# Sur les variétés riemanniennes jouissant de bons transports optimaux

#### Ludovic Rifford

Université de Nice - Sophia Antipolis

(en collaboration avec A. Figalli et C. Villani)

I. Introduction

## Problème de transport optimal de Monge dans $\mathbb{R}^n$

Soit  $\mu_0$  et  $\mu_1$  deux mesures de probabilités à support compacts dans  $\mathbb{R}^n$ .

On appelle **application de transport** entre  $\mu_0$  et  $\mu_1$  toute application mesurable  $T: \mathbb{R}^n \to \mathbb{R}^n$  telle que  $T_{\sharp}\mu_0 = \mu_1$ , c'est à dire

$$\mu_1(B) = \mu_0(T^{-1}(B)), \quad \forall B \text{ mesurable } \subset \mathbb{R}^n.$$

**Problème de Monge** : Étude des applications de transport  $T: \mathbb{R}^n \to \mathbb{R}^n$  qui minimisent le coût de transport

$$\int_{\mathbb{R}^n} |T(x)-x| d\mu_0(x).$$

Existence ? Unicité ? Régularité ?



## Rappels de géométrie riemannienne

Soit (M, g) une variété riemannienne compacte connexe de dimension  $n \ge 2$  et  $d_g$  la **distance géodésique** sur M.

Pour tout  $x \in M$ , on appelle **exponentielle en** x, l'application définie par

$$\begin{array}{cccc} \exp_{\mathsf{x}} : \ T_{\mathsf{x}} M & \longrightarrow & M \\ v & \longmapsto & \exp_{\mathsf{x}}(v) := \gamma_{v}(1), \end{array}$$

où  $\gamma_{\nu}:[0,1]\to M$  est la géodésique partant de x avec vitesse  $\nu$ . En particulier,

$$d_{g}(x, \exp_{x}(v)) \leq \log_{g}(\gamma_{v}) = \sqrt{g_{x}(v, v)} =: \|v\|_{x}.$$



## Transport optimal sur les variétés riemanniennes

Soit  $c: M \times M \to [0, \infty)$  le **coût quadratique** défini par

$$c(x,y) := \frac{1}{2}d_g(x,y)^2 \quad \forall x,y \in M.$$

Soit  $\mu_0, \mu_1$  deux mesures (boréliennes) de probabilité  $\mu_0, \mu_1$  sur M.

Problème de transport optimal quadratique : Étude des applications de transport  $T:M\to M$  ( $T_{\sharp}\mu_0=\mu_1$ ) qui minimisent

$$\int_{M} c(x, T(x)) d\mu_{0}(x)$$

Existence ? Unicité ? Régularité ?



#### Le théorème de Brenier-McCann

#### Théorème (McCann '01)

Si  $\mu_0$  est absolument continue par rapport à la mesure de Lebesgue, il existe une unique application de transport optimale pour le coût de transport

$$\int_{M} c(x, T(x)) d\mu_0(x).$$

En fait, il existe une fonction semiconvexe  $\psi: M \to \mathbb{R}$  telle que

$$T(x) = \exp_x (\nabla \psi(x))$$
  $\mu_0 \text{ p.p. } x \in \mathbb{R}^n.$ 



## La propriété TCP

On dit que la variété riemannienne (M,g) vérifie **TCP** (pour Transport Continuity Property) si la propriété suivante est satisfaite :

Pour toute paire de mesures de probabilité  $\mu_0, \mu_1$  associées à des **densités continues strictement positives**  $\rho_0, \rho_1$ , c'est à dire

$$\mu_0 = \rho_0 \text{vol}_g, \quad \mu_1 = \rho_1 \text{vol}_g,$$

l'application de transport optimale entre  $\mu_0$  et  $\mu_1$  est **continue**.



II. Conditions nécessaires

#### Conditions nécessaires

#### Théorème (Villani '09, Figalli-R-Villani)

Si(M,g) vérifie **(TCP)**, les propriétés suivantes sont satisfaites :

- tous les domaines d'injectivités sont convexes,
- le coût  $c = \frac{1}{2}d_g^2$  est régulier.

## Domaines d'injectivité

Soit  $x \in M$  fixé. On appelle **domaine d'injectivité** de x, le sous-ensemble de  $T_xM$  défini par

$$\mathcal{I}(x) := \left\{ v \in \mathcal{T}_x M \,\middle|\, \begin{array}{c} \gamma_v \text{ est l'unique g\'eod\'esique minimisante} \\ \text{entre } x \text{ et } \exp_x(v) \end{array} \right\}.$$

C'est un ouvert borné étoilé (par rapport à  $0 \in T_xM$ ) à bord Lipschitz.

