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1. Introduction

Throughout this paper, M denotes a smooth connected manifold of dimen-
sion n and x̄ a point of M .

1.1. Stabilization of nonholonomic control systems

Let f1, · · · , fm be a family of m smooth vector fields on M . We say that
the control system defined as,

ẋ =
m∑

i=1

uifi(x), (1)

is nonholonomic on M (also called totally nonholonomic in Ref. 1) if the
following property is satisfied:

Lie {f1, · · · , fm} (x) = TxM, ∀x ∈ M.

Recall that, for every x ∈ M and every control u(·) ∈ L1([0,∞); Rm), there
is a unique maximal solution x(·) = x(·;u, x) : [0, Tu) → M (with Tu > 0)
to the Cauchy problem

ẋ(t) =
m∑

i=1

ui(t)fi(x(t)), for a.e. t ∈ [0, Tu), x(0) = x.
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As the next result shows, any nonholonomic control system is controllable
on M (see Refs. 2 or 3).

Theorem 1.1 (Chow-Rashevsky Theorem). Let (1) be a nonholo-
nomic control system on M . Then, for every pair x, y ∈ M , there exists
a smooth control u(·) : [0, 1] → Rm such that x(1;u, x) = y.

Before presenting the stabilization problem, we need to recall the notion
of globally asymptotically stable dynamical system. Let X be a smooth
vector field on M , the dynamical system ẋ = X(x) is said to be globally
asymptotically stable at the point x̄ (abreviated GASx̄ in the sequel), if the
two following properties are satisfied:

(i) Lyapunov stability: for every neighborhood V of x̄, there exists a
neighborhood W of x̄ such that, for every x ∈ W, the solution of
ẋ(t) = X(x(t)), x(0) = x, satisfies x(t) ∈ V, for every t ≥ 0.

(ii) Attractivity: for every x ∈ M , the solution of ẋ(t) = X(x(t)), x(0) = x,

tends to x̄ as t tends to +∞.

The purpose of the stabilization problem is the following:
Let (1) be a given nonholonomic control system, does there exist a smootha

mapping k : M → Rm (called stabilizing feedback) such that the dynamical
system (called closed-loop system) defined as,

ẋ =
m∑

i=1

k(x)ifi(x) (2)

is GASx̄ ?

1.2. Stabilization problem for nonholonomic distributions

Let ∆ be a (totally) nonholonomic distribution of rank m ≤ n on M . This
means that for every x ∈ M , there is a neighborhood Vx of x in M and a
m-tuple (fx

1 , · · · , fx
m) of smooth vector fields on Vx such that

∆(y) = Span {fx
1 (y), · · · , fx

m(y)} , ∀y ∈ Vx,

and moreover,

Lie {fx
1 , · · · , fx

m} (y) = TyM, ∀y ∈ M.

aWe restrict here our attention to smooth stabilizing feedbacks. In fact, it can be shown
that if the control system (1) admits a continuous stabilizing feedback then this feedback
can be regularized into a smooth stabilizing feedback.
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We call horizontal path between x to y, any absolutely continuous curve
γ(·) : [0, 1] → M with γ(0) = x, γ(1) = y which satisfies

γ̇(t) ∈ ∆(γ(t)), for a.e. t ∈ [0, 1].

In the context of nonholonomic distribution, the Chow-Rashevsky Theorem
takes the following form.

Theorem 1.2. Let ∆ be a nonholonomic distribution on M . Then, any
two points of M can be joined by a smooth horizontal path.

The stabilization problem for nonholonomic distributions consists in
finding, if possible, a smooth stabilizing section of ∆ at x̄, that is, a smooth
vector field X on M satisfying X(x) ∈ ∆(x) for every x ∈ M and such that
the dynamical system ẋ = X(x) is GASx̄.

