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Framework

Let M denote a compact, connected, smooth manifold.

Let L : TM → IR be a C k (k ≥ 2) Lagrangian satisfying the
following properties:

Strict convexity. ∀(x , v) ∈ TM , the second derivative

along the fibers ∂2L(x ,v)
∂v2 is positive definite.

Superlinear growth. For every K ≥ 0 there exists a
finite constant C (K ) such that

∀(x , v) ∈ TM , L(x , v) ≥ K‖v‖x + C (K ).
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Critical Value of L

Definition

The critical value of L is defined as

c[L] = − inf

{
1

T

∫ T

0

L (γ(t), γ̇(t)) dt

}
,

where the infimum is taken over the set of smooth curves
γ : IR→ M such that γ(0) = γ(T ) for some T > 0.
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Legendre-Fenchel Duality

The Hamiltonian H : T ∗M → IR associated to L is defined by

∀(x , p) ∈ T ∗x M , H(x , p) = max
v∈TxM

{p(v)− L(x , v)} .

It is C k and satisfies the following properties:

Strict convexity. ∀(x , p) ∈ T ∗M , the second derivative

along the fibers ∂2H(x ,p)
∂p2 is positive definite.

Superlinear growth. For every K ≥ 0 there exists a
finite constant C (K ) such that

∀(x , p) ∈ TM , H(x , p) ≥ K‖p‖x + C (K ).
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Fathi’s Weak KAM Theorem

The Lax-Oleinik semi-group (T−t )t≥0 acting on C 0(M , IR) is
defined as

T−t u(x) = inf

{
u(γ(0)) +

∫ t

0

L (γ(s), γ̇(s)) ds

}
,

where the infimum is taken over the set of smooth curves
γ : [0, t]→ M such that γ(t) = x .

Theorem (Fathi’s Weak KAM Theorem)

There exists a Lipschitz function u : M → IR and a constant
c ∈ IR such that

T−t u + ct = u, ∀t ≥ 0.
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Fathi’s Weak KAM Theorem

Proposition

Let u : M → IR be a continuous function satisfying

T−t u + ct = u, ∀t ≥ 0.

Then u satisfies the two following properties:

For any Lipschitz curve γ : [a, b]→ M, one has

u(γ(b))− u(γ(a)) ≤
∫ b

a

L (γ(s), γ̇(s)) ds + c(b − a).

For every x ∈ M, there is a C 1 curve γx : (−∞, 0]→ M
such that

u(γx(0)) = u(γx(−t))+

∫ 0

−t

L (γx(s), γ̇x(s)) ds+ct,∀t ≥ 0.
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Fathi’s Weak KAM Theorem

Proposition

There is a unique c = c[H] ∈ IR for which there is a Lipschitz
function u : M → IR such that T−t u + ct = u, for all t ≥ 0.

Proof. Let (u1, c1) and (u2, c2) two pairs of solutions with
c1 > c2. Let x ∈ M . There is γ1

x : (−∞, 0]→ M such that

u1(γ1
x (0)) = u1(γ1

x (−t))+

∫ 0

−t

L
(
γ1

x (s), γ̇1
x (s)

)
ds+c1t, ∀t ≥ 0.

But we have for any t ≥ 0,

u2(γ1
x (0))− u2(γ1

x (−t)) ≤
∫ 0

−t

L
(
γ1

x (s), γ̇1
x (s)

)
ds + c2t
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Fathi’s Weak KAM Theorem

Hence we have for any t ≥ 0,[
u2(γ1

x (0))− u2(γ1
x (−t))

]
−
[
u1(γ1

x (0))− u1(γ1
x (−t))

]
≤ (c2−c1)t.

Taking t →∞, we obtain a contradiction (c2 − c1 < 0 !). �

Definition

The constant c[H] is called the critical value of H . A Lipschitz
function u : M → IR satisfying, T−t u + c[H]t = u,∀t ≥ 0, is
called a weak KAM solution or a critical viscosity solution.

In fact, the function u : M → IR is a weak KAM solution if
and only if it is continuous and satisfies the following property:
for any smooth function φ : M → IR with φ ≤ u, we have for
any x ∈ M ,

φ(x) = u(x) =⇒ H(x , dxφ) = c[H].

In particular, if u is differentiable at x , then H(x , dxu) = c[H].
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The Peierls barrier

Define for any t ≥ 0, ht : M ×M → IR by

ht(x , y) = inf

{∫ t

0

L (γx(t), γ̇x(t)) dt

}
,

where the infimum is taken over all smooth paths
γ : [0, t]→ M such that γ(0) = x and γ(t) = y .

Definition

The Peierls barrier h : M ×M → IR is defined by

h(x , y) = lim inf
t→∞

{ht(x , y) + c[H]t} .

Proposition

For every x ∈ M, the function hx = h(x , ·) : y ∈ M 7→ h(x , y)
is a weak KAM solution.
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The projected Aubry set

Definition

The projected Aubry set A ⊂ M is defined by

A = {x ∈ M | h(x , x) = 0} .

