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The statement

Theorem (Figalli, R, Villani '09)

Let (M, g) be a C* perturbation of the round sphere S". Then
all injectivity domains of M are uniformly convex.
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Injectivity domains

Let (M, g) be a smooth compact Riemannian manifold and
x € M be fixed. We call exponential mapping from x, the
mapping defined as

exp, : kM — M
v exp(v) == (1),

where 7, : [0,1] — M is the unique geodesic starting at x with
speed 4,(0) = v.
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Injectivity domains

Let (M, g) be a smooth compact Riemannian manifold and
x € M be fixed. We call exponential mapping from x, the
mapping defined as

exp, : kM — M
v exp(v) == (1),

where 7, : [0,1] — M is the unique geodesic starting at x with
speed 4,(0) = v. We call injectivity domain of x the set

Jt > 1 s.t. 74 is the unique minimizing }

I(x) == {V < TXM‘ geodesic between x and exp,(tv)

Ludovic Rifford Workshop on Optimal transportation and applications



Injectivity domains

Let (M, g) be a smooth compact Riemannian manifold and
x € M be fixed. We call exponential mapping from x, the
mapping defined as

exp, : kXYM — M
v exp(v) = (1),

where 7, : [0,1] — M is the unique geodesic starting at x with
speed 4,(0) = v. We call injectivity domain of x the set

I(x) = {v c TXM‘ Jt > 1 s.t. 74 is the unique minimizing }

geodesic between x and exp, (tv)

It is a bounded open set which is star-shaped w.r.t. 0 € T, M.
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The ltoh-Tanaka Theorem

Theorem (Itoh, Tanaka '01)

Let (M, g) be a smooth compact Riemannian manifold. Then
all injectivity domains of M have Lipschitz boundaries.
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The ltoh-Tanaka Theorem

Theorem (Itoh, Tanaka '01)

Let (M, g) be a smooth compact Riemannian manifold. Then
all injectivity domains of M have Lipschitz boundaries.

Fix x € M, we call distance function to the cut locus, the
function tq.(x;-) : UM — (0, 00) defined by

teur(x;v) 1= inf{t >0ty ¢ Z(X)}.
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The ltoh-Tanaka Theorem

Theorem (Itoh, Tanaka '01)

Let (M, g) be a smooth compact Riemannian manifold. Then
all injectivity domains of M have Lipschitz boundaries.

Fix x € M, we call distance function to the cut locus, the
function tq.(x;-) : UM — (0, 00) defined by

teur(x;v) 1= inf{t >0ty ¢ Z(X)}.

The boundary TCL(x) of Z(x) may be seen as the graph of
the function te.:(x;-):

TCL(x) = {tcut(x; v)v|v e UX/\/I}.
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Sketch of proof

It is enough to show that there is K > 0 such for every
v € UM, there is a neighborhood V of v in U,M together
with a Lipschitz function 7 : V — R such that

tee(x;v) = 7(v),  tae(x;) <7, Lip(r) < K.
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Sketch of proof

It is enough to show that there is K > 0 such for every
v € UM, there is a neighborhood V of v in U,M together
with a Lipschitz function 7 : V — R such that

tee(x;v) = 7(v),  tae(x;) <7, Lip(r) < K.
Let v € UM be fixed, set t, := teu(x; v).

Three cases appear:

e Case 1: t,v is a cut speed.
e Case 2: t,v is not a cut speed (we call it purely focal).

e Case 3: t,v is a cut speed not far from being purely focal.
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Case | : t,v cut speed

Let v/ # v € U,M be such that exp,(t,v) = exp,(t,V').
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Case | : t,v cut speed

Let v/ # v € U,M be such that exp,(t,v) = exp,(t,V').
By semiconcavity of z — dg(x, z), there is a C? function
g : O — R such that (we set y := exp(t,v))

dg(x,y) = g(y), de(x,-) < g(:) on O\{y}, VEg(y) = Y (t).
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Case | : t,v cut speed

Let v/ # v € U,M be such that exp,(t,v) = exp,(t,V').
By semiconcavity of z — dg(x, z), there is a C? function
g : O — R such that (we set y := exp(t,v))

dg(x,y) = &(y), dg(x,-) < &(:) on O\{y}, VEg(y) = Y (t).
Set for any t > 0, w € UM close to t,, v,

V(t, w) = g(exp,(tw)) — t.
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Case | : t,v cut speed

Let v/ # v € U,M be such that exp,(t,v) = exp,(t,V').
By semiconcavity of z — dg(x, z), there is a C? function
g : O — R such that (we set y := exp(t,v))

dg(x,y) = 8(¥), dg(x,-) < g(-) on O\{y}, VEg(y) = v ().
Set for any t > 0, w € UM close to t,, v,
V(t,w) = g(exp,(tw)) — t.