1.3. Two obstructions

Given a nonholonomic control system (resp. a nonholonomic distribution),
there are two obstructions to the existence of stabilizing feedbacks (resp.
stabilizing sections). The first one is global while the second one is purely
local.

(i) Global obstruction: If fact, if the manifold M admits a smooth dynam-
ical system which is GASx̄, then it must be homeomorphic to Rn (see
Ref. 4 for further details).

(ii) Local obstruction: Since this obstruction is local, we can assume that
we work in Rn, that is, in an open neighborhood U ⊂ Rn of x̄. If there
is a smooth vector field X on U which is locally asymptotically stable
at x̄, then for all ε small enough,

∃δ > 0 such that δB ⊂ X(x̄ + εB),

where B denotes the open unit ball in Rn (see Ref. 4 for further details).
In consequence, if there is a smooth feedback k : U → Rm such that the
closed-loop system (2) is locally asymptotically stable at x̄, then the
result above applies to the dynamics X(x) =

∑m
i=1 k(x)ifi(x). Thus,

for all ε small enough,

∃δ > 0 such that δB ⊂

{
m∑

i=1

uifi(x̄ + εB) | u ∈ Rm

}
,

which is the Brockett necessary condition (see Ref. 5). In particular, we
deduce that any distribution ∆ of rank m < n cannot admit a smooth
locally stabilizing section at x̄.
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The obstructions above make it impossible to prove the existence of
smooth stabilizing feedbacks (resp. sections) for nonholonomic control sys-
tems (resp. distributions). Actually, they motivate the design of new kinds
of stabilizing feedbacks. The main contributions in that direction have been:
Sussmann,6 Coron,7 Clarke, Ledyaev, Sontag and Subbotin,8 and Ancona
and Bressan.9 The aim of the present paper is to highlight the notion of
smooth repulsive stabilizing feedbacks (or sections) and to show that it
permits to stabilize most of the nonholonomic control systems (or distribu-
tions).

2. Examples

2.1. The Nonholonomic integrator

Define in R3 the two smooth vector fields f1, f2 by,

f1 =
∂

∂x1
+ x2

∂

∂x3
and f2 =

∂

∂x2
− x1

∂

∂x3
.

Note that at any point x ∈ R3, the three vectors f1(x), f2(x), [f1, f2](x) are
linearly independent. Hence the associated control system

ẋ = u1f1(x) + u2f2(x),

is nonholonomic on R3. As it is well-known, the nonholonomic integrator
can be stabilized at the origin by a feedback which is smooth outside the
vertical line. Denote by S the vertical line of equation x1 = x2 = 0 in R3.
Using an adapted control-Lyapunov function (see Refs. 10 or 11 for further
details), we can construct a mapping k = (k1, k2) : R3 7→ R2 in such a way
that the following properties are satisfied:

(i) The mapping k is locally bounded and smooth on M \ S.
(ii) The set R3 \ S is invariant with respect to the dynamical system

ẋ = k1(x)f1 + k2(x)f2(x),

and steers asymptotically all its trajectories to the origin.

In fact, the feedback above can be extended to the whole space R3. In
this way, we can construct a feedback which is smooth outside S, discon-
tinuous at the points of S, and for which the closed-loop system is GASx̄

in the sense of Carathéodory (see below). Such a feedback is an example of
what we call a smooth repulsive stabilizing feedback.
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2.2. The Riemannian case

Assume through this paragraph that the nonholonomic distribution ∆ is
given by ∆(x) = TxM for every x ∈ M , our aim is to show how to con-
struct a stabilizing section for ∆. For that, consider a smooth and complete
Riemannian metric g on M and denote by dg the Riemannian distance as-
sociated with g. We recall that, for any x, y ∈ M , the Riemannian distance
between x and y is defined as

dg(x, y) = inf
{
lengthg(γ(·))

}
, ∀x, y ∈ M,

where the infimum is taken over all the C1 paths γ(·) : [0, 1] → M joining
x to y, and where

lengthg(γ(·)) =
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

Let Vg : M → R be the function defined by

Vg(x) = dg(x̄, x)2, ∀x ∈ M.

