RANGE OF THE GRADIENT OF A SMOOTH BUMP
FUNCTION IN FINITE DIMENSIONS

LUDOVIC RIFFORD

ABSTRACT. This paper proves the semi-closedness of the range of the
gradient for sufficiently smooth bumps in the Euclidean space.

Let RN be the Euclidean space of dimension N. A bump on RV is a
function from RY into R with a bounded nonempty support. The aim of this
short paper is to answer partially an open question suggested by Borwein,
Fabian, Kortezov and Loewen in [1]. Let f : RV — R be a C''-smooth bump
function; does f'(R™V) equal the closure of its interior? We are not able to
provide an answer, but we can prove the following result.

Theorem 1. Let f : RY — R be a CN*l-smooth bump. Then f'(RN) is
the closure of its interior.

We do not know if the hypothesis on the regularity of the bump f is
optimal in our theorem when N > 3. However, the result can be improved
for N = 2; Gaspari [3] proved by specific two-dimensional arguments that
the conclusion holds if the bump is only assumed to be C?-smooth on the
plane. Again we cannot say if we need the bump function to be C? for
N = 2. We proceed now to prove our Theorem.

1. PROOF OF THEOREM 1

For the sequel, we set F' := f’ = Vf. Moreover, since the theorem is
obvious for N = 1 we will assume that N > 2. The proof is based on
a refinement of Sard’s Theorem that can be found in Federer [2]. Let us
denote by By (k € {0,--- ,N}) the set defined as follows:

By, == {z € RY : rankDF(z) < k}.
Of course By = R¥. Theorem 3.4.3 in [2] gives that if the function F is
CN-smooth then for all k =0,--- ,N — 1,
HM (F(By)) = 0. (1)

where H**1 denotes the (k+1)-dimensional Hausdorff measure.

Fix z in R" and let us prove that F/(Z) belongs to the closure of int(F(RY)).
Since it is well known that 0 € int(F(RY)) (see Wang [6]), we can assume
that F(Z) # 0. Our proof begins by the following lemma.

Lemma 1. There exists a neighbourhood V of F(Z) relative to F(RY) and
an integer k € {1,--- | N} such that for any x € F~1(V),rankDF(z) < k
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and moreover there exists a sequence (vy)nen in YV which converges to F(Z)
and such that

F(y) = v, => rankDF(y) = k. (2)

Proof. Let us fix V an open neighbourhood of F(Z) relative to F(RY) and
denote by ko the max of the k’s in {0, 1,- -+ ,n} which satisfy VN F(Cy) # 0
where we define the set C}. as

Cr:={z € RY :rankDF(z) = k}.

First of all remark that kg > 0. As a matter of fact, suppose that for any
k>1,VNF(Cy) =0, that is for any y in F~1(V),rankDF(y) = 0. Since
F~YV) is open this implies that F' is constant on F'~!(V') and hence that
F(z) is isolated in F(R™). So, we get a contradiction by arc-connectedness
of F(RY™) (and since F(z) # 0 and 0 € F(R")). Consequently , we deduce
that there exists y € RY such that F(y) € V and rankDF(y) = ko >
0. Furthermore for all z € F~1(V),rankDF(z) < kg. Hence by lower
semicontinuity of z +— rankDF'(z), this implies that rank DF is constant in
a neighbourhood of y (because {z : rankDF(z) > ko} is open). Therefore,
by the rank theorem (see Rudin [4, Theorem 9.20]), V has the structure of
a ko-dimensional manifold near F(y), and hence H* (V) > 0. Thus by (1),
V — F(By,-1) is nonempty. We conclude that for any v in the latter set,

F(z) = v = rankDF\(z) = ko.

Repeating this argument with a decreasing sequence on neighbourhoods, we
get a decreasing sequence of integers in {1,--- ,n} which has to be station-
nary. Hence the proof is easy to complete. ([

We claim now the following lemma.
Lemma 2. The constant of Lemma 1 satisfies k = N.

Proof. Let us remark that since F' = f' = Vf, the Jacobian of I’ at any
point y in RY is actually the Hessian of the function f. We argue by con-
tradiction and so we assume that k& < N.

By the previous remark, for any y € RY, DF(y) is a symetric matrix, the
nontrivial vector subspaces KerDF(y) and ImDF(y) are orthogonal and
DF(y) induces an automorphism on ImDF(y). Let us fix n € N. By
Lemma 1 and by the constant rank theorem (see for instance Spivak [5]
page 65) we deduce that M, := {y : F(y) = v,} is a submanifold of R of
dimension N —k and at least C2-smooth (since F is CV-smooth and N > 2).
Furthermore since f is a bump, M, is a compact submanifold.

