-loop system

m

= f(z,0(z)) =3 ai(2) fi(z), (2)

i=1

globally asymptotically stable. In the last twenty years this subject has been
the focus of considerable research!. It is well-known that continuous sta-
bilizing feedbacks do not exist in general; there are globally asymptotically
controllable control systems which admit no continuous stabilizing feedbacks.
The first example of such a system was given in 1979 by Sussmann in [38].
Then, in 1983 Brockett [9] produced a topological necessary condition which
makes obstruction to the existence of such regular feedbacks; this condition
provided a number of counterexamples such as the famous nonholonomic in-
tegrator. Moreover in the case of affine control systems, Artstein related the
existence of continuous stabilizing feedbacks to the existence of a smooth
control-Lyapunov function. This latter result showed that a GAC affine con-
trol system which does not admit a continuous stabilizing feedback cannot
have a smooth control-Lyapunov function. Therefore all these results plead for
the design of discontinuous stabilizing feedbacks and also for a new concept
of nonsmooth control-Lyapunov function. Many authors such as, Sussmann
[38], Clarke, Ledyaev, Sontag and Subbottin [14], Ancona and Bressan [4],
or Rifford [26,28] proved the existence of discontinuous stabilizing feedback
laws under general assumptions. Among them, only [14,26,28] made use of
a nonsmooth control-Lyapunov function. In the present paper, our aim is to
develop further the work which was initiated in these papers and to establish
a strong link between the presence of a nonsmooth control-Lyapunov function
and the construction of discontinuous stabilizing feedbacks. Moreover we also
present a new kind of smooth stabilizing feedback which is of interest in the
stabilization problem.

Definition 2 2 A control-Lyapunov function (abreviated CLF) for the system

! We recommend to the reader the historical accounts of Coron [16] and Sontag
[36].
2 This definition takes into account the exponential decrease condition that we



(1) is a continuous function V : RN — R which is positive definite, proper
and such that it is a viscosity supersolution of the following Hamilton-Jacobi
equation:

max {—(f(z, @), DV (2))} = V(z) = 0. (3)

aEBn,

In 1983, Sontag [35] introduced the framework of nonsmooth CLF and proved
the equivalence between global asymptotic controllability and the existence
of a continuous control-Lyapunov function. Later, revealing the importance of
semiconcavity in the design of discontinuous stabilizing feedbacks (in the spirit
of [14]), we extended Sontag’s Theorem and proved that every GAC control
system admits a continuous CLF which is semiconcave outside the origin (see
[27]). We utilized the semiconcavity property in order to construct feedbacks
which make the closed-loop system globally asymptotically stable in the sense
of Carathéodory. Our construction provided a simple way to design stabiliz-
ing feedback laws which were continuous on an open dense subset of the state
space, but it does not fully reveal the dynamics of the closed-loop system
around the singularities. In [29], we showed that the exact comprehension of
the singular set of a semiconcave CLF allows us to construct discontinuous sta-
bilizing feedbacks for which we can classify the singular points. Unfortunately,
we were only able to produce such a result in dimension two; our construction
was related to the natural stratification of the singular set X(V) C R? into a
disjoint union of submanifolds of dimension 0 and 1. Such a stratification of
¥ (V) is not imaginable in dimension greater than two. As a matter of fact,
the singular set of a semiconcave function coinciding locally with the singular
set of a concave function, we may let the reader imagine concave functions
with very bad singular sets. This thought induces us to introduce a better
type of semiconcavity. Our idea is to further regularize a semiconcave control-
Lyapunov function into what we call a stratified semiconcave CLF which is,
roughly speaking, a semiconcave function whose the singular set is a Whitney
stratification (as introduced in [19]). We prove the following:

Theorem 3 If the system (1) is GAC then there exists a control-Lyapunov
function which is stratified semiconcave on RY \ {0}.

introduced in the framework of nonsmooth control-Lyapunov functions. Moreover
we recall that the property (3) is equivalent to the following in terms of proximal
subgradients

Vz € Q,V( € 9pV (z), neléiﬂf(wa a),()} < =V (a).



As we shall see in Section 2.1, the knowledge of this new kind of control-
Lyapunov functions facilitates the construction of discontinuous stabilizing
feedbacks. As in dimension two, it allows us to detail the nature of the singu-
larities and then to better understand the behavior of the closed-loop system.
As a consequence, it enables us to construct a new kind of smooth stabilizing
feedback.

Definition 4 The closed-loop system (2) is said to be almost globally asymp-
totically stable at the origin (abreviated AGAS) if the two following properties
are satisfied:

(i) (Attractivity) For almost every x € RN | the solution of (2) starting at z
converges to the origin.

(i1) (Lyapunov stability) For each € > 0, there exists § > 0 such that for each
x € RY with ||z|| < & the solution of (2) starting at z satisfies ||z(t)|| < € for
all t > 0.

This kind of asymptotic stability was recently studied by Rantzer who pro-
duced a converse Lyapunov-like theorem. Indeed he related the almost asymp-
totic stability to the existence of a density function which plays the role of a
Lyapunov function for the closed-loop system. In addition, he proved in a first
paper [23] some interesting consequences of the existence of such a density
function. In the present paper, our approach is to consider a stratified semi-
concave control-Lyapunov function in order to construct an almost globally
asymptotically stabilizing feedback. Our CLF does not correspond in any case
to the Rantzer’s density function but it allows us to contruct explicitly an
AGAS feedback. Our second main result is the following:

Theorem 5 If the system (1) is GAC then there exists a feedback a(-) : RN —
R™ (with o(0) = 0) which is continuous on RY | of class C' outside the origin
and such that the closed-loop system (2) is AGAS.

At the end of the paper, we show that these results can be extended in the
framework of manifolds, we discuss what happens in the case of control sys-
tems with drift, and finally, we compare almost global asymptotic stability
with other kinds of asymptotic stability.

Notations:

Throughout this paper, R denotes the set of real numbers, | - || the Euclidean
norm of RV, By the open ball {z : ||z|| < 1} in R, By the closure of By
and By(x,7) =  +7rBy (resp. By(z,7) = 4+ rBy) the ball (resp. the closed
ball) centered at z and with radius 7. In addition S¥~! denotes the N — 1
dimensional sphere in RY and Sy(z,r) denotes the sphere centered at  with
radius 7 in RY. If A is a subset of R then int(A) denotes the interior of A and



coA its convex hull. For any positive integer n, L™ denotes Lebesgue measure of
dimension n and if IC is a finite set then |K| denotes the cardinality of the set K.
Furthermore, an admissible control for the system (1) is a Lebesgue-integrable
function «(-) : [0,T] — B,, on some interval [0,T]. If a(-) : [0,T] — B,, is
an admissible control, a trajectory for «(-) is an absolutely continuous curve
z(-) : [0,T7] — RN such that

m

2(t) = D aix(t) fil=(t))

=1

for almost all ¢ € [0, T7]. If z is some given state in RY and if (-) is an ad-
missible control, we denote by x(-; g, ) the trajectory solution of the system
above and such that z(0;zg,a) = xy. We denote by A the set of open-loop
from [0, 00) controls into the control set B,,. Moreover since we will take a
“subdifferential” (or “superdifferential”) point of view in this paper, we refer
the reader to the book of Clarke et al. [15] for the definitions of proximal sub-
and superdifferentials (0pV and 87V, of limiting subgradients 9,V and of
generalized gradients 0V of some function V : RY — R.

1 Further regularization of a semiconcave CLF

Throughout this section €2 is an open subset of RV .

1.1 Preliminary results on semiconcave functions

In this section we recall the definition and the basic properties of semiconcave
functions which follow mainly from the decomposition of such functions into
the sum of a concave function and a smooth?® function. We refer the reader
to the forthcoming book of Cannarsa and Sinestrari [11] for a detailed study
of semiconcavity.

Definition 6 A function u : Q@ — R is said to be semiconcave on ) if it is
continuous on ) and if for any xo € (1 there are constants p,C' > 0 such that

1

5 (@) + u(y) —u (

T +y

)scm—ym (4)

for all z,y € xo + pBy.

3 In this paper, “smooth” means “of class C®”.



Remark that if the constant C' vanishes in (4), we recognize the usual defi-
nition of concave functions. As we shall see in the sequel, the properties of
semiconcave functions are intimately related to those of concave functions. In
Definition 6 since the constants p and C' depend upon the point xy € €2, some
authors (e.g. Cannarsa, Sinestrari) refer sometimes to local semiconcavity. We
prefer to adopt Definition 6 and to speak about global C'-semiconcavity when-
ever the constant C' of (4) does not depend upon z,. In any case, semiconcavity
implies Lipschitz continuity.

Proposition 7 FEvery semiconcave function u : £ — R is locally Lipschitz on
Q.

The local Lipschitz property can also be seen as a consequence of the following
fundamental property of semiconcave functions. Any semiconcave function can
be seen locally as the sum of a concave and a smooth function. Refering to
global semiconcavity, we can state the result as follows:

Proposition 8 If u is globally C-semiconcave on Q and if in addition 2 s
convez, then the function

x> u(z) — 4C||z||* is concave.

Hence the function u can be written as the sum of a concave function and a
smooth (quadratic) function:

u(@) = [u(z) — 4C|z]|"] + 4C|=|”.

PROOF. The function z — g(z) := u(z) — 4C||z||? is clearly continuous.
Moreover for any z,y € {2, we have

3 0@) +9) =g (5 2)
= 5 (o) + u(w) — u (TE) = 200l + Iyl + Clle + o

< Cllz = ylI* + Cllz + ylI* — 2C(ll=]1* + llylI°] by (4)
<0,

by the parallelogram identity; the result follows.

As in the case of Lipschitz functions, a function which is semiconcave on a
compact set is in fact globally semiconcave on this set. This property is a
(not so easy) consequence of the definition of semiconcavity. It permits us to
extend the Proposition 8 to the case of nonconvex open sets.



Proposition 9 If u is semiconcave on §2 then for any compact convex set
K C Q, there exists a global constant Cx > 0 such that u is globally Ck-
semiconcave on K. Hence the function u can be written on K as the sum of
a concave and a quadratic function:

Vo € K, wu(z)=[u(z) — 4Ck||z|]*] + 4Cx||z||*. (5)

This result does hold only on compact subsets of {2 which are convex. (Convex
or concave properties of functions do have no meaning on sets which are not
convex.) However we will see later (see Theorem 12) that the decomposition
as a sum of a concave function and a smooth function remains valid on convex
open sets. We shall now present some results concerning the superdifferentials
of semiconcave functions. By classical properties of the superdifferentials of
concave functions, the decomposition of semiconcave functions that we gave
in Proposition 8 implies that the generalized gradient of a semiconcave func-
tion equals its proximal and viscosity superdifferentials (we refer the reader
to the now classical references [15,8] for the definition of both these superdif-
ferentials). Let us state the result:

Proposition 10 If u : Q — R is semiconcave then for any x € Q,0u(z) =
oFu(z), i.e. for any ¢ € Ou(x),

u(y) — u(z) — 4C|ly — z||* < ((,y —2), Vy € =+ pBy, (6)
where p and C' are the constants given in Definition 6.

On the other hand, still from the decomposition of Proposition 8, since the
generalized gradient of a convex function is a monotone operator, so is the
operator z — —du(z) + 8Cxz. We can state the result as follows:

Proposition 11 If u: Q2 — R is semiconcave then for any x,y € Q, for any
(o € Ou(x), for any ¢y € Ou(y),

(~C + Gy — 2) > —8C|ly — |*. (7)
1.2 Semiconcave functions on convex sets

The purpose of this section is to present some initial results on the regulariza-
tion of semiconcave functions. We prove that every semiconcave function on
an open convex set can be approximated by the sum of a piecewise affine con-
cave function and a smooth function. The technique of proof that we develop



here will be very helpful when we shall regularize semiconcave functions on
nonconvex domains. Before giving our result of approximation, we need the
following fundamental theorem:

Theorem 12 If the open set §2 is convex then for any semiconcave function
u on §) there exists two functions g, ¥ : Q — R such that

u=g+Y,

where g is concave and ¥V is smooth.

PROOF. Let us first assume that Q = RY. For every n > 2, the function u is
semiconcave on the ball nBy := By(0,n), hence there exists a constant C,,_;
such that the function u(-) — C,_1||z||? is concave on nBy (by Proposition 9).
Without loss of generality the sequence (C,),en can be supposed to be strictly
increasing. Set for any = € €,

hy(z) := Cy|z|?,

n—1
and hn(l') = Cn||l'||2 + Z 22[0«5 - Ci—H] if n 2 2.
i=1
By construction, we remark that for each n > 1, the function hn_is convex and
that for any n > 1, the function u — h,, is concave on (n + 1)By. In addition
we have that for any n > 1,

hn+1 < hn = X € nFN. (8)
We define the function h : RY — R by

h(z) = mglg]({hn(x)} for z € RY.