Proposition

The projected Aubry set is a nonempty compact subset of M.

Proof. Let u be a weak KAM solution and x ∈ M . There is a
C 1 curve γx : (−∞, 0]→ M such that

u(γx(0)) = u(γx(−t)) +

∫ 0

−t

L (γx(s), γ̇x(s)) ds + ct,∀t ≥ 0.

Assume that {tn}n ↑ ∞ is a sequence of times such that
γ(−tn) tends to some y ∈ M . Thanks to the equality above,
it is easy to show that y ∈ A. �
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c[L] vs. c[H ]

Recall that

c[L] = − inf

{
1

T

∫ T

0

L (γ(t), γ̇(t)) dt

}
,

where the infimum is taken over the set of smooth curves
γ : IR→ M such that γ(0) = γ(T ) for some T > 0.

Proposition

c[H] = c[L].

Proposition

The critical value c[H] can be seen as the infimum of the
constants c ∈ IR such that there is a smooth function
v : M → IR satisfying H(x , dxv) ≤ c , ∀x ∈ M.
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The Aubry set

Proposition

Any weak KAM solution is differentiable on A. Moreover, its
differential at x ∈ A does not depend on u.

Definition

The Aubry set Ã ⊂ TM is defined as the set of (x , v) ∈ TM
such that x ∈ A and v is the unique element in TxM such
that dxu = ∂L/∂v(x , v) for any weak KAM solution u.

Proposition

The Aubry set is a nonempty compact subset of TM which is
invariant with respect to the Euler-Lagrange flow φL

t

associated with L.
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Fathi’s extension theorem

Definition

We call critical subsolution of H any Lipschitz function
v : M → IR satisfying

H(x , dxv) ≤ c(H), for a.e. x ∈ M .

Theorem

Let v be a critical subsolution of H. Then, there exists a weak
KAM solution u : M → IR such that u|A = v|A. Moreover, it is
unique.

As a consequence, we deduce that any critical subsolution of
H is differentiable on the projected Aubry set. We also deduce
that two weak KAM solutions which coincide on the Aubry set
coincide everywhere.
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How many weak KAM solutions ?

Question : Let x ∈ M be fixed. How many weak KAM
solutions u satisfying u(x) = 0 do exist ?

Two remarks:

Let u1, u2 be two distinct weak KAM solutions. Then, by
convexity of H in the p variable, for every λ ∈ (0, 1), the
function v = λu1 + (1− λ)u2 is a critical subsolution.
Thus, by the theorem above, there is a infinite number of
distinct weak KAM solutions.

As soon as A is not connected, then we can construct
two distinct weak KAM solutions.
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Examples

Example 1. Let V : M → [0,∞) be a function of class C k

(k ≥ 2) such that {V = 0} 6= ∅ and LV : TM → IR be the
Lagrangian defined by

LV (x , v) =
1

2
‖v‖2

x + V (x).

The associated Hamiltonian is given by

HV (x , p) =
1

2
‖p‖2

x − V (x).

One has obviously

c[H] = 0, A = {x ∈ M | V (x) = 0} , and Ã = A× {0}.

Moreover, the function v ≡ 0 is a critical subsolution for HV .
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Examples

Assume now that dimM = 4.
Let f : M → IR be a C 3 counterexample to the Sard Theorem,
that is, a function of class C 3 whose the set C of critical
points is connected and such that its image by f f (C) is a
nontrivial interval.
Define V : M → IR by

V (x) =
1

2
‖dx f ‖2

x .

The Lagrangian and the Hamiltonian are C 2.
By construction, the function f is a weak KAM solution and
v ≡ 0 is a critical subsolution of HV .
Hence there is an infinite number of distinct weak KAM
solutions for HV !
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Examples

Example 2. If X is a C k vector field on M , with k ≥ 2, the
Mañé Lagrangian LX : TM → IR associated to X is defined by

LX (x , v) =
1

2
‖v − X (x)‖2

x , ∀(x , v) ∈ TM .

Its associated Hamiltonian HX : T ∗M → IR is given by

HX (x , p) =
1

2
‖p‖2

x + p(X (x)).

The function u ≡ 0 is a viscosity solution of HX (x , dxu) = 0.
Therefore, c[H] = 0.

Ludovic Rifford On the Mather Quotient



Examples

Theorem

Let X be a Ck , k ≥ 2 vector field on the compact connected
smooth manifold M. Assume that one of the following
conditions hold:

(1) The dimension of M is 1 or 2.

(2) The dimension of M is 3, and the vector field X never
vanishes.

(3) The dimension of M is 3, and X is of class C3,1.