## Coûts réguliers

Le coût  $c = \frac{1}{2}d_g^2/2 : M \times M \to \mathbb{R}$  est dit **régulier**, si pour tout  $x \in M$  et tout  $v_0, v_1 \in \mathcal{I}(x)$ , on a

$$v_t := (1-t)v_0 + tv_1 \in \mathcal{I}(x) \qquad \forall t \in [0,1],$$

et

$$c(x', y_t) - c(x, y_t) \ge \min (c(x', y_0) - c(x, y_0), c(x', y_1) - c(x, y_1)),$$

pour tout  $x' \in M$ , avec  $y_t := \exp_x v_t$ .



## Le tenseur de Ma-Trudinger-Wang

Le tenseur  $\mathbf{MTW}$  noté  $\mathfrak S$  est défini par :

$$\mathfrak{S}_{(x,v)}(\xi,\eta) = -\frac{3}{2} \left. \frac{d^2}{ds^2} \right|_{s=0} \left. \frac{d^2}{dt^2} \right|_{t=0} c\left( \exp_x(t\xi), \exp_x(v+s\eta) \right),$$

pour tout  $x \in M$ ,  $v \in \mathcal{I}(x)$ , et  $\xi, \eta \in T_x M$ .

#### Proposition (Villani '09, Figalli-R-Villani)

Supposons que tous les domaines d'injectivité de (M,g) sont convexes. Alors les deux propriétés suivantes sont équivalentes :

- Le coût  $c = \frac{1}{2}d_g^2$  est régulier.
- Le tenseur **MTW** est  $\geq 0$ , c'est à dire qu'on a pour tout  $x \in M, v \in \mathcal{I}(x)$ , et  $\xi, \eta \in T_x M$ ,

$$\langle \xi, \eta \rangle_{\mathsf{x}} = 0 \implies \mathfrak{S}_{(\mathsf{x}, \mathsf{v})}(\xi, \eta) \geq 0.$$

#### Conditions nécessaires

#### Théorème (Villani '09, Figalli-R-Villani)

Si (M,g) vérifie **(TCP)**, les propriétés suivantes sont satisfaites :

- tous les domaines d'injectivité sont convexes,
- le coût c est régulier,
- le tenseur  $\mathfrak{S}$  est > 0.

Par une observation dûe à Loeper, pour tout  $x \in M$  et toute paire de vecteurs unitaires tangents orthogonaux  $\xi, \eta \in T_x M$ , on a

$$\mathfrak{S}_{(x,0)}(\xi,\eta)=\sigma_x(P),$$

où P est le plan engendré par  $\xi$  et  $\eta$ , et  $\sigma_x(P)$  est la courbure sectionelle de M par rapport à P. On a par conséquent :

**TCP** 
$$\Longrightarrow$$
  $\sigma \ge 0$ .



III. Conditions suffisantes

#### Conditions suffisantes

#### Théorème (Figalli-R-Villani)

Supposons que (M, g) satisfait les propriétés suivantes :

- tous les domains d'injectivités sont strictement convexes,
- le tenseur **MTW** est > 0, c'est à dire que pour tout  $x \in M, v \in \mathcal{I}(x)$ , et  $\xi, \eta \in \mathcal{T}_x M$ , on a

$$\langle \xi, \eta \rangle_{x} = 0 \implies \mathfrak{S}_{(x,v)}(\xi, \eta) > 0.$$

Alors (M, g) vérifie **TCP**.



IV. Exemples

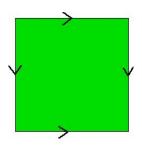
## Le tore plat

Le tenseur **MTW** sur le tore plat  $(\mathbb{T}^n, g^0)$  vérifie

$$\mathfrak{S}_{(x,v)} \equiv 0 \qquad \forall x \in \mathbb{T}^n, \forall v \in \mathcal{I}(x)$$

#### Théorème (Cordero-Erausquin '99)

Le tore plat  $(\mathbb{T}^n, g^0)$  vérifie **TCP**.





## Les sphères rondes

Loeper a le premier vérifié que le tenseur **MTW** de la sphère ronde  $(\mathbb{S}^n, g^0)$  satisfait pour tout  $x \in \mathbb{S}^n$ ,  $v \in \mathcal{I}(x)$  et  $\xi, \eta \in \mathcal{T}_x \mathbb{S}^n$ ,

$$\langle \xi, \eta \rangle_x = 0 \implies \mathfrak{S}_{(x,v)}(\xi, \eta) \ge \|\xi\|_x^2 \|\eta\|_x^2.$$

#### Théorème (Loeper '06)

La sphère ronde  $(\mathbb{S}^n, g^0)$  vérifie **TCP**.





