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Abstract. This paper proves the semi-closedness of the range of the
gradient for sufficiently smooth bumps in the Euclidean space.

Let RN be the Euclidean space of dimension N . A bump on RN is a
function from RN into R with a bounded nonempty support. The aim of this
short paper is to answer partially an open question suggested by Borwein,
Fabian, Kortezov and Loewen in [1]. Let f : RN → R be a C1-smooth bump
function; does f ′(RN ) equal the closure of its interior? We are not able to
provide an answer, but we can prove the following result.

Theorem 1. Let f : RN → R be a CN+1-smooth bump. Then f ′(RN ) is
the closure of its interior.

We do not know if the hypothesis on the regularity of the bump f is
optimal in our theorem when N ≥ 3. However, the result can be improved
for N = 2; Gaspari [3] proved by specific two-dimensional arguments that
the conclusion holds if the bump is only assumed to be C2-smooth on the
plane. Again we cannot say if we need the bump function to be C2 for
N = 2. We proceed now to prove our Theorem.

1. Proof of Theorem 1

For the sequel, we set F := f ′ = ∇f . Moreover, since the theorem is
obvious for N = 1 we will assume that N ≥ 2. The proof is based on
a refinement of Sard’s Theorem that can be found in Federer [2]. Let us
denote by Bk(k ∈ {0, · · · , N}) the set defined as follows:

Bk := {x ∈ R
N : rankDF (x) ≤ k}.

Of course BN = RN . Theorem 3.4.3 in [2] gives that if the function F is
CN -smooth then for all k = 0, · · · , N − 1,

Hk+1 (F (Bk)) = 0. (1)

where Hk+1 denotes the (k+1)-dimensional Hausdorff measure.
Fix x̄ in RN and let us prove that F (x̄) belongs to the closure of int(F (RN )).
Since it is well known that 0 ∈ int(F (RN )) (see Wang [6]), we can assume
that F (x̄) '= 0. Our proof begins by the following lemma.

Lemma 1. There exists a neighbourhood V of F (x̄) relative to F (RN ) and
an integer k̄ ∈ {1, · · · ,N} such that for any x ∈ F−1(V), rankDF (x) ≤ k̄
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and moreover there exists a sequence (vn)n∈N in V which converges to F (x̄)
and such that

F (y) = vn =⇒ rankDF (y) = k̄. (2)

Proof. Let us fix V an open neighbourhood of F (x̄) relative to F (RN ) and
denote by k0 the max of the k’s in {0, 1, · · · , n} which satisfy V ∩F (Ck) '= ∅
where we define the set Ck as

Ck := {x ∈ R
N : rankDF (x) = k}.

First of all remark that k0 > 0. As a matter of fact, suppose that for any
k ≥ 1, V ∩ F (Cki

) = ∅, that is for any y in F−1(V ), rankDF (y) = 0. Since
F−1(V ) is open this implies that F is constant on F−1(V ) and hence that
F (x̄) is isolated in F (RN ). So, we get a contradiction by arc-connectedness
of F (RN ) (and since F (x̄) '= 0 and 0 ∈ F (Rn)). Consequently , we deduce
that there exists y ∈ RN such that F (y) ∈ V and rankDF (y) = k0 >
0. Furthermore for all z ∈ F−1(V ), rankDF (z) ≤ k0. Hence by lower
semicontinuity of z +→ rankDF (z), this implies that rankDF is constant in
a neighbourhood of y (because {z : rankDF (z) ≥ k0} is open). Therefore,
by the rank theorem (see Rudin [4, Theorem 9.20]), V has the structure of
a k0-dimensional manifold near F (y), and hence Hk0(V ) > 0. Thus by (1),
V − F (Bk0−1) is nonempty. We conclude that for any v in the latter set,

F (z) = v =⇒ rankDF (z) = k0.

Repeating this argument with a decreasing sequence on neighbourhoods, we
get a decreasing sequence of integers in {1, · · · , n} which has to be station-
nary. Hence the proof is easy to complete. !

We claim now the following lemma.

Lemma 2. The constant of Lemma 1 satisfies k̄ = N .

Proof. Let us remark that since F = f ′ = ∇f , the Jacobian of F at any
point y in RN is actually the Hessian of the function f . We argue by con-
tradiction and so we assume that k̄ < N .
By the previous remark, for any y ∈ RN , DF (y) is a symetric matrix, the
nontrivial vector subspaces KerDF (y) and ImDF (y) are orthogonal and
DF (y) induces an automorphism on ImDF (y). Let us fix n ∈ N. By
Lemma 1 and by the constant rank theorem (see for instance Spivak [5]
page 65) we deduce that Mn := {y : F (y) = vn} is a submanifold of RN of
dimension N−k and at least C2-smooth (since F is CN -smooth and N ≥ 2).
Furthermore since f is a bump, Mn is a compact submanifold.
Now since Mn is a C2 submanifold of RN there exists a open tubular neigh-
bourhood U ⊂ V of Mn and a C2-smooth function r : U → Mn which is the
projection on the set Mn such that for any x ∈ U , x−r(x) ∈ Nr(x)Mn, where
for any p ∈ Mn, NpMn denotes the normal space of Mn at p. In addition
from the properties of the constant k̄, by reducing U if necessary, we can
assume that for any x ∈ U , rankDF (x) = k̄. We set the following function
on the neighbourhood U :

Φ : U → R
N

x +→ DF (r(x))(x − r(x))
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We need now the following result.