By (8) the function A is well defined (on €2) and moreover it is convex as a
maximum of convex functions. On the other hand, we can remark that for any
x € (),

) — hia) =ue) ~ max{hn()}
~ u(a) + min{—ha()}
=min{u(x) — h,(z)}.

neN

By (8) we deduce that on every n > 1, the function u — h coincide with
the function min{u — hy,--- ,u — h,} on nBy. Let z € Q, denote by ng the



minimum over all the integers n > 1 such that z € nBy. By (8) we get that
for any y € By(z,1),

u(y) — h(y) = min{u(y) — hng—1(¥), w(Yy) = hne(y), u(y) — hng41(y) }-

The three functions which appear in the minimum above are concave on
By (z,1) hence u—h is concave on this ball. Consequently u—#h is concave on all
the balls By(z, 1) for z € Q, hence it is concave on 2. Unfortunately, the con-
structed function A is not smooth. But if we consider a function f : Rso — R,
then we let the reader to verify that the function u — f(]| - ||*) is concave if
and only if for any z,y € €,

d

that is if and only if the function z — f(||z||?) — 4C||z||? is convex. We
conclude that if f is a smooth function on € such that for any n > 1, the
function f(||-]|?) —4Cy]|-||? is convex on nBy then the function u — f(]|-]|?) is
globally concave on (2. The construction of the function f is left to the reader.
Now return to the general case of an open set Q in RY. By classical results
on convex sets we know that any open convex set of RY is diffeomorphic to
RY, hence there exists a smooth diffeomorphism ¢ : RN — Q. Moerover this
diffeomorphism can be taken to preserve convexity; if g : RN — Q is a convex
function then the function go ¢! : Q@ — R is convex too. So we look at the
function v o ¢ on RY. By the result above this function can be written as the
sum of a concave and a smooth function: v o ¢ = g + V. Thus the function
go ¢! is concave, the function ¥ o ¢~! is smooth, and in addition

r+y

2 H) - %(ﬂHwIIZ) +f(||y||2)) < ~Clly - |,

u=god '+ Voo,
which gives the result.
Corollary 13 If the open set € is convexr and if u : 0 — R is semiconcave
then for any continuous function € : Q — (0,00) such that for every x €

Q, By(z,€e(x)) C S, there exists a piecewise affine concave function g. : Q — R
and a smooth function V. : Q2 — R such that for every x € QQ,

(i) [u(z) = ge(x) — Ve(z)| < €(2),

(it) Opgc(z) + VU (z) C Opu(z + €(x)By) + €(x)By.

PROOF. Without loss of generality we can assume that €(-) < 1 and that
for every z € Q, By(z,€e(x)) C Q. Moreover by continuity of the function e
there exists some new continuous function € : Q — (0, 1) such that



Ve € Q, Yy € By(z,e(z)),é(z) < €(y). 9)

By the previous theorem, there exists two functions g, ¥ : 2 — R with ¢
concave and ¥ smooth such that u = g + ¥ on 2. Define two functions
U, 7: Q= Rby U (z) := ¥(x)+ ||z]|* and §(z) := g(z) — ||=||*. Of course ¥,
is smooth, g is concave and we have,

u=j+ V.. (10)

By concavity, the function g is locally Lipschitz on 2, hence for every z €
Q, there exists L, > 1 such that g is Lj,-Lipschitz on By(z,e€(z)) C Q.
Moreover since the function W, is smooth, there exists as well for each x € Q)
some constant Ly_, > 1 such that VU,(-) is Ly, ,-Lipschitz on By(z,e(x)) C
(2. Denote for each z € 2 by L, the maximum of both constants L; ;, Ly, 4.
(Notice that the function x — L, can be constructed in order to be locally
finite on Q.)

By a classical density theorem (see for instance [15, Theorem 3.1 p. 39]), the
proximal subdifferentials of § are nonempty on a dense subset of 2. Therefore
if we denote* by D the set of x € Q such that dpg(z) # 0, we have

Qc |J By (a: 6;2;) .

z€D
(This inclusion holds because of the local finiteness of the function x +— L,.)

The local compactness of {2 implies that there exists a locally finite family
(Zn)nen in D such that

qc U By (3: ;L)) . (1)

neN

Fix n € N and define the function A, : 2 — R by
ha(z) := §(xn) + (V§(n), T — Tn).
Lemma 14 We have the two following inequalities:

(i) Yz € Q, hy(x) > §(z),

(i}) Yz € By (0, S50 ) (o) < () + G35

4 Notice that since the function g is concave, at each point x such that dpg(z) # 0
it is differentiable (the converse being false).

10



PROOF. Since z,, € D, we have that {V§(z,)} = 0¥ §(x,). Thus Proposition
10 implies the first inequality. Let us prove the second inequality. For any

Z 2
x € By (:rn, %%L , we have
Tn

hn(z) — §(z) =§(20) — §(2) + (VG (20), ® — Tn)
={((,xn — ) + (V§(x), 2 — Tp),

with ¢ € co(0§([z, z,])) (by Lebourg’s Theorem, see for instance [12, Theorem
2.3.7 p. 41] or [15, Theorem 2.4 p. 75]). We conclude easily by Cauchy-Schwarz
inequality.

We set on 2 the following function:
Ve € Q, g(z):= mgg;{h“:v)}

By Lemma 14 (i)-(ii), the function g, is well-defined and then concave. Let us
first prove assertion (i) in the statement of Corollary 13.

By (11) for every z € €, there exists n € N such that z € By (mn, %ﬁ—gﬁ)

Hence Lemma 14 (ii) implies that

< g(z) +e(z) (by (9)) (12)

In consequence, Lemma 14 (i) combined with (10) gives (i). It remains to
prove (ii). We need the following lemma:

Lemma 15 For every x € €, there exists ng € N such that ||z — x| < ;(Lﬂo—)
Tng
and g.(x) = hpy(x).

PROOF. By concavity of g on (2, for every n € N we have

Vz €Q, g(z) < g(xs) +(Vg(z0), T — 0).

We deduce that for every n € N and for any = € €,

9(z) = hn(2) = g(2) — |121I* = §(2n) — (VG(20), 7 — n)
=g(x) — llzl* = g(@n) + ll2nll* = (Vg(za) — 220, 7 — 20)
< —[lz* + llenll® + 220, — 24)
< —llz — zall*.

11



Hence if = € Q satisfies ||z — z,||2 = 62 > Z22 then §(z) < hn(z) — 62, which
by (12) implies

ge(x) < hp(x) — 6% +

This proves that for each x in © the minimum in the definition of g.(z) is not
attained for h;(z) with ||z — ;|| > E(T%) Therefore since the family (z,,)nen is

locally finite and since for any z € Q the compact set By(z,€(x)) is included
in €2, this means that for any x € () the function g. can be written as a
minimum of a finite number of affine functions h,, in By(z, €(x)). This proves
the lemma.

Fix 7 € Q and ¢ € 0pg.(T). By elementary properties of proximal subdifferen-
tials (recall that we refer to [15] for a complete presentation of proximal anal-
ysis) if the minimum in the definition of g.(z) is attained and if dpg.(z) # 0
then g, is differentiable at z and

Opge(T) = {Vge(2)} = {Vhno ()} = {VG(n,)} = Opg(n,), (13)

where ng is such that g.(Z) = hy,(Z). Hence since ||z,, — 7| < 2;(5)
zno

we can

write

¢+ VU(Z) € Opg(wn,) + VT(2)
C Opg(Tn,) + VUe(zn,) + || — xno”LwnoB—N
C Opu(z + €(z)By) + €(x)By  (by (9)).

The proof of Corollary 13 is complete.

Remark that in the proof of Corollary 13, we have been able to control the
distance ||z — z,,|| in Lemma 15 because we worked with § instead of g. Our
argument was based on the fact that g is the sum of a concave function (g)
and of a strictly concave function (—|| - ||?). Since we have still the proof of
Corollary 13 in mind, we present and prove a related result which will be very
useful in the sequel. (In the statement of Proposition 16, By, denotes the open
ball of RY relative to the infinity norm || - ||s.)

Proposition 16 Let Q be an open set in RY and u : QQ — R be a semiconcave
function. Let K be a compact cube in Q and € be a constant in (0,1) such
that K + €By C Q. If C 1s some positive constant such that the function
g:=u—C| -|]? is concave on K + €By, then there exists §. : Q@ — R such
that

12



(i) for every x € K, g.(x) + (C + 1)||z||* < u(z),

(ii) for every x € K + €Boo,u(z) — € < gc(z) + (C + 1)||z]]? < u(zx) +¢,
(ii1) for every x € K + €Boo, Opge(z) + 2(C + 1)z C dpu(z + €By) + €B,
(iv) the function §. is a piecewise affine concave function on RY

(v)Vz € Q,z ¢ K + €Byy = Gc(z) + (C + 1)||z||* > u(z).

PROOF. We let the reader to show that there exists a smooth function
k : RY — R which satisfies the following properties:

(pl) for every z € K, k(z) =0,

(p2) for every z ¢ K + €Bw, k(z) >
(p3) for every z € RV, k(z) € [0, £],
(p4)

(

e
4 b

p4) for every x € K + €By, ||VE(z)|| <
p5) for every x € RY Hess k < Iy,
where Hess, k denotes the Hessian matrix of the function k& at x and Iy de-
notes the identity matrix in My (R).

£
29

Define the function g : 2 — R by

Ve €0, §(a)=g(z) - ol + k(z)
= () = Slel> + k(&) ) = llal” (1)

Since the Hessian matrix of the function 1| - [|? equals Iy, the property (p5)
implies that the function z — 3||z||> — k(z) is convex on R", and hence that
the function z — g(z) — ||z + k(z) is concave on K + €B. In consequence
as shown by (14), the function g can be written as the sum of a concave
function and of a strictly concave function (the function x — —||z||?). Thus
by the remark that we made just after the proof of Corollary 13, one can design
a finite family (z;);es of points in K + €B,, such that if we set for every i € T
the function
hi(z) = g(z;) +(V§(zi), z — z3),

and if we define the function § by g(x) := min;cs h;(z), then the following
lemma holds:

Lemma 17 For every x € K 4 €By,, the following properties are satisfied:

2

(1) §(x) < g(z) < g(z) + %,

(ii) there ezists ig € I such that ||x — || < e ond §g(x) = hy,(z).

13



Set for every x € ()
2
_ . €
9e(z) = §(x) = —,

and let us prove that the five assertions of Proposition 16 are satisfied.

The function g.(x) being a minimum of a finite number of affine functions, it
is a piecewise affine concave function on RY. Which gives (iv). On ther other
hand, assertions (i),(ii) and (v) are straightforward consequences of Lemma
17 and (p1)-(p3). It remains to prove assertion (iii).

Fix z € Q, and { € 0pgc(7). As in the proof of Corollary 13, we know by
construction of § and by Lemma 17 (ii) that there exists 79 € I such that

7 =2l < sy (15)
and
Opie(ziy) = {Vi(xio)} = Opi(as). (16)

Hence we can write

C+2(C + 1)z € 0§(z;,) + 2(C + 1)z (by (16))
C Opg(ziy) + 2(C + 1)zi + 2(C + 1)||1Z — po || By
C Opg(ziy) + Vk(ziy) + 2Cxi + 2(C + 1)||Z — 24, || By
C Opu(z + eBy) +€By  (by (15) and (p4))
C Opu(x 4 €Bso) + €Boo,

because By C By. Therefore the proof of Proposition 16 is complete.
1.8 Singular set of semiconcave functions

Let © be an open set of RY and let u : 2 — R be a semiconcave function.
By Rademacher’s theorem we know that u is differentiable almost everywhere
in Q. Let us denote by X(u) the singular set of u, i.e. the set of points of 2
where u is not differentiable. We can also see ¥(u) as the set of z € Q such
that dim(du(x)) > 1; this point of view leads to a natural partition of the
singular set. As a matter of fact, following moreorless the seminal work of
Alberti, Ambrosio and Cannarsa [2], ¥(u) can be written as the disjoint union
of N sets ¥*(u) (for k € {1,---, N}) defined by

YF(u) == {z € Q : dim(du(z)) = k}.
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Alberti et al. proved that for any k € {1,---, N}, the set ©*(u) is countably
H" F-rectifiable, i.e. it is contained (up to a H" *-negligible set) in a countable
union of C! hypersurfaces of dimension N — k. But each set 3*(u) is certainly
not an exact hypersurface (or submanifold) of Q2. As we noticed in [29], these
sets cannot be realized to be smooth submanifolds of €. We saw that even
in dimension two, it is difficult to decompose the singular set ¥ (u) into a
union of Lipschitz and C*'-submanifolds. And of course, this decomposition
does not hold in greater dimension for general semiconcave functions. Our
strategy is to approximate a given semiconcave function u by a semiconcave
function with a singular set regular enough. In addition if the initial function u
is a supersolution of some Hamilton-Jacobi equation then we would like that
the constructed approximation remains almost a supersolution of the same
Hamilton-Jacobi equation. After giving the definition of stratified semiconcave
functions, we present our approximation results.