Then the projected Aubry set A of the Mañé Lagrangian
LX : TM → IR associated to X is the set of chain-recurrent
points of the flow of X on M. Moreover, the constants are the
only weak KAM solutions for LX if and only if every point of
M is chain-recurrent under the flow of X .
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The Mather quotient

The Peierls barrier satisfies the triangle inequality

∀x , y , z ∈ M , h(x , z) ≤ h(x , y) + h(y , z).

Hence the function dM : A×A → IR defined as

∀x , y ∈ A, dM(x , y) := h(x , y) + h(y , x),

is a semi-distance on the projected Aubry set. The quotient
Aubry set (AM , dM) is the metric space obtained by identifying
two points in A if their semi-distance dM vanishes.

Mather’s Problem. If L is C∞, is the set AM totally
disconnected, i.e. is each connected component of AM

reduced to a single point?
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Sard-type results and Mather quotient

Proposition

Assume that dim M = 1, 2 and H of class C 2 or dim M = 3
and H of class C k,1 with k ≥ 3. If u1, u2 : M → IR are two
critical subsolutions, then the set (u1 − u2)(A) has Lebesgue
measure zero.

Theorem

If dim M = 1, 2 and H of class C 2 or dim M = 3 and H of
class C k,1 with k ≥ 3, then (AM , dM) is totally disconnected.

Corollary

Assume that dim M = 1, 2 and H of class C 2 or dim M = 3
and H of class C k,1 with k ≥ 3, and that A is connected.
Then, there is only one weak KAM solution (up to a constant).
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Proof of the theorem

Proof. Let x , y ∈ A such that dM(x , y) > 0 be fixed. Set
w = hx − hy . We have

dM(x , y) = h(x , y) + h(y , x)

= (hx(y)− hx(x)) + (hy (x)− hy (y))

= w(y)− w(x) > 0.

By the proposition above, since hx and hy are both critical
viscosity solutions, the set w(A) has Lebesgue measure zero.
This implies that there exists t0 /∈ w(A) such that

w(y) > t0 > w(x).

Since w is continuous with respect to dM , that tells us that x
and y are not in the same connected component. �
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Preparatory results

Lemma (Bates Lemma)

Let g : IR2 → IR be a function of class C 1,1. Then the set of
critical values of g has Lebesgue measure zero.

Theorem (Bernard’s Theorem)

Let u be a weak KAM solution, then there is a critical
subsolution v of class C 1,1 such that v|A = u|A.

Lemma

Let E ⊂ IRn be a measurable set, f : E → IR continuous. If
n ≥ 2 and f satisfies

|f (x)− f (y)| ≤ C |x − y |n ∀x , y ∈ E ,

then the set f (E ) has Lebesgue zero.
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Norton’s generalization of Morse Vanishing Lemma

Lemma (The Generalized Morse Vanishing Lemma)

Suppose M is an n-dimensional (separable) manifold endowed
with a distance d coming from a Riemannian metric. Let
k ∈ IN and α ∈ [0, 1]. Then for any subset A ⊂ M, we can
find a countable family Bi , i ∈ IN of C 1-embedded compact
disks in M of dimension ≤ n and a countable decomposition of
A = ∪iAi , with Ai ⊂ Bi , for every i , such that every
f ∈ C k,α(M , IR) vanishing on A satisfies, for each i ,

∀y ∈ Ai , x ∈ Bi , |f (x)− f (y)| ≤ Mid(x , y)k+α

for a certain constant Mi (depending on f ).
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Projected stationary Aubry set

The projected stationary Aubry set A0 ⊂ A is defined by

A0 =
{

x ∈ A | (x , 0) ∈ Ã
}
.

Theorem

Suppose that L is at least C 2, and that the restriction
x 7→ L(x , 0) of L to the zero section of TM is of class C k,1.
Then (A0

M , δM) has vanishing Hausdorff measure in dimension
2 dim M/(k + 3). In particular, if k ≥ 2 dim M − 3 then
H1(A0

M , δM) = 0, and if x 7→ L(x , 0) is C∞ then (A0
M , δM)

has zero Hausdorff dimension.
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Projected periodic Aubry set

Let Ap the set of x ∈ A which are projection of a point
(x , v) ∈ Ã whose orbit under the the Euler-Lagrange flow φL

t

is periodic with strictly positive period. We call this set the
projected periodic Aubry set.

Theorem

If dim M ≥ 2 and H of class Ck,1 with k ≥ 2, then (Ap
M , δM)

has vanishing Hausdorff measure in dimension
8 dim M/(k + 8). In particular, if k ≥ 8 dim M − 8 then
H1(Ap

M , δM) = 0, and if H is C∞ then (Ap
M , δM) has zero

Hausdorff dimension.
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Compact surfaces

If M is a compact surface, then, using the finiteness of
exceptional minimal sets of flows, we have:

Theorem

If M is a compact surface of class C∞ and H is of class C∞,
then (AM , δM) has zero Hausdorff dimension.
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Thank you for your attention !

Ludovic Rifford On the Mather Quotient