The function W is C? and there holds

(k) =0, () = (VEg(y), Ault))y — 170
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Case | : t,v cut speed

Let v/ # v € U,M be such that exp,(t,v) = exp,(t,V').
By semiconcavity of z — dg(x, z), there is a C? function
g : O — R such that (we set y := exp(t,v))

dg(x,y) = 8(¥), dg(x,-) < g(-) on O\{y}, VEg(y) = v ().
Set for any t > 0, w € UM close to t,, v,
V(t,w) = g(exp,(tw)) — t.

The function W is C? and there holds

(k) =0, () = (VEg(y), Ault))y — 170

By the Implicit Function Theorem, there is a C? function 7(+)
such that 7(v) = t, and ¥(7(-),-) = 0.
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Case | : t,v cut speed

Let v/ # v € U,M be such that exp,(t,v) = exp,(t,V').
By semiconcavity of z — dg(x, z), there is a C? function
g : O — R such that (we set y := exp(t,v))

dg(x,y) = 8(¥), dg(x,-) < g(-) on O\{y}, VEg(y) = v ().
Set for any t > 0, w € UM close to t,, v,
V(t,w) = g(exp,(tw)) — t.

The function W is C? and there holds

ov :
W(t ) =0 (8 v) = (Vo(y). 3u(t), — 1 £ 0
By the Implicit Function Theorem, there is a C? function 7(+)
such that 7(v) = t, and W(7(-),-) = 0. By construction,

teut(x;-) < 7 and Lip(7) is controlled by ||22|| / |2E].
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Case Il : t,v focal speed

We call distance function to the conjugate locus, the
function teoni(x; ) : UxM — (0, 00) defined by

teonj(X; W) 1= inf{t > 0| exp, is not a submersion at tw}.

We have
tcut(X; ) < tconj(X; )

If t,v is purely focal, then te,:(x;-) = teoni(X; ).

Theorem (Castelpietra, R '08)

The function teonj(x; -) is locally semiconcave on its domain.
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Case Il : t,v almost focal speed

We can indeed control the Lipschitz constant of 7 when v
approaches the set of (purely) focal speeds.
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Perturbation result for the focal domain

Given x € M, we call nonfocal domain of x the set

NF(x) :=={tv|v € UM, t < teon(x;v)}.
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Perturbation result for the focal domain

Given x € M, we call nonfocal domain of x the set

NF(x) :=={tv|v € UM, t < teon(x;v)}.

If (M, g) is C* close to the round sphere, then all nonfocal
domains are uniformly convex.
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Define for every x € M, h, : NF(x) — R by

he(v) = |v[? = d, (x,exp,(v))? Vv € NF(x).
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Define for every x € M, h, : NF(x) — R by

he(v) = |v[? = d, (x,exp,(v))? Vv € NF(x).

ovGI(x):h() 0.
h(v) <0 = v € I(x).

As a consequence,

m:{veNF( ) he(v )<o}.
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Define for every x € M, h, : NF(x) — R by

he(v) = |v[? = d, (x,exp,(v))? Vv € NF(x).

ovGI(x):h( ) = (.
h(v) <0 = v € I(x).

As a consequence,

I(x) = {v € NF(x) | he(v) < o}.

From now on, the strategy is to show that all the h, are
quasiconvex.
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An easy lemma

Lemma

Let U C R" be an open convex set and F : U — R be a
function of class C2. Assume that for every v € U and every
w € R"\ {0}, the following property holds

(V,F,w)y =0 = (V2Fw,w) > 0.