Let Z be a closed subset of €2, and suppose that

z= U US¢s

1€{0,,N} i€S)
This decomposition is a Whitney stratification of Z provided:

(1) The family {S!},; is a locally finite collection of disjoint locally closed
subsets called pieces or strata.
(2) Each stratum S! is a locally closed connected smooth submanifold of €
of dimension /. o
(3) SiNnS¥#0= 1<k and S} C Sk.
(4) Whenever S} and S} are two strata with [ < k then the pair satisfies
Whitney’s conditions A and B:
Suppose (z,), € S} is a sequence of points converging to some y € S},
suppose (yn)n € S! also converge to y, and suppose that the secant lines
L, = (z,y,) converge to some limiting line [, and the tangent spaces
s Sf converge to some limiting vector subspace 7. Then
(A) T,S! c .
(B) lCT.

We can now present the concept of stratified semiconcave function.

Definition 18 Let u : Q2 — R be a semiconcave function; u will be said to be
stratified semiconcave (on Q) if the following conditions are satisfied:

(i) the set 3(u) is a Whitney stratification such that the strata of dimension
N — k are the connected components of XF(u);

(ii) for every stratum S of ¥(u), the set S is a smooth manifold with boundary;

15



(iii) for every stratum S of ¥:(u), the function u is smooth on S;

(iv) for every x € ¥*(u), the set Ou(x) is a convex compact set of dimension
k with exactly k + 1 extreme points (1(x), -+ ,Cey1(x)® . In addition, for any
stratum S of ¥ (u) the maps ¢1(+), -+, (y1(+) are smooth on S and moreover
they can be smoothly extended to S in such a way that co{(i(x), -, Cer1(z)}
remains a conver compact set of dimension k with exactly k+1 extreme points
for any x € S.

Let us make one remark of importance concerning the shape of the singular
set, of a stratified semiconcave function. Begin by the two dimensional case.
Let u : Q — R be a stratified semiconcave function where €2 is an open subset
of R%. We have

Y(u) = 2 (u) U X2 (u).

Since u is stratified semiconcave on €, the set X' (u) is a locally finite union
of disjoint smooth submanifolds of dimension 1 and the set ¥?(u) is a discrete
set of points in 2. Let us describe what happens in a small ball around some
point z € ¥2(u). There are three vector (i, (s, (3 € R? such that

OU(.T) = CO{CI? CZa C3}a

the full triangle with (i, (, and (3 as extreme points. By properties of prop-
agation of singularities (see [1, Lemma 4.5 p.728]), each of the edges of this
triangle (i.e. the segments [(a, (3], [C1, (3], [C1, (2]) is limit of the generalized
gradients of points of a strata of dimension one. In other terms, this means
that there exist three smooth submanifolds of dimension one S, S; and S3 in
Y1 (u) which satisfy the following properties:

For each 7 = 1,2,3, the point x belongs to the closure of S;. Moreover if
(Zn)n is some sequence of points in S; which converges to x, then the sequence
of segments (Ou(z,)), converges to the segments with endpoints ((;); where

Jj€41,2,3}\ {i}.

On Figure 1, we show three points z1, x5, x3 with generalized gradients du(z1),
Ou(xs), du(x3) which are very close to the edges of the triangle. On each
stratum S; (i = 1,2, 3) the generalized gradient of y € S; tends to an edge of
the triangle Ou(x) as y tends to z. This means that in a small ball centered at
x, the complement of ¥(u) can be divided into three regions Ri, R, and R3
where u is smooth with a gradient close to ¢; in Ry, to {5 in Rs and to (3 in
Rg.

Consider now the general N-dimensional case. Let u : 2 — R be a stratified

5 In particular, this means that the limiting subgradient dru(z) equals the set

{Gi(@), -+, Cerr ()}

16
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Fig. 1. Propagation of singularities in dimension two

semiconcave function where €2 is an open subset of R". In this case, we have
Y(u) = S (u) UL (u) U --- U SN (u).

So, let S be a stratum of ¥(u) of dimension N — k with £ > 2 and let z € S.
The convex set du(z) is indeed a simplex of dimension £ > 2 in RY. Hence if
for every 1 € {0,--- ,k} we denote by F; the number of dimensional faces® of

dimension [, we have:
1
r=("T1).
[+1

This means for example that du(z) has k + 1 faces of dimension & — 1 and
k+1 faces of dimension zero, that is £+ 1 extreme points. Again by properties
of propagation of singularities (see [1, Theorem 5.2 p.732]), since the function
u is stratified semiconcave it turns out that for every [ € {1,---k — 1} there
is a one-to-one correspondence between the set of faces of dimension [ and a
certain subset of strata of X!(u). Let [ € {1,---k — 1}, denote by C%,---,C},
the F) faces of Ou(x) of dimension /; this means that there are exactly F; strata
Sy, -+, Sk in X! (u) such that for every ¢ = 1,--- , F} the following property
is satisfied:

The point x belongs to the closure of the stratum S;. Moreover if (z,), is a
sequence of points in S; which converges to x then the sequence of convex sets
(Ou(zn))n converges to the face C.

The first example of stratified semiconcave function is the one of piecewise

6 A face of a convex set C is a convex subset C' such that every (closed) line
segment in C' with an interior point in C’ has both endpoints in C’. We refer the
reader to the textbook [34, Part IV, Section 18] for additional informations about
faces of convex sets.
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affine semiconcave functions. In this particular case, each set ¥*(u) is a disjoint
union of open polyhedra of dimension N — k. Let us state the properties of
such functions in the following proposition:

Proposition 19 Let be given (h;)icr a finite family of affine functions in RV .
Ifu:RY = R is defined by

u := min{h;
z’el{ i
then it is a stratified semiconcave function and moreover it satisfies:

(i) For every k € {1,--- N}, the set ¥¥(u) is a finite disjoint union of open
polyhedra of dimension N — k.

(ii) For every k € {1,--- , N}, the multivalued map x — Ou(x) = 0 u(x) is
constant on each connected component of ¥ (u).

The proof of this result being straightforward, it is left to the reader.

If we consider a function defined as the minimum of a finite family of smooth
functions, then it is semiconcave. However it is not necessarily stratified semi-
concave. Indeed in the next section, we will see that this kind of functions
is generically stratified semiconcave. This result comes from a transversality
argument.

1.4 Proof of Theorem 3

In fact we will prove a more precise version of Theorem 3. Let us state the
result that we prove.

Theorem 20 Let V' be a semiconcave control-Lyapunov function for the con-
trol system (1). Then for any continuous function e : RN \ {0} — (0, 00), there
erists a continuous function V, : RV — R which is stratified semiconcave on
RN \ {0}, which is a viscosity supersolution of

max {—(f(z,a), DV(2))} = V(z) + e(z) = 0, (17)

a€B,

and such that for any x € RY \ {0},
Ve(z) = V(z)| < e(a). (18)
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Theorem 3 is a direct consequence of Theorem 20. As a matter of fact, if we
apply Theorem 20 to a control-Lyapunov function with € = %, then we obtain
some stratified semiconcave function V, which satisfies the conclusions of The-
orem 20 and hence which is positive definite and proper from (18). Hence if
we set V. := V2 we get a veritable stratified semiconcave CLF as in Theorem
3. It remains to prove Theorem 20; this proof will occupy the next ten pages.

In order to simplify the proof, we will work with squared balls hence with the
infinity-norm. Let us denote by ||7||« the infinity-norm of x € RY, and by By,
(resp. By) the open ball (resp. the closed ball) of RV relative to this norm.
Set 2 := R" \ {0}. We can decompose {2 into a ”quasi” partition of compact
cubes. There exists a family (x;);eny of points in ©Q and a family (p;)ien of
positive real numbers such that the three following properties hold:

(P1) Q = Ujen Boo (%, pi) = Usen Ki (where K; := By (i, pi))-

(P2) For each i € N, the compact set K; 4+ p; By, is included in €2, and the
covering ) = U;en K; + pi Boo is locally finite.

(P3) If K; N K; # 0 then K; and K; have a common face, i.e. there is a face
F; of K; and a face F; of K; such that (K; \ F;) N (K, \ F;j) = 0 and either
F; C Fj either F; C F;.

By (P2) for each i € I, we denote by L}, > 1 a Lipschitz constant of V/
on the compact cube K; + p; By, by M; the maximum of || f(z, a)|| for =z €
K; + piBy and o € By, by Lj« the Lipschitz constant of the multivalued map
r — f(z,Bn) on K; + p;Bs and by ¢; the minimum of the function €(-) on
K; + p; By For each i € I, we set

. €;
; := min _ .
H {2(LZVL; + Li, + M;)

,min{p;/10 : j s.t. K; N K; # @}} (19)

Remark that by construction, if x € €2 belongs to some compact set K; + j1; Boo,
then

pe< @ (20)

Moreover notice also that by (P2), we have that for every i € I

Thus by Proposition 8, for every ¢ € I there exists a positive constant C; such
that
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V()

V(@) = CillzlI”] + Cill]|?
9:(x) + Wi(x),

where g; :== V —C;]| - ||? is concave on K; + 2u; By, and ¥; := C;l| - ||? is smooth
on the same set. By Proposition 16, for each ¢ € I there exists a piecewise
affine concave function G; : R¥ — R such that the following properties hold:
(a) for every x € K;,Gi(z) + (C; + 1)||z]|* < V(z),

(b) for every z € K; + 11;Boo, V() — i < Gi(x) + (C; + 1) ||z|]? < V() + w4,
(C) for every r € K, + ,LLZ'BOO, asz(.T) + 2(02 + 1).T C apV(.fC +,U*zBoo) +,U«Z'Boo,
(d) there exists a finite set J* and some vectors (H})jcsi in K; and some

constants (ﬁ;)]e 7i such that

Vz € RY, Gj(z) = min {h{(m)} :

jeJt

where B! (z) = (H! (z),z) + k.
(e) for every = ¢ K + j1; Bo, Gi(z) > gi(x) — ||z]*.

Define for every i € I the function V; : R — R by
Vi(z) := Gi(z) + Wi(z) + [|z]|* = Gi(z) + (Ci + 1) [J||*. (22)

The function V; is the sum of a concave function G; and of the smooth function
W, +||-]|?, hence it is semiconcave on RY . Fix x in K; + j1; Bs and ¢ in 9pV;(x).
By (c) there exists T € By (x, i1;) such that ( € OV (Z) + p;Bwo; this means
that there exist 7 € K; + 2u;Bs, ( € OV (Z) and © € B, such that

C=¢+ pv. (23)

Since V is a CLF for the system (1), it is a supersolution of the Hamilton-
Jacobi equation (3) and hence

max {~(f(z.0),()} = V(2) > 0.

a€B,

Therefore by construction of the constants L%, L., M;, (23) and (21) give
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>V (z) — [L}LY + Milp,;
>V (z) — [LyLY + LY, 4+ Myl

>V - D by (o))

Consequently we proved that for every x € K; + p; By and for every ¢ €
8]3‘/;'(15),

max ({0, O}~ Vi) + 2 2 0. (24)

On the other hand by (a) and (e) we have that V;(z) < V(z) for every z € K;
and that V;(z) > V(x) whenever z ¢ K; + 11;Bo. Set for every x € RV,

V() = inf {Vi(2)}.
By (P1) and the remark above, for every z € Q we have

V(z) = inf {Vi(=)}-

i 8.t. 2€K;+1; Boo
Hence since the family {K; + p; By }ien is locally finite in €, this means that

for every x € () there exists i, € N such that z € K;, + ji;, Boo and V(z) =
Vi, (). In particular (b) implies

i <V(z) < V() + p,
e(z

— V(z) — = < V(z) <V(z)+ (o) ( by (20)). (25)

=

2
|

=

The function V is semiconcave on € (as a locally finite infimum of semiconcave
functions), and in addition (24) and (25) imply that for every z € 2 and for
every ( € 9pV (z) 7,

max {~{f(z,0), O} - V() > -
— max {~{f(z.0).0)} = V() > =e(o) (by (25)),

" Recall that if some function f :  — R is defined by f(z) := min;c;{gi(x)} where
1 is a finite set and g1, - - , gr some continuous functions on €. Then for every z € Q2
and for every ( € Opf(z), there exists 7 € I such that f(z) = g;(z) and ¢ € 9pg;(z).
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To summarize, the function V is a semiconcave control-Lyapunov function
which satisfies the properties (18) and (17). Unfortunately, it is not necessar-
ily stratified semiconcave. Properties (a) and (e) imply that the function V
coincides with V; on each cube By (x;, p; — 0;), where ¢; denotes the maximum
of the y;’s for K; N K; # () (note that p; —&; > %2 > 0 by (19)). In particular,
we deduce that the function V is stratified semiconcave (by Proposition 19)
on each open cube By (z;, p; — 6;)- In the sets K; \ By (i, p; — 0;), the function
V is a minimum of quadratic functions, so it is not necessarily stratified semi-
concave. We shall prove that if we perturb each V; by adding a small affine
function, then the minimum of these functions is generically stratified semicon-
cave. The proof will be based on a multi-transversality argument (Lemma 21).