Now since M,, is a C? submanifold of RV there exists a open tubular neigh-
bourhood U C V of M,, and a C?-smooth function r : U — M,, which is the
projection on the set M, such that for any z € U,z —r(z) € Ny(z)Mp, where
for any p € M,,, N,M, denotes the normal space of M, at p. In addition
from the properties of the constant k, by reducing U if necessary, we can
assume that for any x € U,rankDF(z) = k. We set the following function
on the neighbourhood U:

d:U — RY
x — DF(r(z))(z—r(x))
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We need now the following result.

Lemma 3. If M, is a compact C? submanifold of RY, then for all £ in the
unit sphere SN~ there exists p € M, such that £ € NpM,,.

Proof. Consider for any [ € N, p; := projy, (I£), where proj,, (-) denotes
the projection map on the closed set M, Since the submanifold M, is C?,
the vector ﬁ belongs to Ny, M,,. Moreover by compactness of M, we
can assume that p; — p when [ tends to infinity. Now since the sequence
(p)ien is bounded, we have that lim;_, ﬁ = £. By continuity of the
normal bundle NM,,, we conclude easily that § € Nz M,,. (]

Lemma 3 implies immediately that for all £ € SN—1, there exists p € M,
and v € N, M, such that v = . Furthermore the map DF(p) is an automo-
sphism on N, M, hence there exists w € N,M,, such that DF(p)(w) = v.
We conclude that for any ¢ small enough (s.t. p+tw € U), DF(p)(tw) =t
and hence that ®(p + tw) = t£. Since M, is compact, we have proved
that for some ¢y > 0, the ball B(0,%¢) is included in ®(Uf); hence ®(U) has
a nonempty interior. Therefore (since the function ® is smooth enough)
Sard’s Theorem gives us the existence of regular values of ® in RY. So
there exists § € U such that rankD®(y) = N. Consequently there exists
p > 0 such that the map @ is a diffeomorphism from W = B(y, p) (the ball
centered at y with radius p) into a neighbourhood X of ®(y).

For any | € N*, we set y; := r(y) + $(§ — r(¥)). The constant rank theorem
implies that for any [ the set V; :={y € U : F(y) = F(y;)} is a submanifold
of U of dimension N — k. (Of course V; might be noncompact in U, i.e. V}
not included in ¢.) On the other hand, by Lipschitz continuity of DF(-)
and since N—k > 0, there exists a neighbourhood Y of the segment [, ()]
in co{WWUr(W)} and a Lipschitz continuous map X : ) — RY such that
for any = € ),

X(z) € ker DF(x) and || X (2)| = 1.

If we denote by 0x(y,7) the local flow of the vector field X on ), we get
that for any 7 small enough 0x(y;,7) € V;. On the other hand, Gronwall’s
Lemma yields easily the following;:

Lemma 4. There exists two positive constants K, i such that for anyl € N*
and for any T < u, we have

st oo (82 5)0r (5 (52))) g

10x (y1, 7) — r(0x (yi, 7))l
s — ()

We set for any [ € N*| z; := Ox(y;, ). By considering a converging
subsequence of (z;);en+ if necessary we can compute

i Fw) = FCrlw) . F) = F(r(z)
=00 |z — ()] I—oo  |lzg —7(21)]

- Jm o7 (E=3)

) |21 — r(z)ll
= DF(2)(),

e [e K7 K. (4)
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where lim;_, o, 2y = z = r(2) € M,, and lim;_, o, % =( € N:M,. We
deduce that
DFG@)G—r(@) = Jim 1(Fw) — F(r(u)
F(y) — F(r(w))
llz1 = ()|
= g —r@IPFE)(CQ)
= DFE)(clly —r@)¢),

= Jlim Iz —r(z)]

lze=r(z0)ll
e —r (o)l _
The computations prove that ®(g) = ®(z + ¢||g — r(9)||¢). Furthermore

by (3), z belongs to r(W) and |z — ()| > 0. Consequently since & is
injective on W, it remains to prove that z + c||g — r()||¢ is in W to get a
contradiction. By (4) taking u smaller if necessary, we get the result. (]

with ¢ = lim;_

The proof of Theorem 1 is now easy. Since k = N, for any n € N the
different values v, of Lemma 1 belong to the interior of f/(R") and moreover
the sequence (v, )nen converges to F'(Z). This proves the theorem.
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