### Quotients riemanniens

Soit G un groupe discret d'isométries agissant librement et proprement sur (M,g) acting freely and properly. Alors il existe sur la variété quotient N=M/G une unique métrique riemannienne h qui fait de la projection canonique  $p:M\to N$  un revêment riemannien.

#### Théorème (Delanoe-Ge '08)

Si (M,g) vérifie **TCP**, alors (N = M/G, h) vérifie **TCP**.

Exemples :  $(\mathbb{RP}^n, g^0)$ , la bouteille de Klein plate.



#### Submersions riemanniennes

On appelle **submersion riemannienne** de (M,g) vers (N,h) toute submersion lisse  $p:M\to N$  telle que pour tout  $x\in M$ , la différentielle  $d_xp$  est une isométrie de  $H_x$  vers  $T_{p(x)}N$ , où  $H_x\subset T_xM$  est le **sous-espace horizontal** défini par

$$H_{\mathsf{x}} := \left\{ \left( d_{\mathsf{x}} p \right)^{-1} (0) \right\}^{\perp}.$$

#### Théorème (Kim-McCann '08)

Si (M,g) vérifie  $\mathbf{MTW} > 0$  (resp.  $\geq 0$ ), alors (N,h) vérifie  $\mathbf{MTW} > 0$  (resp.  $\geq 0$ ).

Exemples: les espaces projectifs complexes  $(\mathbb{CP}^k, g^0)$  (dim = 2k), les espaces projectifs quaternioniens  $(\mathbb{HP}^k, g^0)$  (dim = 4k).

# Petites déformations de $(\mathbb{S}^2, g^0)$

Sur  $(\mathbb{S}^2, g^0)$ , le tenseur **MTW** est donné par

$$\begin{split} \mathfrak{S}_{(x,v)}(\xi,\xi^{\perp}) \\ &= 3 \left[ \frac{1}{r^2} - \frac{\cos(r)}{r\sin(r)} \right] \xi_1^4 + 3 \left[ \frac{1}{\sin^2(r)} - \frac{r\cos(r)}{\sin^3(r)} \right] \xi_2^4 \\ &\quad + \frac{3}{2} \left[ -\frac{6}{r^2} + \frac{\cos(r)}{r\sin(r)} + \frac{5}{\sin^2(r)} \right] \xi_1^2 \xi_2^2, \end{split}$$

avec 
$$x \in \mathbb{S}^2$$
,  $v \in \mathcal{I}(x)$ ,  $r := ||v||_x$ ,  $\xi = (\xi_1, \xi_2)$ ,  $\xi^{\perp} = (-\xi_2, \xi_1)$ .

#### Théorème (Figalli-R '09)

Toute petite déformation de la sphère ronde  $(\mathbb{S}^2, g^0)$  en topologie  $C^4$  vérifie **TCP**.



## **Ellipsoides**

L'ellipsoide de révolution  $(E_{\epsilon})$  dans  $\mathbb{R}^3$  d'équation

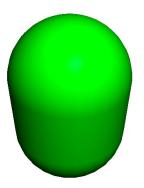
$$\frac{\mathit{x}^2}{\mathit{\epsilon}^2} + \mathit{y}^2 + \mathit{z}^2 = 1, \quad \text{ with } \mathit{\epsilon} = 0.29,$$

ne vérifie pas MTW > 0.



#### Sauts de courbure

La surface faite de deux hémisphères liés par un tube cylindrique n'a pas un coût régulier.



Donc, il ne vérifie pas TCP.



## Petites déformations de $(\mathbb{S}^n, g^0)$

#### Théorème (Figalli-R-Villani'09)

Toute petite déformation de la sphère ronde  $(\mathbb{S}^n, g^0)$  en topologie  $C^4$  vérifie **TCP**.

On en déduit en particulier que tous les domaines d'injectivité de petites perturbations  $C^4$  de  $(\mathbb{S}^n, g^0)$  sont convexes.

V. Perspectives

## Perspectives

#### Théorème (Conditions nécessaires)

Si(M,g) vérifie **(TCP)**, alors :

- tous les domaines d'injectivité sont convexes,
- *le tenseur* **MTW** *est*  $\geq 0$ .

#### Theorem (Conditions suffisantes)

Si(M,g) satisfait les deux propriétés suivantes :

- tous les domaines d'injectivité sont strictement convexes,
- *le tenseur* MTW *est* > 0,

alors elle vérifie TCP.

A-t-on équivalence ? Plus d'exemples ? Stabilité ?