In order to be clearer, we are going to first explain what happens in the case
of the minimum of two functions V; and V5. Consider K; and K5 two adjacent
cubes in €2 and let us prove how to move V; and V5 in order to get that the
minimum of V; and V5 is stratified semiconcave on RY (recall that V; and V,
are quadratic functions defined on R"). Recall that by construction, for every
z €RYN,

Vi(z) =Gi(z) + i(z) + ||z
=min {hi(2)} + (€1 + D"

Va(2) = Go(@) + Ta(2) + |2
=min {h?(z)} + (C +1)||>

JEJ2

If C; = Cy then the function min{V}, V4 } is the sum of a piecewise affine semi-
concave function and the function z — (C; + 1)||z||?, so it is stratified semi-
concave (by Proposition 19). Thus without loss of generality we can assume
that C; # Cs, assume for instance that C, = Cy + 1. Let § = (61, -+, B2|)
be a |J?|-uplet of vectors in RV, define the function V¥ : RY — R by

vz e RY, Vf(z) _mln{hQ( )+ <5la$>}+(02+1)||x||2a

jes?
and define VA : R* — R by
vz e RY, VP(z):=min{Vi(z),V{ (z)}.
Let us prove that the function V? is generically stratified semiconcave on RY .

Lemma 21 The set of (b1, ,Bjs,) for which the function V¥ is stratified
semiconcave is an open dense set in (RV)12.
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PROOF. First, remark that if there exists a couple (i, j) € J* x J? such that
hi(z) + (Cr + 1)|2]1” = hj(z) + (Bj, ) + (C1 +2) ||z,
then this implies:

[z]|* = hi(z) + b5 (z) + (B;,2) =0
&|zl|? — (H,z) + (Hj,z) + (Bj,x) = h; — h3
&|zl|? + (—H} + H; + Bj,z) = hi — h’.
Thus we deduce that
1 1 2 2o g 1 1 2 2

The function V? can be written as follows:

VP(z)= min {hi(z) + (C1+ D)lal, k3 (z) + (Bj,2) + (C1 + 2) =]|*}

ieJl jeJ?
= min {FE;(z), E'(z)}.

min {Ei(2), By (o)}
Study the cases where the minimum is attained by several E; and E; in the
expression above. Let us prove that the set of points x such that E,(z) = Ej(z)
for every j = 1,---p (where p is some integer in {1,---, N}) is generically a
sphere of dimension N — p in RY. The other cases being similar, they are left
to the reader.

Set
0= {$ € RN : El(l‘) = E;(J{I),Vj =1,- p}

If x belongs to O, then by (73) it is in the intersection of p spheres, that is:

re N (s yR+IT) 2

jzlﬂ'" P

where z; 1= 3 (—Hll + H; + ﬂj) and R; := h! — ﬁ? The intersection (27) is
indeed equivalent to the system

4

lell* = 2(z, 21) = By

2 2(z,2) =R
) el = 2z, 2) = R o)

21 = 2{z, 2) = R,
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which can also be written as follows:

2]l = 2(z, 21) = Ry

2<CC, 1 — 22> = R2 - R1 (29)

| 2,21 — 2p) = Ry — Ry

This last system means that x belongs to the intersection of the sphere centered
at z; with radius R; and of the affine subspace Hg of equation

4

2(x, 21 — 23) = Ry — Ry

2(z, 21 — z3) = R3 — Ry (30)

| 2(z, 21— %) =Ry — Ry

The affine subspace Hpg is of dimension NV — p 4+ 1 if and only if the vectors
21 — Z9,21 — 23, *+ ,21 — %, are linearly independent. Let T': (RV)? — R be
the map which associates to each p-uplet (5;);=1,.. , the sum of the squares
of the determinants of the matrices (p — 1) x (p — 1) which are included in
the rectangle matrix Mg with columns (21 — ;) j=o,... p. The rank of the family
of vectors (z1 — zj)j=2,..» equals p — 1 if and only if there exists a square
submatrix of My (of order p — 1) which is invertible. Hence by construction
of T':

rank {(21 — Zj)j:Q,...,p} =P 1& F(ﬁla e aﬂp) 7é 0.

The function I' is polynomial in the coordinates of the §;’s and moreover since
21 — 2 = 5(H? — H} + 51 — B;), we have that

T'(—Hf,—Hj —2ey,—Hj —2e5,--- ,—H} — 2e,_,) = 1%,

We conclude that the polynomial I is not the zero polynomial, hence that the
set

Ty ={(B1, . ) € RY)" :T(By, -+, By) # 0}

is an open set with full measure in (RY)P.

Let us now study the intersection of the sphere S(z1, R;) and of the affine
subspace Hg. This intersection (whenever it is not empty) is a sphere of di-
mension N — p if and only if the affine subspace Hg is not tangent to the
sphere, that is if

8 The family (e;,--- ,en) denotes the usual basis of RV .
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d(zl, Hﬁ)Q 7£ Rl. (31)

Let us evaluate this distance. If P denotes the orthogonal projection of z; on
Hpg then the distance equals ||z; — P||*. Since z; — P is orthogonal to Hp, it
is a linear combination of the vectors z; — 29, -, 21 — 2,. Hence there exists
a = (ag, - ,q,) € R such that

/4
Z1 — P = Zozj(zl — Zj).

Jj=2

On the other hand P belongs to Hg hence we have the following system:

2z — Yhpaj(z1 — 2j),21 — 22) = Rp — Ry
) 2(z1 =Yg aj(z1 — 2j),21 —23) = Rs — Ry

2051 — Ljp (21 — 7)), 21 — 2p) = Ry — Ry

\

We recognize the system

—2Ma =T, (32)
where M is the Gram matrix

<Z1 — 22,21 —Z2> <21 — Zpy k1 Z2>

(21— 22,21 — 2p) -+ (21 — 2p, 21 — 2p)
and T is the column vector
(RQ - R1 — 2(21, Z1 — ZQ), s ,Rp - R1 — 2<Zl, 21 — Zp>)t.
The matrix M can be written as M = M;Mg. (recall that Mpg is the matrix
whose the columns are the vectors (z1 — 2;);=2,... ».) Hence if the rank of Mg
equals p — 1, then the determinant of the Gram matrix M is different from

zero (see [18, Theorem 1, p. 247]). In consequence the vector « is a solution
of the Cramer system (32), that is

1
= —EM_IT. (33)
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The equation (31) can be written as:

2

— Ry #0.

D
> aj(z — 7)
=2

By (33) and from the definition of the z;’s, the vector 3°%_, ovj(21 — 2;) depends
affinly in the f3;’s hence the quantity HZ?ZZ aj(z — zj)H2 — R; is polynomial in
the coordinates of the §,’s (and is not constant and equal to zero). We deduce
that the set of p-uplets (81, - -, 8,) such that I'(8y,- - -, 8,) # 0 and such that
HE?ZQ aj(z — Zj)“2 — R; # 0 is an open set of full measure in (RY)? (denote

this set by T3). This proves that the set O is generically a sphere of dimension
N —p.

We let the reader to convince himself that our proof shows that if the uplet
(B, . Bip) belongs to a generic set T3 in (RY)!/2/, then for any subsets Iy
of Jy and I, of J; such that |I1]|+ || — 1 < N, the set Oy, 1, of x € RY such
that for any 7,5 € I} x I,

Ei(x) = E}(a),

is a submanifold of RN of dimension max{0, N — |I;| — |I5| + 1}.

Let us now prove that there exists a generic set T} in (RV)I”2 such that if the
uplet (B1,- -+, Blp)) € Ty then for every x € Oy, p, with [I;| + || =1 < N,
the convex set 9V?(x) has dimension |I;| + |I| — 1. Still once, in order to be
clearer we assume that Iy = {1} and that I, = {1,--- ,p} with p < N.

Fix € O = Oy, 1,- Using the definitions of H| and A} for j = 1,---,p, we
can write V7 (z) as follows:

OVP(z) := co{H{ + 2C1z, H{ + B1 + 2Cox, -+ , H + B, + 2Cox}.  (34)

This set is a convex set of dimension p if and only if the vectors HZ + 8, — Hi +
2x,H3 4+, — H{ +2x,- -+ , H. + B, — H{ + 2z are lineraly independent (recall
that C, —Cy = 1). By definition of the z;’s, this is equivalent to prove that the
vectors £ — 21, -+ , T — 2, are linearly independent. We argue by contradiction.
Assume that there exists a = (a4, - -+, ;) € RP such that

éaj(a: —z) = 0. (35)
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Since z belongs to O, it satisfies the equations (30). Hence for every k =

2,---,p, the equation

p D
2 (Z %‘) (w20 — 2) =2 (25,21 — z) = 0,
j=1 7j=1

gives

4

(E§=1 aj) (Ry — R1) — 2300 a(2j, 21 — 22) = 0
) (021 05) (Rs = Ra) = 250 (25, 2 — 25) = 0 .
L (23?:1 O‘j) (Rp - Rl) - 22?:1 Oéj<zj; Z1 — Zp) =0
This means that the p-uplet (o, - - -, ) is solution of a system of p—1 linear

equations in RP. We can write (36) with matrices; using the definition of the

z;’s, the system is equivalent to

(N + NP)a =0,

(37)

where the matrix NV is in M,_;,(R) and does not depend upon the $;’s and

where N? € M, 1 ,(R) is defined by:

(B1, 1 — Ba) (B2, B1— Ba) =+ (Bp, b1 — Ba)
(B1, 1 — B3) (Ba, B — Ba) -+ (Bp, Br — B3)

NP =

<ﬁ1aﬁ1 - ﬁp> <ﬁ2aﬁ1 - ﬁp> e <ﬁp:ﬁ1 - ﬁp)

This matrix can also be written as follows:

NP = (NtMS) My — (NEME) M,

where the matrices Ny, N, € M, ,,_1(R) are defined by,

11 1

00 0
1=

0--- --- 0
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and

00 «vv ve- 0
10 «ov vn- 0
N, 01
: 0
-0
0cen vn- 0 1
The system (37) becomes
[N + (N1 = Ny)! M{Mp| a = 0. (39)
Now if (81, ,8p) = (Xe1, -, Aep) where A is some real number, then we

deduce that « is solution of the system
[N+ X2(Ny = Np)f| o = 0.

Remark that the p — 1 last columns of the matrix (N; — Np)* is a matrix in
Mp,_1,-1(R) which equals —I,_;. Hence we deduce that the matrix Q()\) €
M, 1 ,-1(R) which corresponds to the p — 1 last columns of the matrix [N +
A2(Ny — N,)!] has rank p — 1 for almost every A € R. This proves that the
matrix Q(f1, -+, 0p) € Mp_1,-1(R) which equals the p — 1 last columns of
[N + (N; — N,)* M}, Mg] has rank p — 1 for (f1,---,3,) in an open dense set
of full measure 7" C (RY)?. For such p-uplets (81, -, B,), the set of solutions
of (36) is a vector line in RP. In fact we can give a nonzero vector (aq, - - , )
which spans this vector line. For instance it is the solution (a7, - - , ) of the
linear system (39) with first coefficient

dl(ﬁl, e aﬁp) = det(Q(Bl: e aﬁp)) 7£ 0.

Hence by Cramer’s formulas the vector (aq,---,¢,) is a polynomial in the
B;s. Moreover whenever (B1,---,8,) = (Ae1,-- -, Aep), each a; (j =1,---,p)
is a polynomial in A of degree 2(p — 1) with leading term 1.

On the other hand, (35) also implies that

) 2
> aj(z —z)|| =0.
7j=1
Hence we get that
p
Za?“x—zj||2+22ajak(m—zj,x—zk> = 0. (40)
j=1 j#k
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But for each couple (j,k) € {1,---,p}?, (28) gives that

2r — zj,x — z) =2||z — zj||2 +2(x — 24, 2j — 2k)
=2||z — z||” + Re — R; — 2(2j, zj — 21)-

By (27), we know that for every 7, ||z — z;||> = R, + ||2;]|*>. Thus (40) becomes

b
> 02(R; + [14]12) + X oo [2(R; + I511°) + Re — Ry — 2(2, 2 — )]
j=1 J#k
p
=Y ai(R + I511%) + X ejon [R; + R + 2(zj, 1)) =0 (41)
j=1 ik

Denote by P(a, - -+ , o) the polynomial in several variables ay, - - - , a;, which
appears in (41). Let us prove that whenever (3i,---,3,) € T, the vector
(aq,--- ,qp) is generically not a solution of (41).