Lemma 3. If Mn is a compact C2 submanifold of RN , then for all ξ in the
unit sphere SN−1, there exists p ∈ Mn such that ξ ∈ NpMn.

Proof. Consider for any l ∈ N, pl := projMn
(lξ), where projMn

(·) denotes
the projection map on the closed set Mn. Since the submanifold Mn is C2,
the vector lξ−pl

‖lξ−Pl‖
belongs to Npl

Mn. Moreover by compactness of Mn we
can assume that pl → p̄ when l tends to infinity. Now since the sequence
(pl)l∈N is bounded, we have that liml→∞

lξ−pl

‖lξ−Pl‖
= ξ. By continuity of the

normal bundle NMn, we conclude easily that ξ ∈ Np̄Mn. !

Lemma 3 implies immediately that for all ξ ∈ SN−1, there exists p ∈ Mn

and v ∈ NpMn such that v = ξ. Furthermore the map DF (p) is an automo-
sphism on NpMn, hence there exists w ∈ NpMn such that DF (p)(w) = v.
We conclude that for any t small enough (s.t. p + tw ∈ U), DF (p)(tw) = tξ
and hence that Φ(p + tw) = tξ. Since Mn is compact, we have proved
that for some t0 > 0, the ball B(0, t0) is included in Φ(U); hence Φ(U) has
a nonempty interior. Therefore (since the function Φ is smooth enough)
Sard’s Theorem gives us the existence of regular values of Φ in RN . So
there exists ȳ ∈ U such that rankDΦ(ȳ) = N . Consequently there exists
ρ > 0 such that the map Φ is a diffeomorphism from W = B(ȳ, ρ) (the ball
centered at ȳ with radius ρ) into a neighbourhood X of Φ(ȳ).
For any l ∈ N∗, we set yl := r(ȳ) + 1

l (ȳ − r(ȳ)). The constant rank theorem
implies that for any l the set Vl := {y ∈ U : F (y) = F (yl)} is a submanifold
of U of dimension N − k. (Of course Vl might be noncompact in U , i.e. Vl

not included in U .) On the other hand, by Lipschitz continuity of DF (·)
and since N−k > 0, there exists a neighbourhood Y of the segment [ȳ, r(ȳ)]
in co{W ∪ r(W)} and a Lipschitz continuous map X : Y → RN such that
for any x ∈ Y,

X(x) ∈ ker DF (x) and ‖X(x)‖ = 1.

If we denote by θX(y, τ) the local flow of the vector field X on Y, we get
that for any τ small enough θX(yl, τ) ∈ Vl. On the other hand, Gronwall’s
Lemma yields easily the following:

Lemma 4. There exists two positive constants K,µ such that for any l ∈ N∗

and for any τ ≤ µ, we have

θX(yl, τ) ∈ co
{
B

(
ȳ,

ρ

2

)
∪ r

(
B

(
ȳ,

ρ

2

))}
, (3)

‖θX(yl, τ) − r(θX(yl, τ))‖

‖yl − r(yl)‖
∈ [e−Kτ , eKτ ]. (4)

We set for any l ∈ N∗, zl := θX(yl, µ). By considering a converging
subsequence of (zl)l∈N∗ if necessary we can compute

lim
l→∞

F (yl) − F (r(yl))

‖zl − r(zl)‖
= lim

l→∞

F (zl) − F (r(zl))

‖zl − r(zl)‖

= lim
l→∞

DF (r(zl))

(
zl − r(zl)

‖zl − r(zl)‖

)

= DF (z̄)(ζ̄),
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where liml→∞ zl = z̄ = r(z̄) ∈ Mn and liml→∞
zl−r(zl)

‖zl−r(zl)‖
= ζ̄ ∈ Nz̄Mn. We

deduce that

DF (r(ȳ))(ȳ − r(ȳ)) = lim
l→∞

l (F (yl) − F (r(yl)))

= lim
l→∞

l‖zl − r(zl)‖
F (yl) − F (r(yl))

‖zl − r(zl)‖

= c‖ȳ − r(ȳ)‖DF (z̄)(ζ̄)

= DF (z̄)(c‖ȳ − r(ȳ)‖ζ̄),

with c = liml→∞
‖zl−r(zl)‖
‖yl−r(yl)‖

.

The computations prove that Φ(ȳ) = Φ(z̄ + c‖ȳ − r(ȳ)‖ζ̄). Furthermore
by (3), z̄ belongs to r(W) and ‖z̄ − r(ȳ)‖ > 0. Consequently since Φ is
injective on W, it remains to prove that z̄ + c‖ȳ − r(ȳ)‖ζ̄ is in W to get a
contradiction. By (4) taking µ smaller if necessary, we get the result. !

The proof of Theorem 1 is now easy. Since k = N , for any n ∈ N the
different values vn of Lemma 1 belong to the interior of f ′(RN ) and moreover
the sequence (vn)n∈N converges to F (x̄). This proves the theorem.
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