Then F is quasiconvex.
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Proof of the easy lemma

Let vo, vi € U be fixed.
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Proof of the easy lemma

Let vp, vi € U be fixed. Set v; := (1 — t)vg + tvy, for every
t €10,1],
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Proof of the easy lemma

Let vp, vi € U be fixed. Set v; := (1 — t)vg + tvy, for every
t € [0,1], and define h: [0,1] — R by

h(t) := F(v;) vt € [0,1].
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Proof of the easy lemma

Let vp, vi € U be fixed. Set v; := (1 — t)vg + tvy, for every
t € [0,1], and define h: [0,1] — R by

h(t) := F(v;) vt € [0,1].
If h « max{h(0), h(1)}, there is 7 € (0,1) such that

h(t) = tr;}gﬁ(] h(t) > max{h(0), h(1)}.
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Proof of the easy lemma

Let vp, vi € U be fixed. Set v; := (1 — t)vg + tvy, for every
t € [0,1], and define h: [0,1] — R by

h(t) := F(v;) vt € [0,1].
If h « max{h(0), h(1)}, there is 7 € (0,1) such that

h(t) = tr;}gﬁ(] h(t) > max{h(0), h(1)}.

There holds

h(r) = (V,,F,in) and h(r) = (V2 F i, ).
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Proof of the easy lemma

Let vp, vi € U be fixed. Set v; := (1 — t)vg + tvy, for every
t € [0,1], and define h: [0,1] — R by

h(t) := F(v;) vt € [0,1].
If h « max{h(0), h(1)}, there is 7 € (0,1) such that

h(t) = tr;}gﬁ(] h(t) > max{h(0), h(1)}.

There holds

h(r) = (V,,F,in) and h(r) = (V2 F i, ).

Since 7 is a local maximum, we get a contradiction. ]
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The extended Ma-Trudinger-Wang tensor

There holds (V, hy, w) = (£, 9 — q)x and

2 [ = _
(VEhX w, W> = § /0 (1 - 5) G(y,(l—s)ﬁ—O—SQ)(éa q— q) ds
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The extended Ma-Trudinger-Wang tensor

There holds (V, hy, w) = (£, 9 — q)x and
2 [ —
(Vihew,w) = 3 / (1—5) Sy, a-s)7+s59)(§, 9 — ) ds
0

where the MTW tensor S is defined as
3 d? d?

Sun(&n) =—= —| 5| a2 (exp,(t), exp, (v + 1)),
2 ds?| _, dt?|,_, ¢

for every x € M, v € Z(x), and {,n € T, M, and by

s @ &

—2
dt2 dg (expx(tg)v epr(v + ST/)) )
s=0 t=0

for every x € M, v € NF(x), and &£, € T, M, where d,
denotes a extended distance on a neighborhood of

(x, exp, (v)).

Ludovic Rifford Workshop on Optimal transportation and applications



The MTW tensor on (Sz,go)

On (S?,g°%), the MTW tensor is given by

St (6:€7)
R ARy E )

r2 rsin(r)] ? sin?(r)  sin’(r) | 2
3[ 6  cos(r) 5 )
3 [_ﬁ * rsin(r) * sinz(r)] St

with x € 82, v € I(X), ri= |V|xa€ = (§1a§2)afl = (_€27€1)'
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Theorem (Figalli, R, Villani '09)

If (M, g) is a C* perturbation of the round sphere, then it
satisfies an extended uniform Ma-Trudinger-Wang condition
of the form

Vx € M, Yv € NF(x) \ {0},
S (&) = (€ + INHER) Inlz — ¢ <&n >,

where K, c are positive constants, and A1 is a symmetric
nonnegative matrix.
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In conclusion,
(Vohe,w) =0 = (VZhew,w) > 0.

Which gives the quasiconvexity of the h,'s.
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In conclusion,
(Vohe,w) =0 = (VZhew,w) > 0.

Which gives the quasiconvexity of the h,'s.

Be careful with the regularity oh h, !!!
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Thank you for your attention !
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Sufficient conditions for TCP

Theorem (Figalli, R, Villani '10)
Assume that (M, g) satisfies the following properties:
@ all the injectivity domains are strictly convex,

o the MTW tensor G is > 0, that is, for every
x € M,veZ(x), and &n e T,M\ {0},

EMx =0 = S(xv)(&n) > 0.

Then (M, g) satisfies TCP.
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Necessary conditions for TCP

Theorem (Figalli, R, Villani '10)

Assume that (M, g) satisfies (TCP) then the following
properties hold:

@ all the injectivity domains are convex,
@ the cost c is regular,
o the MTW tensor © is = 0.
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