Actually, the function Po(a,--- ,q,) is a polynomial in the coefficient of the
B;’s. But whenever (81, -, 8,) = (Xe1,- -, Aep) € T, the function Poa(N) is
a polynomial in A of degree 2(2p—1) with leading term p hence Po&()) # 0 for
almost every A € R. Since the polynomial P is homogeneous, this proves that
the intersection of the set of solutions of (41) and of the solution of (36) equals
generically {0}. This proves that for every € O, the vectors x—zy,- -+ ,x—2,
are independent and hence that 9V ?(z) is a convex set of dimension p in RV .?

We let the reader to develop this proof for any subset I; and I of J; and .Js.
In conclusion, we proved that there exists a generic set T in (RV)M2l such
that if (31,---, Bis|) € T4 then for any x € Oy, 1,, the generalized gradient of
V¥ has dimension min{N, |I;| + |I5| — 1} and has min{N, |I}| + |I5| — 1} + 1
extreme points.

In conclusion, we proved that if (8;,---,3,) belongs to the generic set
T3 NT, C (RY)2] then the set Oy 1, is a submanifold of RY of dimension
max{0, N — |I;| — |I5| + 1} and that the generalized gradient of V* has dimen-
sion min{N, |I;| + |Io| — 1} and has min{N, |I;| + |I| — 1} + 1 extreme points.
Furthermore it is clear from the proof that the closure of each of these sets is
a smooth submanifold and that the function V#? is smooth on it. In addition,
it is clear by (34) that the functions which give the extreme points of 9V# are
smooth and can be smoothly extended to the closure of each connected com-
ponent of Or, 1, (and that OV? is smoothly extended into a convex set with

9 Notice that actually we also proved that for each z € O, the set defined by the
right-hand side in (34) is a convex compact set of dimension p in RV (because any
x € O satisfies (30))
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the right number of extreme points by footnote 9). Thus this proves that as-
sertions (ii), (iii) and (iv) in Definition 18 hold. Finally, by classical properties
of semiconcave function (see Appendix), we have that for any x € O, 1,,

TzO[l,IQ = avﬂ(.’L')J_

Since the multivalued map 8V (-) is upper semicontinuous, we deduce from the
facts above that ¥(V#) is generically a Whitney stratification. This completes
the proof of Lemma 21.

We proved that the minimum of both functions V; and V5 can in fact be
approximated generically by a stratified semiconcave function V4. Since the
covering given in (P1) is locally finite, starting from V;, we will are able
to construct step by step some functions VQ’B e ,V}’B such that the function
min{Vy, - -- ,VQ’B e ,Vf } is stratified semiconcave in RY. But when we have
constructed the Vlﬂ ’s on all the adjacent cubes to K7, the next construction will
not change the global minimum function on K;. In this way we perform the
construction of a global stratified semiconcave on Q!°. Furthermore it is clear
that since the initial function V satisfies (17) and (18), if the perturbations
[ are taken small enough, then the resulting stratified semiconcave (on €2)
function V satisfies (17) and (18) for the function 2¢(-). This concludes the
proof of Theorem 20.

1.5 Additionnal comments

In fact, the procedure of regularization that we apply in the previous section
can be used for any semiconcave function. We leave as an exercise for the
reader to supply the details of the proof of the following theorem:

Theorem 22 Let ) be an open set of RN . If u : O — R is a semiconcave
function then for any continuous function € : Q — (0,00) such that for every
xz € Q,By(z,e(x)) C Q, there exists a stratified semiconcave function u. such
that for any x € €,

(1) [u(z) — uc(z)| < €(z),
(11) Opuc(z) C Opu(x + €(x)By) + €(z) By .

This result applies to the approximation of viscosity solutions introduced by
Crandall and Lions [21,17]. If F : Q@ X R x R — R denotes a Hamiltonian
which is continuous in the three variables, Theorem 22 gives the following:

10 Notice that the function that we obtain is not stratified at the origin because the
stratification is not locally finite in the neighborhood of 0.
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Corollary 23 Let Q be an open set of RVN. If u : Q — R is a semiconcave
supersolution of the Hamilton-Jacobi equation

F(z,u, Du) =0, (42)

then for any continuous function € : Q@ — (0,00), there exists a function
v: Q) — R such that

(i) v is a supersolution of F(x,v, Dv) — e(x) =0,
(i1) the function v is stratified semiconcave,

(i) |u — v| <e.

PROOF. Recall that since the Hamiltonian F' is continuous in the third
variable then the supersolution u of (42) satisfies

Ve € Q,V(¢ € Opu(x), F(z,u(x),() > 0.

By semiconcavity of u, for every z € €, the limiting subgradient dpu(x) is
a compact subset of RY. Hence the continuity of the Hamiltonian F in the
last variable implies that there exists a positive constant &, such that if ( €
Oru(x) 4+ 26, By then

Fle,u(z),0) > -0, (43)
But the limiting subgradient is an upper semicontinuous multivalued map,
hence there exists u, > 0 such that if y € x + p, By then

BLu(y) C 8Lu(:c) + 5zBN (44)

In addition the continuity of F'in the second variable and the compactness of
the limiting subgradients imply the existence of 3, > 0 such that if |u'—u(z)| <
B then

V¢ € dru(z) + 0,By, |F(z,u', () — F(z,u(x),()| < % (45)

Set for every x € €,

d(z, Qe

¢(a) = min{e(e), "5, i {13}
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The three functions that appear in the minimum above are continuous, hence
€' is continuous. Since for any z € Q, €'(z) < d(z,Q2¢)/2, we can apply Theorem
22. We get the existence of a stratified semiconcave function v : 2 — R with

Ve e Q, |u(z)—v(z)| <€(z) (46)

and

Ve € Q, 9dpv(z) C Opu(z + € (z)By) + € (z)By. (47)

Assertions (ii) and (iii) are already given, it remains to prove (i).
Consider z € Q and ¢ € 0pv(z). The definition of €'(x) combined with (47)
and (44) gives that

¢ € Opu(x + pg(xz)By) + 0, By C Oru(zx) + 26, By.

Hence by (43) we deduce that F(z,u(z),() > —L;). But since €' (z) < f,, (46)
with (45) imply that
F(I:U(w)ag) 2 —G(IE)

We conclude easily.

2 Consequences for stabilizing feedbacks
2.1 Carathéodory stabilizing feedbacks

In our previous paper [28], we proved that every GAC control system of the
form (1) (we authorized in fact control systems with drift as well) admits a
feedback a(-) : RY — B, which makes the closed-loop system (2) GAS in the
sense of Carathéodory ! . In order to produce such a feedback, we considered
a semiconcave control-Lyapunov function and we constructed a continuous
feedback outside a subset of its singular set. Although this technique achieved
the construction of a stabilizing feedback in the sense of Carathéodory, we
were not able to describe the behavior of the closed-loop system around the
singular set and then to deduce the existence of a AGAS feedback. Here, in
our situation, the knowledge of a stratified semiconcave CLF will help us to

" Recall that the closed-loop system (2) is said to be GAS in the sense of
Carathéodory if for every z € RY the solutions (we call them Carathédory so-
lutions) of

z(t) = f(z(t), a(z(t)) a.e. ,z(0) = xo,

exist, converge to the origin as t — oo and satisfy the property of Lyapunov stability.
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construct explicitly the stabilizing feedback in a neighborhood of “each” stra-
tum of the singular set 3(V).

Set 2 := RY \ {0}. Let us consider V to be a stratified semiconcave control-
Lyapunov function for the control system (1). Before proving Theorem 5, we
need to construct some stabilizing feedback a(-) : RN — B, for which we
understand exactly the bifurcation points which are produced by the closed-
loop system (2) (which stabilizes in the sense of Carathéodory); this particular
result will be precisely stated in Theorem 37. Let us first assume that the

vector fields fi,-- -, f,, are smooth on RY | and let us describe the construction
of the feedback «(-).

First of all in order to simplify our construction, we modify the control-
Lyapunov function V. We claim the following:

Lemma 24 There exists some function W : Q0 — R which is stratified semi-

concave on 2, proper, which satisfies lim,_,o W (z) = —o0 and such that
Vo € Q,Y( € o W(z), min{(f(z,a),()}<~1 (48)
a€EBy,

PROOF. Set for every z € Q, W(z) := InV(z). By smoothness of the loga-
rithm, we have for every = € €2,

1
V(x)

oW (x) = oV (z).

Consequently, since the function x — Inz is smooth, concave and increasing
on [0, 00) it is straightforward to show that W is stratified semiconcave on €,
proper, satisfies lim,_,o W (z) = —oc and such that

Vo € Q,VC € 0pW(x), min{(f(z,),()} < -1

a€By,

By continuity of the dynamics f the same property holds for limiting subgra-
dients. Therefore we get (48).

Define the function ¥ : Q — (—o0, 0] as follows,

Ve €Q, ¥(x):= min max){(f(x,a),g)}. (49)

a€By, (EOW (z

Since for any z € €, f(z,0) = 0 we verify that the function ¥ has nonpositive
values; moreover we have the following result:
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Lemma 25 The function ¥ is upper semicontinuous on Q.

PROOF. Since for any = € (), the sets W (x) and B,, are convex and since
the functions ¢ — (f(z,a),() and a — (f(z,a), ) are affine (do not forget

that f(z, ) = Zzl «; fi(x)), the Minimax Theorem (see [7, Theorem 3.7.9 p.
115]) allows us to write the function ¥ as follows:

Ve €Q, ¥(x)= max mgﬂ- {{f(z,0),0)}

(€W (z
= max min (0%
CeOW ( aeBm{<§ ifila >}

(€W (x) a€Bm

— max min {i } (50)

Now since for every ¢ € RY the map

aEBm

Z — min {ZozZ fi(z )}

is continuous, the upper semicontinuity of the multivalued map z — 0W ()
gives the result.

Since the function W is stratified semiconcave, its singular set can be written
as a countable disjoint union of strata of dimension less than N. Actually each
singular subset X¥(W) (for k € {1,---, N}) is a locally finite disjoint union

of strata of dimension N — k, hence there exists N countable sets I1,--- , Iy
such that
xwy= U =w= U USs‘*"
ke{l,,N} ke{1,N}i€l},

From Definition 18 we remark that the function ¥ is smooth on each stratum
of X(W); as a consequence it will enjoy the following property:

Lemma 26 For almost every A € (0,1), the following property is satisfied:
For each k € {1,--- N}, for any i € I, the set {x € S’ % : U(z) = —\} is

either empty, either a Lipschitz submanifold of SN =% of dimension N —k — 1
(if k = N this means that the set is empty).

PROOF. By (50) the function ¥ can be expressed as

¥(o) = e min {3 auli(2).0)}.
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But by Cauchy-Schwarz Theorem the minimum inside this formula can be
computed, and therefore we have that for every = € €,

V(r) = (ax {—4 i(fi(x),Q)Q}-

We are now ready to prove Lemma 26. In fact it is sufficient to prove that for
every integer p > 2, for almost every A € (0,1 — 1/p), the property given in
the lemma is satisfied. Fix p € N'\ {1} and let us prove this fact.

Let SN~ be a stratum of dimension N — k (with k& € {1,---,N — 1} and
i € Ij) in the Whitney stratification of (). By Definition 18 there exist
k + 1 functions (y,---(xy1 which are smooth on S and such that for every
x €S,

oW (z) = co{Cu(2), -+, Cra(z)}-
If we denote by Ag.; the simplex of dimension k£ + 1 defined by

k+1
Ak—|—1 = {(tl," . ,tk+1) € Rk+1 2Vj,tj >0 and ztl = 1},

i=1

this means that for every z € S * we have,

W) = mas 4= |33 4@, G @) | 2

Note that for every x € S % the limiting gradient of W at x equals the set
{¢(x),- -+, (es1(x)} . Thus by (48) this implies that for every j € {1,--- , k+
1} we have

—Ji(ﬁ(z),@(@)? < -1 (52)

=1

Denote by S the set of € S ¥ such that —¥(z) € (0,1 — 1/p); of course S
is open in S},

From (52) we deduce that for each point z € S, the maximum in (51) cannot
be attained at some (k + 1)-uplets of the form (0,---,0,1,0,---,0) i.e. at
some vertex of the simplex Agy;. Actually since by Definition 18 the maps

C1,-+ , (k1 can be smoothly extended to S ~*, this means that for each
j € {1,--+,k+ 1} there exists some neighborhood V; of the (k + 1)-uplet ¢/
(with ¢t; =1 and ¢, = 0 for [ # j), such that for any € S the maximum in
(51) is not attained in Ufill V;. In consequence, there exists a smooth compact
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submanifold M, with boundary in the simplex Ay, such that for any z € S,

k+1 m

U(z) = max ¢ — | > > t;{fi(2), ()2

tEMy, ,, o

To summarize, we have shown that on the open set S, the function ¥ can rep-
resented as the maximum of several smooth functions over a compact smooth
manifold with boundary. Therefore the Morse-Sard theorem developed in [31,
Theorem 3] applies '?, then we get that for almost every A € (0,1 — 1/p) the
set {x € S: ¥(z) = —\} is a Lipschitz submanifold of S =¥ of codimension 1.
We proved the property of Lemma 26 for every stratum of dimension 1,--- , N—
1. On the other hand the result is obvious for strata of dimension zero. Finally,
the global number of strata of X(W) being countable, we conclude easily.