It is easy to show that Vg is Lipschitz continuous on M and smooth outside
the set S defined as the cut-locusb from the point x̄. Define the vector field
X on M by

X(x) = −∇gVg(x), ∀x ∈ M \ S,

where ∇gVg(x) denotes the gradient of Vg at x with respect to the metric
g. By construction, any trajectory of ẋ(t) = X(x(t)) tends to x̄ as t → ∞
and satisfies the following property:

∀t ≥ 0, x(t) /∈ S.

In fact, X can be extended into a global section of ∆ on M which is smooth
outside the cut-locus from x̄, discontinuous at the points of S and whose
the associated dynamics drives all its Carathéodory trajectories asymtpti-
cally to x̄. Such a stabilizing section corresponds to what we call a smooth
repulsive stabilizing section of ∆ on M .

3. Smooth repulsive stabilization

Our aim is now to make precise the notions of smooth repulsive stabilizing
feedbacks or sections, and to show what kind of results we are able to prove.

bThe cut-locus from x̄ is defined as the closure of the set where Vg is not differentiable.
We refer the reader to Ref. 12 for a detail study of the distance function and the cut-locus
from x̄.



February 28, 2007 15:57 WSPC - Proceedings Trim Size: 9in x 6in procRIFFORD

6

3.1. SRSx̄,S vector fields

Let S be a closed subset of M and X be a smooth vector field on M .
The dynamical system ẋ = X(x) is said to be smooth repulsive globally
asymptotically stable at x̄ with respect to S (denoted in short SRSx̄,S) if the
following properties are satisfied:

(i) The vector field X is locally bounded on M and smooth on M \ S.
(ii) The dynamical system ẋ = X(x) is globally asymptotically stable at

x̄ in the sense of Carathéodory, namely, for every x ∈ M , there exists
a solution of

ẋ(t) = X(x(t)), for almost every t ∈ [0,∞), x(0) = x, (3)

and, for every x ∈ M , every solution of (3) (called Carathéodory solu-
tion of ẋ = X(x)) on [0,∞) tends to x̄ as t tends to ∞. Moreover, for
every neighborhood V of x̄, there exists a neighborhood W of x̄ such
that, for x ∈ W, the solutions of (3) satisfy x(t) ∈ V, for every t ≥ 0.

(iii) For every x ∈ M , the solutions of (3) satisfy x(t) /∈ S, for every t > 0.

Given the nonholonomic control system (1), we shall say that a map-
ping k : M → Rm is a smooth repulsive stabilizing feedback at x̄ (denoted in
short SRSx̄ feedback) for (1), if it is locally bounded on M and if there is a
closed set S ⊂ M such that k is smooth on M \ S and such that its associ-
ated closed-loop system is SRSx̄,S . In the same way, given a nonholonomic
distribution ∆ and a vector field X on M , we shall say that X is a smooth
repulsive stabilizing section at x̄ (denoted in short SRSx̄ section) for ∆, if
X is a section of ∆ on M and if the dynamical system ẋ = X(x) is SRSx̄,S
for some closed set S ⊂ M .

3.2. Existence results of SRSx̄ feedbacks

Using a technique of cancellation of the bifurcation points of a “discontin-
uous” stabilizing feedback, we proved in Ref. 13 the following result:

Theorem 3.1. If M has dimension two, any nonholonomic control system
of the form (1) admits a SRSx̄ feedback.

Using the classical method of local approximation of a nonholonomic
control systems by an homogeneous one together with the technique of
cancellation developed on surfaces, we were able in Ref. 14 to demonstrate
the following result:
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Theorem 3.2. If M has dimension three, any nonholonomic control sys-
tem of the form (1) admits a SRSx̄ feedback defined on a neighborhood of
x̄.