Let A € (0,1) be some constant satisfying the property of Lemma 26. For each
ke {l,---,N—1}, we divide the set ©*(1¥) into three subsets as follows: Let
S be some stratum in X¥ (W),

(1) we say that S is stable if for every x € S, ¥(z) < —;

(2) we say that S is repulsive if for every z € S, ¥(z) > —);

(3) we say that S is a bifurcation stratum if there exists z € S and y € S
such that U(z) < —X and ¥(y) > —A.

We denote by $F(W) (resp. by ¥ (W) and resp. by 35 (W)) the set of stable
(resp. repulsive and resp. bifurcation) strata of $¥(W). Thus the singular set
Y(W) is partitioned into three subsets:

EW)=Z,(W)UZ, (W)U Zy(W).
Recall that for each stratum S in ¥,(W), the set
{r eS:¥(x)=—-A}

is a (nonempty) Lipschitz submanifold of S of codimension 1. Hence when-
ever S is a bifurcation stratum we can define the Lipschitz manifold (with
boundary) S by

12 Theorem 3 in [31] asserts the following:
Let U be an open subset of R” and let N be a smooth compact manifold. Let
¢:U X N = R be a smooth function. Then the function f : i/ — R defined by

f(z) = min{g(z.)}

satisfies the Morse-Sard theorem: That is, for almost every A in f(U) the set {z €
U : f(z) = A} is a Lipschitz submanifold of U of codimension one. In particular the
result applies also in the case of smooth compact manifolds with boundary.
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S:={zelS:U(x)>-\} (53)

We define the set S C (W) by:

S=s,W)u |J S (54)
SeTL(W)

This set satisfies the following:

Lemma 27 The set S is closed in €.

PROOF. Both sets X,(WW) and X,(W) are locally finite unions of strata of
the singular set (). From definition given in (2), this implies that the set
Y. (W) is closed in Q. On the other hand, by upper semicontinuity of the
function W each stratum S given by (53) is closed. Hence we deduce that the
set S is closed.

Therefore the subset of €2 defined by
D:=Q\S

is an open dense set of RY. From now we follow moreorless the method of
proof that we used in [28] in order to produce a stabilizing feedback which
was continous on an open dense set. First we define a multivalued map G, :
D — B,, as follows:

For every x € D, we set

Gi(z) = {a € By : V¢ € OW (z), (f(z,0),) < —A} .
It enjoyes the following property:

Lemma 28 The multifunction Gy has nonempty compact conver values and
s lower semicontinuous on the set D.

PROOF. By construction, we have that for every x € D, ¥(z) < —A. Hence
by (49), this means that the set Gy(x) is never empty on D. On the other
hand, recall that for every x € D and for every ¢ € OW (z),

m

<f($,06),<> = Zal<fl(x): C)

=1

Hence it is clear that for every x € D, the set G1(x) is compact and convex.
Let us prove the upper semicontinuity of G;. We then have to prove that for
any sequence (z), of points in D converging to some x € D, and for any
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a € G1(z), there exists a sequence (ay,), of points in Gy (z,) with limit a.
Let (z,), be a sequence in D converging to T € D, and let @ € G1(Z). Define
for every x € D the function ¢, : R™ — R by

Va e R", g.(a):= Cenalvav)éc)(f(ac,Oz),C).

The function g, is convex as a maximum of affine functions. We claim that
for each integer n, there exists o, € G1(x,) such that

_ 9z, (O 2
6~ ol < 21— 22207 (55)

We argue by contradiction; assume that for some integer n we have

9:(0)° _ (56)

Va € Gi(n), 16— all > 21— e —

In particular this implies that & ¢ G1(z,) and that g, (&) > —\ (in fact by
upper semicontinuity of the multivalued map x — 0W (z), we can assume that
9z, (@) € (—A,0)). In addition, since g,, (0) = 0 and Gy(z,) # 0, (56) means
that there exists a € G(z,) with g,, (o) = —\ and such that

@ —al| > L.

By Pythagore Theorem, this implies that if we set § := %t% € B,,, we have

I8 <yf1- 4. 67)

Remark that by convexity of the function g,,, we have that g, (8) < gz, (@)
Set 3 := —~— 2 which by (57) belongs to the control set B,,. Therefore we

12

4
conclude that

- 1

9z, (ﬁ) < \/ﬁgwn (5‘)-

By an easy calculus, the definition of [ gives that

\/7_7%9% (@) < =X

which gives a contradiction.
In consequence, we proved that for each integer n , there exists a, € G1(zy,)
such that (55) holds. By upper semicontinuity of the multivalued map z —
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OW (z), it is straightforward to show that

lim g,,(a) = —X;

n—oo

which gives the result by (55).

We can apply the well-known Michael’s Selection Theorem (see [22] or [7,
Theorem 6.5.7 p. 228]) to deduce the existence of a continuous selection a;(+) :
D — B,, of G on the set D. In particular, this means that for every x € D
we can define the Cauchy problem

&(t) = f(z(t), ar(x(t))), z(0) = =. (58)

Cauchy-Peano Theorem says that for every z € D there exists some solution
z(+) of (58) defined on some interval [0,7] and such that z(t) € D for every
t € [0,T]. (Note that 0 does not belong to the open set D.) The construction
of a;(+) yields the following:

Lemma 29 Let z(-) be a solution of (58) defined on some interval [0,T).
Then for any t € [0,T], we have

W (z(t)) < W(z(0)) — At. (59)

In particular the trajectory can be extended as long as z(t) does not converge
to the set S.

PROOQOF. By continuity of a;(-), the function € defined by,
Vi€ [0,T], 0(t):=W(x(t))

is locally Lipschitz on the interval [0, T']. Thus by the classical Chain Rule for
limiting subgradients (see [15, Theorem 10.4 p. 62]), for every ¢t € (0,7") and
for every n € 010(t), there exists ¢ € W (z(t)) such that

n=(¢z@)) = (C, f(z(t), a(2(2))))-

Hence by construction of a4(-), we deduce that for every ¢ € (0,7), 0.0(t) <
—A. This means that the function ¢ — 6(t) + At is decreasing, which gives

(59) 13 .
13 Here we use the fact that a lipschitz function g : R — R is decreasing iff for every

t € R and for every ¢ € drg(t),
¢<o.
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Actually, (59) says also that the trajectory z(-) remains in the set
Sw(W(2(0)) = {z € RY : W(z) < W(x(0))},
which is compact by properness of W. In particular this means that as soon as

z(T) will belong to D, it will be possible to extend z(-) on some new interval
of the form [0, 7 + €] (for some € > 0). This proves Lemma 29.

We conclude that if z(-) is solution of (58) then there exists 7' > 0 such that
z(t) belongs to D for any ¢ € [0,T) and such that z(T") € S**; such a solution
will be called a maximal solution of (58). We claim the following result:

Lemma 30 Let x(-) be a mazimal solution of (58) defined on the interval
[0,T]. Then we have

U(z(T)) = -\ (60)
PROOF. By semiconcavity of the function W (see Proposition 10) near
x(T) # 0, there exists o > 0 such that for any ¢ € ° W (z(T)), we have

~W(y) + W ((T)) +olly — =(D)|* > (~¢,y — =(T))

whenever y is in a neighborhood of z(7"). We deduce that for some s < T and
close to T', we have

W (2(T)) = W(x(s)) + ollz(s) — 2(T)|I* = (¢, 2(s) — =(T)). (61)
But Lemma 29 asserts that
Wz (t)) = W(xz(s)) < =A(s = 1)
whenever 0 < s <t < T. Hence by continuity of W we deduce that

W(x(T)) = W (x(s)) + ollz(s) — =(T)|
—AT = s) + ollz(s) — =(T)]|*. (62)

(€, 2(T) — (s))

IA A

Now by convexity of the set f(x(7T), B,,) there exists a sequence (s,), and ar
in B,, such that

4 Notice that since the dynamics f(z,a1(z)) is bounded on the compact level-set
Sw (W (2(0))), the limit lim;_,7 x(t) exists.
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L al(T) = ()

n—00 T — Sn

= f(2(T), ar). (63)
Consequently, passing to the limit for the sequence (s,), in (62), we obtain
(¢, f(@(T), ar)) < —A.
We can repeat this argument for all ¢ € "W (z(T)), that is,
V¢ e "W (x(T)), (¢ f(z(T),ar)) < —A.
Since 0P W (z(T)) = OW (z(T)) (by semiconcavity of W), this means that
U(z(T)) < =A.

On the other hand, z(T") does not belong to D. By (54) this gives ¥(x(T')) >
—A. Hence we conclude.

In fact, we could now prove that the feedback () stabilizes the system (1)
in the sense of Carathéodory (as we did in [28]). However the feedback ()
does maybe not possess the properties that will be needed in the proof of
Theorem 5. For example, if x € § is given in S, we do not know how is the
set of points z € D such that z(T) = = for some T > 0; this set could have
positive measure in RY! That is the reason why we are going to detail how we
can modify the feedback () in a neighborhood of § in such a way that we
understand exactly the set of points in z € D such that z(T) € S for some
T > 0. For that, we denote by S, the set of z € S such that ¥(z) = — ), and
we denote by ds : RY — the distance function to the set S.

Let Z € S\ Sy. Since T belongs to the stratification X(WW), there exist k €
{1,---, N} and a unique stratum S of dimension N — k such that z € S. Let
us first assume that the stratum S is isolated in S, that is such that S does
not meet the closure of another stratum of (W) meeting S. In particular this
means that on every face F' of the k-simplex 0W (Z), we have

max min (f(7, ), () < A

Set C' := OW(z) and denote by Fy,---, Fyy; its k + 1 faces. Moreover set
K := f(z,B,); this set K is compact, strictly convex and symetric with
respect to the origin. Denote by H¢ the unique subspace of dimension £ such
that there exists ( € C' which satisfies C' C {( + Ho and define E¢ to be the
vector subspace of RY which is spanned by C (note that F¢ has dimension
k+1if 0 ¢ C and dimension k otherwise). Recall that by semiconcavity of
W, the normal cone to the stratum S at the point Z equals

NC_ES - HC’.
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Define Py, : RY — E¢ to be the orthogonal projection on E¢ in RY and set
K := Py (K).

The set K has the same properties as K. Moreover by construction, we remark
that for every v € K and for every ( € C', we have

since v — P, (v) L C in RY. Before continuing we recall a notation which will

used frequently in the sequel. If A is a subset of a given vector space E then
A* is defined by

At :={e€ E:qw (g,e) is constant on A}.
We have the following lemma:

Lemma 31 Assume that V(Z) < 0. There exists an affine hyperplan H of
dimension k in Ec which intersects the vector line Ct at a unique point and
such that the conver set K N H has dimension k and satisfies

VYw € (K N H),3¢ € C such that (w, ) < —. (64)

PROOF. Note that the assumption ¥(Z) < 0 implies that 0 ¢ C, which
gives that H¢ is a hyperplan in E¢. Recall that by construction of the set K,
we know that

max wmellg(w, () = V(x).
Since the stratum S is isolated in S, the concave function ¢ — min, .z (w, ¢)
attains its maximum on C at some ¢ which does not belong to a face of C.
This means that ¢ belongs to the relative interior of C' in E¢ and satisfies for

every w € K,
(w,() € [¥(2), =¥ (Z)] C (=, N). (65)
For each face F} of the k-simplex C, there exists w; € K such that

<w27C> S _/\7VC € E

Set W := co{wy,- -+ ,wry1} C F¢o; we claim that W is a simplex of dimension
k. We argue by contradiction.

If the dimension of W is strictly less than &, then there exists an affine space
L of dimension k£ — 1 such that W C L. Since L+ is a vector plane in E, there
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exists u € Hg such that the map w — (w, u) is constant on W. Since u € H¢
and ( is in the interior of C', there exists ¢ > 0 such that { + tu belongs to
some face F; of C'. This gives by construction of wy,

which implies by (65) that (w;,u) < 0. Finally since u € L+ we deduce that

(w,u) <0, YweW. (66)

On the other hand, there exists also t' > 0 such that the vector { — t'u is on
a face F; of C. By (65) we get that

(wj,u) >0

which contradicts (66). Hence we proved that W is a k-simplex.
Prove now that W N C* is a singleton. Again we argue by contradiction.
If W N C* is empty, then this means that there exists v € He such that

(w,u) >0, YweW. (67)

As before since ¢ belongs to the interior of C. there exists t > 0 such that ¢
is on a face of W. This means that there exists 7 € {1,---,k + 1} such that
{(w;, C +tu) < —=\. By (65) we deduce that (w;,u) < 0 which contradicts (67).
This proves that W N C* is nonempty. Furthermore, it W meets C* in two
points, then a face of W meets C* which is impossible by construction. As a
matter of fact for every face F' of the k-simplex W, there exists an extreme
point (r € C such that (w,(r) < —\ for any w € F. Hence if some w € C*
then this would imply that for any ¢ € C,(w,() = (w,(r) < —\ which is
impossible.

Denote by H the unique affine space of dimension k£ which contains W and
prove that it satisfies the required properties. First since W C K is a simplex
of dimension k, it has dimension k. Moreover it intersects C* at a unique
point. Finally the set of w € H such that there exists ( € C which satisfies
{(w,¢) < —\ is the complement (in H) of the convex open set

{we H: {(w,() >—-\V(eC}.

But this set contains W N C* and does not meet the boundary of W. This
concludes the proof of Lemma 31.

We can improve this lemma if U(Z) = 0. In this case, the hyperplan H is not
affine; it passes through the origin.
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Lemma 32 Assume that ¥(z) = 0. There ezists a vector hyperplan H of
dimension k inNEC which does not contain the vector line C+ and such that
the conver set K N H has dimension k and satisfies

VYw € (K N H),3 € C such that (w, () < —\. (68)

PROOF. We distinguish two cases:
First case: 0 € C.
Set K := PHC(f() where Py, denotes the projection on H¢. Remark that for
any w € K, we have
(w, ¢) = (Pu,(w), ().

As before since the stratum S is isolated in S, for each face F; there exists
w; € K such that

(wi, () < =\, V(€ F.
Set W := co{wy, - - , w1 }; we claim that W is a simplex of dimension k. We
argue by contradiction.
As before if it is not the case, this means that there exists an affine space
L C H¢ of dimension k£ — 1 which contains W. We deduce that there exists
u # 0 in L. Since 0 belongs to the interior of C, there is £ > 0 such that tu
is on a face F; of C. This implies that

(wi,u) < —% <0

which gives that

(w,u) <0, YweW. (69)
But there exists also ¢’ > 0 such that —t'u is on a face Fj. This gives that
(wj,u)y >0
which contradicts (69).
By the same method we can prove that 0 € W. Conse(luently we deduce that
K N H¢ is a k-simplex which contains the set of w € K such that

(w, )y < =\, V(eC.

Hence we conclude that for every w € 8(K N H, there exists ( € C such
that (w,() < —\. From definition of K it is clear that there exists an vector
hyperplan H of dimension k with Py (H) = H¢ such that KN H is a convex
set of dimension k£ and such that (68) is satisfied.
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Second case: 0 ¢ C. B
In this case there exists ¢ € C such that

(w,() =0, YweK.

This means that K is included in the vector hyperplan H := (¢)*. If we set

C := Py (C) where Py denotes the orthogonal projection on H, then we see
that for every ( € C,

(w,¢) = (w, Pu(¢)), Ywe K.

So we can apply the first case. This concludes the proof of Lemma 32.

Lemmas 31 and 32 permits us to show that our control system admits near
each point of an isolated stratum of & a control which makes W and ds
decreasing. Let us state the result precisely in the following lemma.

Lemma 33 Let £ € S\ Sy and let S be a stratum of dimension n — k (k €
{1,---,N}) which is isolated in S and such that T € S. Then there ezists
0z > 0 such that for every x € Byn(Z,0z) \ S C Q satisfying projs(z) € S,
there exists o € B,, which satisfies

(f.a).Q <5, VCeaW(a) (70)

and
(f(z,0),8) >0z, V€ € dds(). (71)

PROOF. Since S is a smooth manifold with boundary in Q, the distance
function to S, denoted by dg is smooth on a neighborhood on S and satisfies
for every point x ¢ S of this neighborhood
Vis(z) = x—ip(x) € Np(:c)g,
|z — p(z)]]

where p(z) is defined by p(z) := projg(z). Consequently since z € S, there
exists some constant ¢ > 0 such that dg and ds coincide on the ball By(z,0).
In particular, this implies that for every z € By (Z,0) \ S,

S Np(w)S. (72)
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On the other hand, recall that the function W is semiconcave in the ball
Bn(Z, ). By Proposition 11, this means that there exists some constant o > 0
such that for every pair of points z,y € By(Z,d) and for any (, € oW (z),
Gy € OW (y), we have

<_Cy + g:c: Yy — .’L') Z _UHy - .’L'||2

By (72) we deduce that for any ( € OW (z) and for any (' € oW (p(z)) we
have,

(¢, €(x)) < (¢, €(x)) + ods(). (73)

Notice that by continuity of f and by smoothness of the manifold S, we just
need to prove the existence of some positive constant d; such that (70) and
(71) hold whenever z is close to Z and such that p(z) = Z. As before, we define
the elements C, K, E¢, He and K for the point z. We distinguish two cases:
First case: ¥(z) < 0.

Let z € By(Z,0) such that x # Z and p(z) = Z. The vector £(z) # 0 belongs
to He hence by Lemma 31 there exist w € (K N H) and ¢ > 0 such that
Py (w) = t&(x), which means that (w,&(z)) = t||{(z)]|* = ¢. On the other
hand, Lemma 31 says also that there is (' € OW(z) such that (w,{’) < —A
which gives by (73) for every ¢ € 0W (x),

We conclude easily.

Second case: ¥(z) = 0.

Since the vector £(z) # 0 belongs to He, Lemma 32 says that there exist
w € (K N H) and t > 0 such that Py, (w) = t£(z), which means that
(w,&(x)) = t. We conclude as before.

The same results holds for strata which are not isolated.

Lemma 34 Let £ € S\ Sx. Then there_ezists 0z > 0 such that for every
x € By(z,0:B) \ S C Q, there erists a € By, which satisfies

(2,00, <5, V(e W), (74)
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and
(f(z,a),&) > 0z, VE € 0ds(z). (75)

PROOF. Let us prove the result in dimension two; the proof in greater di-
mension being more intricated but similar, it is left to the reader. So, let us
assume that 7 € S\ Sy C R?. Necessarly the point Z belongs either to X' (W)
either to X?(W), but since the strata of dimension one are isolated in S, we
ever proved the result in that case; hence we can assume that z belongs to
¥2(W). Moreover notice that by construction of A and S the point Z cannot
be isolated in S, thus we are in the situation of Figure 1. This means that in a
little ball B centered at x, the singular set of W consists in one stratum of di-
mension 0, the singleton {Z}, plus three strata of dimension one, that is three
submanifolds Si, Sz, S3 of dimension one which join at z (we refer the reader
to comments concerning Figure 1 for a complete description of this situation).
As before we denote by (1, (o, (5 the three extreme points of the convex com-
pact set C' := OW (Z) and we denote by R, Ro, R3 the three regions where
the function W is smooth in B. In addition since the distance function ds is
smooth on a neighborhood of each stratum S;, we remark that, changing the
ball B if necessary, we can assume that the generalized gradient of ds writes
for every x € Ry (resp. for every z € Ry and for every z € R3),

52 ) if d52 (.’13) < dSs (.’L‘)
dds(z) = &3(2) if ds, (7) < ds, ()
co[&a (), &3(x)] if ds, (7) = ds,(2),

(x

. z—projg, () . z—projg,(z) :
where &(z) = 7||I_pr0jsz(m)” and &(z) = mzm (resp. with the cor-

responding formulas for x in the two other regions). Let us now prove our
result; since the strata Si,Ss,S3 are not necessarly included in &, different
cases appear:

First case: the three strata S;, S,, S3 are in S.

Let us prove that there exists dz > 0 such that for every x € R, there exists
a € B, for which (74) and (75) hold.

By semiconcavity of the function W, the upper limit of the sets dds(x) when
z € R, tends to Z is included in the set

co{ G-G GG }
162 = Gl 16 — Gull

Therefore it is sufficient to prove that there exists o € B,, such that

(f(@ @), ) < =A (76)
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and

(f(Z,2),8) >0, VE€[G—G,G— Gl (77)

But since the strata S, and S3 belong to S, every control o € B, such that
(f(r @), 1) < —\ satisfies

(f(x,),G) > =X, Vi=1,2,

which implies

(f(z,@),&) >0, VE€[l— (G-l
In conclusion we get that there exists a € B, which satisfies (76) and (77).
The same conclusion hold for the regions R, and R3; we conclude easily.
Second case: one of the S;’s is not in S.
Without loss of generality we can assume that S; does not meet S. If x € B
is in the region R, then the first case gives the result. Otherwise setting
R = Ry UR3 U S, we remark that the upper limit of the sets OW (z) when
x € R tends to Z is included in the segment [(5, (3] and that the upper limit
of the sets dds(xz) when z € R tends to Z is included in the set

{Cl—C2 G —@ }
co .

16 = Gl 16— Gl

Therefore it is sufficient to prove that there exists o € B,, such that

(f(Z,0),0) < =X, V¢ €G] (78)

and

(f(z,6) >0, V&€l —C,0— Gl (79)

But since the stratum S is not in S, there exists a € B,, such that

(f(Z,0),¢) < =X, V(€G-

In consequence since both strata S and S; are in S we deduce that for such
a’

(f(x,2),&) >0,V € [C1 — (2,1 — G5
This conclude the proof of the second case.
Third case: two of the S;’s are not in S.
Without loss of generality we can assume that S, and S3 do not meet S.
Remark that since Sy (resp. S3) does not meet the set S, there exists some
control oy € By, (resp. az € B,,) such that

<f("z"a2)’g> S _A)VC € [ClaCZ]-
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(resp.
<f(j’ 053),<> < _)"VC € [C1’<3]')

On the other hand, since the stratum S; meets S, we have

(f(z,2),G— C2) > 0.

(resp.
<f(‘Ta 0‘3)7 Co — Cs) > 0.)

This implies easily that Lemma 34 holds in the third case.

In order to conclude the construction of our feedback, we need to define the
concept of bifurcation point of a closed-loop system.

Definition 35 Assume that we are given a closed subset F of €2, an open set
U C Q containing F and a feedback o(-) : U — B, which is continuous on
U\ F and such that the corresponding closed-loop system

= f(z,a(x)), (80)

has always local Carathéodory solutions in U (that is for any initial state in
U). Then a point x in F is called a bifurcation point of the feedback a(-) if
there exist t > 0 and a Carathéodory trajectory x(-) of (80) defined on |0, 1]
such that

z(t) = .

Using a locally finite covering of the set S\ S, by the balls given by Lemma 34,
we deduce that we can construct in a neighborhood of § in €2 a feedback which
makes W decreasing and with nice properties of bifurcation (see Lemma below
and Figures 2-3). Furthermore, we remark that the additional assumption we
made on the smoothness of the vector fields fi,-- -, f,, is in fact not necessary.
Actually, the smoothness of the f;’s helped us, by Lemma 26, to truncate easily
and properly the bifurcation strata of the singular set X (W) into Lipschitz
manifolds with boundary, and then to get a nice set S. If the vector fields
are only assumed to be locally Lipschitz, this truncation can be done as well
by cutting properly each bifurcation stratum near some level set of ¥, and
then the construction of the same kind of feedback can be done by adapting
Lemma 34. In any case, basing on Lemma 34 and constructing meticulously
a feedback step by step in a neighborhood of S, we can prove the following:

Lemma 36 There exists some open neighborhood V of the set S, a closed
subset 8 of S and a feedback as(-) : V\ S — R™ such that the following
properties are satisfied:
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S

Fig. 3. Bifurcation of the feedback in the general case

(i) the set S is closed in Q and stratified by strata of dimension less than
N —1;

(i) the feedback as(-) is smooth on V' \ S;

(iii) for every z € V\ S, we have

(f(z,0z(2)), () < —%, V¢ € W ().