We refer the interested reader to Refs. 13 and 14 for more details on
these results.

3.3. Existence results of SRSx̄ sections

The method presented above in the Riemannian case can also be developed
in the sub-Riemannian setting; we need for that to introduce material of
sub-Riemannian geometry. Let ∆ be a nonholonomic distribution of rank
m ≤ n on M , the set of horizontal paths γ(·) : [0, 1] → M such that
γ(0) = x̄, denoted by Ω∆(x̄), endowed with the W 1,1-topology, inherits of a
Banach manifold structure (see Ref. 15 for further details). The end-point
mapping from x̄ is the mapping Ex̄ : Ω∆(x̄) → M defined by

Ex̄(γ(·)) = γ(1), ∀γ(·) ∈ Ω∆(x̄);

it is a smooth mapping on Ω∆(x̄). A path γ(·) is said to be singular if it
is horizontal and if it is a critical point of the end-point mapping Ex̄, that
is, if the differential of Ex̄ at γ(·) is not a submersion. Let g be a smooth
Riemannian metric on M , the sub-Riemannian distance dSR(x, y) between
two points x, y of M is defined by

dSR(x, y) = inf
{
lengthg(γ(·)) | γ(·) ∈ Ω∆(x̄)

}
.

According to the Chow-Rashevsky Theorem, since ∆ is nonholonomic on
M , the sub-Riemannian distance is well-defined and continuous on M ×
M . Moreover, if the manifold M is a complete metric spacec for the sub-
Riamannian distance dSR, then, since M is connected, for every pair x, y

of points of M there exists an horizontal path γ(·) : [0, 1] → M joining x

to y such that

dSR(x, y) = lengthg(γ(·)).

Such a horizontal path is said to be minimizing. The following result has
been obtained recently with Trélat (see Ref. 15).

Theorem 3.3. Let ∆ be a smooth nonholonomic distribution of rank m ≤
n on M . Assume that there exists a smooth Riemannian metric g on ∆ for

cNote that, since the distribution ∆ is nonholonomic on M , the topology defined by
the sub-Riemannian distance dSR coincides with the original topology of M (see Refs 2
or 3).
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which M is complete and no nontrivial singular path is minimizing. Then,
there exist a section X of ∆ on M , and a closed nonempty subset S of M ,
of Hausdorff dimension lower than or equal to n−1, such that X is SRSx̄,S .

Note that if m = n, then obviously there exists no singular path (it is
the Riemannian case). In fact, the main assumption of Theorem 3.3 (the
absence of nontrivial singular minimizing paths) is automatically satisfied
for a large class of sub-Riemannian structures such as the fat distributions
or the medium-fat distributions associated with a generic metric (we refer
the reader to Ref. 15 for further details). Here, we just want to emphasize
the fact that the main assumption of Theorem 3.3 is satisfied generically
for distributions with rank greater than two.

Let m ≥ 3 be a positive integer and Gm be the set of pairs (∆, g), where
∆ is a rank m distribution on M and g is a smooth Riemannian metric on
∆, endowed with the Whitney C∞ topology. It is shown in Ref. 16 that
there exists an open dense subset Wm of Gm such that every element of
Wm does not admit nontrivial minimizing singular paths. This means that,
for m ≥ 3, generically, the main assumption of Theorem 3.1 is satisfied.
Therefore, as a by-product of the Chitour-Jean-Trélat Theorem, we have
the following result:

Corollary 3.1. A generic nonholonomic distribution of rank ≥ 3 admits
a SRSx̄ section.

We notice that in Ref. 15, we are able to remove, in the compact and
orientable three-dimension case, the assumption on the absence of singular
minimizing paths. We refer the interested reader to Ref. 15 for further
details on that result.

3.4. A Nonholonomic dream

In view of the results presented here, one might hope that the following
conjecture is true.

Conjecture. Any nonholonomic control system admits a SRS feedback.
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