(iv) for every x € V, the Carathéodory solutions of © = f(z,as(x)),z(0) = x
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exist locally and satisfy

for any t > 0 such that z(t) € V;

(v) for each stratum S of S of dimension k (k € {1,---,N — 1), the set of
bifurcation points of as(+) in S is a finite union of smooth connected subman-
ifolds of dimension strictly less than k (whenever it is nonempty);

(vi) if we denote by Sy the set of bifurcation points of as(-) in S, then for every
z € S, there exists § > 0 such that © + 6B C V and such that for every y €
SyN (x4 06B), the Cauchy problem & = — f(z, as(z)), 2(0) = y admits locally a
unique solution which can in addition be defined on the interval [0, 0); moreover
the flow of this dynamical system is continuous on Sy N (x + 6B) x [0,). 1

In order to obtain our stabilizing feedback «(-), we now paste as(+) to our first
stabilizing feedback a4 (-). Let W be some open neighborhood of S such that
W C V; we proceed as follows:

Set D :=Q\ S and define the new multifunction G : D — B,, by

o (z) ifx ¢V
G(z) =< {a € B, : Y€ dW(z),{f(z,a),() < =A/2} ifz e V\W
() if z € W.

Since () and «s(-) are continuous and since G is lower semicontinuous on
Y\ W (by Lemma 28 applied with A\ = \/2), it is clear that the multifunction
G is lower semicontinuous on D. Hence by Michael’s Selection Theorem it
admits a continuous selection a(-) on D which satisfies by Lemma 36 (iii) and
by construction of G and a; (),

Yz €D, Ve oW (), (flx, ), C) < _%.

Therefore up to regularize the feedback a(-) by convolution on ¥V \ W if nec-

15 We call flow of the dynamical system & = — f(z, az(x)) on (z + 6B) x [0,6), the
function
0:SyN(x+0B)x[0,8) —V

defined by 6(y,t) := z(t) where z(-) is the unique solution of

i = —f(z, a2(z)),z(0) = y.
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essary, we can assume that a(-) is smooth on D and satisfies

~ A

VQSED, VCEBW(w),<f($,a2($)),€> S _Z

Consequently by Lemma 36 (iv) and by Lemma 29 (applied with A = \/4),

the Carathéodory trajectories z(-) of the closed-loop system z = f(z,a(z)
satisfy for any t > 0,

From properties of W, this proves easily that the feedback a(-) is stabilizing
in the sense of Carathéodory. Furthermore by construction, the bifurcation
points of a(-) correspond exactly to the bifurcation points of as(-). In other
terms, we have proved the following result which will be fundamental for the
proof of Theorem 5.

Theorem 37 If the system (1) is GAC then there exists a feedback a(-) :
RN — B,, and a set S C RN \ {0} which satisfy the following properties:

(i) the set S is closed in Q0 and stratified by strata of dimension less than
N —1;

(i1) the feedback a(-) is smooth in Q\ S;
(i) the closed-loop system & = f(z,a(x)) is GAS in the sense of Carathéodory;

(iv) for every stratum S of S of dimension k (with k € {1,--- ,N —1}), the
set of bifurcations points of «(-) in S is a finite union of smooth connected
submanifolds of dimension strictly less than k (whenever it is nonempty);

(v) if we denote by Sy the set of bifurcation points of a(-) in S, then for every
x € Sy the Cauchy problem & = — f(z, ae(z)), 2(0) = x admits locally a unique
solution which can in addition be defined on the interval [0, 00); moreover the
flow of this dynamical system is continuous on Sy X [0, c0).

We are now ready to prove the main result of the paper.
2.2 Proof of Theorem 5

As we said, Theorem 5 is a direct consequence of Theorem 37. Denote by 6
the flow of the system & = —f(z, a(x)) on S, X [0, 00). For each stratum S of
the set S, we consider Sy defined by

Sp:={0(z,t) : 2 € SN Sy, t > 0}.
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By (iv) and (v) of Theorem 5, this set is a submanifold of RY of dimension less
than N — 1. Thus if we consider S to be the union of all the S, it has measure
zero (since the number of strata of S is at most countable). And moreover by
(i) every = € RV \ § is stabilized to the origin without meeting the set S. To
conclude the proof of Theorem 5, we need the following lemma.

Lemma 38 There exists some function p : RY — [0, 00) which is of class C*
on RN \ {0}, continuous at the origin and such that

(1) p(0) = 0;
(ii) p(x) =0 <=z € S;

(111) Vp(z) =0,Vz € S.

PROOF. The closure of each stratum S of the set S is a smooth submanifold
with boundary. Hence the function

x> dg(x)?
is of class C' on a neighborhood of S and satisfies
V[d%](z) =0,Vz € S.

This means that for each stratum S of the set S, there exists a function
hs : RY — [0,1] of class C! which satisfies

hs(z)=0<==z€S
Vhs(z) =0,z € S.

Since the set S is a locally finite union of such strata in Q = R \ {0}, this
means that on each open subset @ C 2 which is relatively compact in §2 (i.e.
such that O C ), the set S is included in finite union of strata Si,--- ,S).
Define on O the function k» by

Vz € O, ko(r) = ||z|[Iiihs,(2) (< |l=]])-

It is straightforward to show that the function ko satisfies the assertions (ii)
and (iii) on O. Consequently, we conclude by pasting together the different
functions hp by a smooth partition of unity subordonated to a locally finite
(and relatively compact) covering of €.

Now set for every z € R,



The feedback @&(-) is clearly continuous on RY and of class C'! where a(-) is
smooth, that is outside {0} U S. Besides since Vp = 0 on S, we get that &(-)
is of class C* on the set 8. Furthermore since the scalar function has positive
values outside {0}US, it is straightforward to show that the closed-loop system

& = f(z,a(z))

is AGAS, which completes the proof of Theorem 5.

3 Additionnal comments on the two preceeding sections

3.1 Control systems with drift

We could wonder if Theorem 5 holds in the general case of control system
with drift, of the form

= f(z,a) = fo(x)-i-zaifi(x)a (81)
i=1
where fy, f1,---, fm are locally Lipschitz vector fields on RY and where the

control « is in B,,. The answer is no! This gives us the opportunity to draw
attention to the importance of the Lyapunov stability in the conclusions of
Theorem 5. The absence of drift permitted us to vanish the dynamics at the
points of discontinuity of the repulsive stabilizing feedback and hence to avoid
the escape of the state far from the equilibrium. However in the case of a
control system with drift, we cannot vanish the dynamics and then we cannot
insure the Lyapunov stability of the smooth AGAS feedback. In fact, one sees
easily that Theorem 37 remains in the case of GAC control systems with drift.
Hence it is natural to ask the following:

Open Question If the system (81) is GAC, does there exist a smooth (outside
the origin) feedback a(-) : R* — R™ such that for almost every x € RY | the
solution of the closed-loop system

2(t) = folxz(t)) + iai(x(t))fi(x(t)); 2(0) =z

i=1

converge to the origin as t tends to infinity?
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3.2 Control systems on manifolds

All the results that we develop in the present paper remain on smooth man-
ifolds. If we want to prove Theorems 3 on a smooth manifold, we have to
apply the same procedure of regularization as the one given in Section 1.4.
Let be given a semiconcave control-Lyapunov function for the system (1) on a
smooth manifold M (of course this means that (1) is defined by vector fields
defined on a smooth manifold M), starting from a open cube included in some
chart, we regularize step by step the CLF everywhere. From Theorem 3, we
can prove the existence of AGAS feedbacks by the construction given in Sec-
tions 2.1 and 2.2. Since we do not want to write these results and hence to
have to introduce the natural notions of viscosity solutions and semiconcavity
on smooth manifolds, we prefer stoping our remark here. We notice that if
the reader just wants to develop our results on a smooth submanifold of the
Euclidean space (which is indeed sufficent by Whitney’s embedding Theorem),
he can read the paper of Sontag [37] which explains how to extend a given
system to the ambiant space and then to use the known results in the case of
the Euclidean space.

3.8  Invariance, repulsivity and last comments

In Theorem 37, we constructed a stabilizing feedback «(-) (in the sense of
Carathéodory) which is smooth outside a certain closed set S (closed in RY \
{0}). As we saw, the set RY \ S is not necessarily invariant with respect to
the closed-loop system given by «(-); some bifurcation singularities can appear
along the trajectories of the system. We can wonder if it is possible to construct
a closed set S in RY \ {0} and a stabilizing feedback «(-) such that the set
RV \ S is invariant under the dynamics & = f(z, a(z)). The answer is probably
no; Theorem 37 allows us to construct such an invariant couple (S, @) but the
set S has no reason to be closed. Let us state the following definition (see [6]):

Definition 39 The closed-loop system (2) is said to be almost (smoothly)
exponentially stable in the region R C RY if the feedback (-) is smooth'® on
R and if the following holds:

(1) for all initial state xy € R the closed-loop system (2) admits a unique
solution and this solution remains in R for allt > 0;

(ii) there exists a continuous positive definite function ¥ : RN — R such that

16 We have to make clear what we mean by smooth if the set R is not open. We
say that a(-) — By, is smooth if there exists an open set D wich contains €2 and a
smooth function o/(-) : D — By, such that o/(-) = a(-) on R.
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for all t > 0 one has, along the trajectories of the closed-loop system,

U(z(t)) < ¥(zo)e ™.

As we said above, Theorem 37 leads naturally to the following:

Theorem 40 If the system (1) is GAC then there exists a dense subset R C
RY of full measure and a feedback o(-) : Q — B,, such that the closed-loop
system (2) is almost exponentially stable.

PROOF. According to the proof of Theorem 5, we set R := RY \ S and the
result follows.

As we said above, the region R that we construct may not be open. Hence
one question arises:

Open Question Under what condition on the GAC control system (1) does
there ezist an open dense set D of RN \ {0} associated with a smooth feedback
ap(-) : D — R™ such that the closed-loop system & = f(z,ap) is GAS at the
origin and such that D is invariant with respect to this system ¢

In [28], we saw that some control systems possess a stronger property of
stabilizability. There are systems which admit a stabilizing feedback in the
sense of Carathéodory which is smooth on an open dense set of full measure
D c RY \ {0}, and such that every Carathéodory solution of the closed-loop
system evolves in D for any positive time (this property is stronger than the
invariance of D). We say that such control systems possess a smooth repul-
sive stabilizing (SRS) feedback. In [28], we showed some control systems which
cannot have SRS feedbacks and we gave some sufficient conditions on the CLF
of a control system which imply the existence of SRS feedbacks. The problem
of the existence of SRS feedbacks seems quite difficult; we refer the reader to
[32,33] for first results on this problem.

Acknowledgments. The author is very indebted to the referee who read the
paper with great care, pointed out a large number of misprints and detected
a serious error in the first version of the paper.
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Appendix

Here we present an important corollary of a result concerning semiconcavity,
which was proven by Alberti, Ambrosio and Cannarsa in [2] (the reader is also
refered to the recent book on semiconcavity written recently by Cannarsa and
Sinestrari, see [11]). Given a semiconcave function

u: Q) =R,

they established a link between the Boulingand’s contingent cone to the singu-
lar set 3(u) at = € 2, and the generalized gradient Ju(z). Below, we prove this
result in the very particular case of semiconcave function with nice singular
set.

Assume that there exists k € {1,---, N} and a set S C Q which satisfy the
following properties:
(a) S is a smooth submanifold (without boundary) of dimension N — k in €,
(b) there exists £+ 1 maps (i(+), - -, (x+1(+) which are smooth on S and such
that for every z € S,

aU(.’E) = CO{Cl(x)a e ,<k+1(.’13)},
(c) for every x € S, the convex set Ju(x) has dimension k.
If A is a given set in RV, we denote by A+ the set defined by

At ={peRY : ¢+ (q,p) is constant on A}.

The following result follows.

Proposition 41 For every x € S,

T,S = Ou(x)*.

PROOF. Fix p € T,S and prove that p € du(x)*. Let (1, € du(x); we
have to prove that ((i,p) = ({2, p)-

First, note that without loss of generality we can assume that ||p|| = 1. By
definition of the tangent space, there exists a sequence (x,), in S such that

Moreover by (b), there exists some sequence (g,), which converges to (, in
RY . In addition by Proposition 10, there exists ¢ > 0 and some neighborhood
V of z such that
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—u(z) +u(y) +ollz — yl* > (¢, 2 —v),

for all y,z € V and ¢ € Ou(y). Applying this inequality with y = z, z = z,,
and ¢ = (; gives for each n,

—u(z,) +u(z) + ol|z, — 2| > (=G, 20 — 2).

Now applying the same inequality with y = z,,, 2 = = and ( = g, gives for
each n,

—u(z) +u(z,) + oz — 24||* > (=g, x — ).
Summing both inequalities and letting n — oo implies

(C2yp) < (C1yp)-

Inverting the roles played by (; and (5, we conclude.

Prove now that du(z)t C T,S. By (c), Ou(x)* is a vector subspace of di-
mension N — k, hence it coincides with T,S. The proof of Proposition 41 is
complete.
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