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The statement

Theorem (Figalli, R, Villani ’09)

Let (M , g) be a C 4 perturbation of the round sphere Sn. Then
all injectivity domains of M are uniformly convex.

Ludovic Rifford Workshop on Optimal transportation and applications



Injectivity domains

Let (M , g) be a smooth compact Riemannian manifold and
x ∈ M be fixed. We call exponential mapping from x , the
mapping defined as

expx : TxM −→ M
v 7−→ expx(v) := γv (1),

where γv : [0, 1]→ M is the unique geodesic starting at x with
speed γ̇v (0) = v .

We call injectivity domain of x the set

I(x) :=

{
v ∈ TxM

∣∣∣ ∃t > 1 s.t. γtv is the unique minimizing
geodesic between x and expx(tv)

}
.

It is a bounded open set which is star-shaped w.r.t. 0 ∈ TxM .
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The Itoh-Tanaka Theorem

Theorem (Itoh, Tanaka ’01)

Let (M , g) be a smooth compact Riemannian manifold. Then
all injectivity domains of M have Lipschitz boundaries.

Fix x ∈ M , we call distance function to the cut locus, the
function tcut(x ; ·) : UxM → (0,∞) defined by

tcut(x ; v) := inf
{

t > 0 | tv /∈ I(x)
}
.

The boundary TCL(x) of I(x) may be seen as the graph of
the function tcut(x ; ·):

TCL(x) =
{

tcut(x ; v)v | v ∈ UxM
}
.
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Sketch of proof

It is enough to show that there is K > 0 such for every
v ∈ UxM , there is a neighborhood V of v in UxM together
with a Lipschitz function τ : V → R such that

tcut(x ; v) = τ(v), tcut(x ; ·) ≤ τ, Lip(τ) ≤ K .

Let v ∈ UxM be fixed, set tv := tcut(x ; v).
Three cases appear:

Case 1: tvv is a cut speed.

Case 2: tvv is not a cut speed (we call it purely focal).

Case 3: tvv is a cut speed not far from being purely focal.
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Case I : tvv cut speed

Let v ′ 6= v ∈ UxM be such that expx(tvv) = expx(tvv ′).

By semiconcavity of z 7→ dg (x , z), there is a C 2 function
g : O → R such that (we set y := exp(tvv))

dg (x , y) = g(y), dg (x , ·) < g(·) on O\{y},∇gg(y) = γ̇v ′(tv ).

Set for any t > 0,w ∈ UxM close to tv , v ,

Ψ(t,w) := g(expx(tw))− t.

The function Ψ is C 2 and there holds

Ψ(tv , v) = 0,
∂Ψ

∂t
(tv , v) = 〈∇gg(y), γ̇v (tv )〉y − 1 6= 0

By the Implicit Function Theorem, there is a C 2 function τ(·)
such that τ(v) = tv and Ψ(τ(·), ·) = 0. By construction,
tcut(x ; ·) ≤ τ and Lip(τ) is controlled by

∥∥∂Ψ
∂w

∥∥ / ∣∣∂Ψ
∂t

∣∣ .
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Case II : tvv focal speed

We call distance function to the conjugate locus, the
function tconj(x ; ·) : UxM → (0,∞) defined by

tconj(x ; w) := inf
{

t > 0 | expx is not a submersion at tw
}
.

We have
tcut(x ; ·) ≤ tconj(x ; ·).

If tvv is purely focal, then tcut(x ; ·) = tconj(x ; ·).

Theorem (Castelpietra, R ’08)

The function tconj(x ; ·) is locally semiconcave on its domain.

Ludovic Rifford Workshop on Optimal transportation and applications



Case III : tvv almost focal speed

We can indeed control the Lipschitz constant of τ when v
approaches the set of (purely) focal speeds.

Ludovic Rifford Workshop on Optimal transportation and applications



Perturbation result for the focal domain

Given x ∈ M , we call nonfocal domain of x the set

NF(x) := {tv | v ∈ UxM , t < tconj(x ; v)} .

Theorem

If (M , g) is C 4 close to the round sphere, then all nonfocal
domains are uniformly convex.
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Define for every x ∈ M , hx : NF (x)→ R by

hx(v) = |v |2x − dg (x , expx(v))2 ∀v ∈ NF (x).

Lemma

v ∈ I(x) =⇒ hx(v) = 0.

hx(v) ≤ 0 =⇒ v ∈ I(x).

As a consequence,

I(x) =
{

v ∈ NF(x) | hx(v) ≤ 0
}
.

From now on, the strategy is to show that all the hx are
quasiconvex.
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An easy lemma

Lemma

Let U ⊂ Rn be an open convex set and F : U → R be a
function of class C 2. Assume that for every v ∈ U and every
w ∈ Rn \ {0}, the following property holds

〈∇vF ,w〉 = 0 =⇒ 〈∇2
vF w ,w〉 > 0.

Then F is quasiconvex.
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Proof of the easy lemma

Proof.

Let v0, v1 ∈ U be fixed.

Set vt := (1− t)v0 + tv1, for every
t ∈ [0, 1], and define h : [0, 1]→ R by

h(t) := F (vt) ∀t ∈ [0, 1].

If h � max{h(0), h(1)}, there is τ ∈ (0, 1) such that

h(τ) = max
t∈[0,1]

h(t) > max{h(0), h(1)}.

There holds

ḣ(τ) = 〈∇vτ F , v̇τ 〉 and ḧ(τ) = 〈∇2
vτ

F v̇τ , v̇τ 〉.

Since τ is a local maximum, we get a contradiction.
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ḣ(τ) = 〈∇vτ F , v̇τ 〉 and ḧ(τ) = 〈∇2
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The extended Ma-Trudinger-Wang tensor

There holds 〈∇vhx ,w〉 = 〈ξ, q − q〉x and

〈∇2
vhx w ,w〉 =

2

3

∫ 1

0

(1− s) S(y ,(1−s)q+sq)(ξ, q − q) ds

where the MTW tensor S is defined as

S(x ,v)(ξ, η) = −3

2

d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

d2
g (expx(tξ), expx(v + sη)) ,

for every x ∈ M , v ∈ I(x), and ξ, η ∈ TxM , and by

S(x ,v)(ξ, η) = −3

2

d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

dg
2

(expx(tξ), expx(v + sη)) ,

for every x ∈ M , v ∈ NF(x), and ξ, η ∈ TxM , where dg

denotes a extended distance on a neighborhood of
(x , expx(v)).
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The MTW tensor on
(
S2, g 0

)
On
(
S2, g 0

)
, the MTW tensor is given by

S(x ,v)

(
ξ, ξ⊥

)
= 3

[
1

r 2
− cos(r)

r sin(r)

]
ξ4

1 + 3

[
1

sin2(r)
− r cos(r)

sin3(r)

]
ξ4

2

+
3

2

[
− 6

r 2
+

cos(r)

r sin(r)
+

5

sin2(r)

]
ξ2

1ξ
2
2 ,

with x ∈ S2, v ∈ I(x), r := |v |x , ξ = (ξ1, ξ2), ξ⊥ = (−ξ2, ξ1).
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Theorem (Figalli, R, Villani ’09)

If (M , g) is a C 4 perturbation of the round sphere, then it
satisfies an extended uniform Ma–Trudinger–Wang condition
of the form

∀x ∈ M , ∀v ∈ NF(x) \ {0},
S(x ,v)(ξ, η) ≥ κ

(
|ξ|2x + |Λ−1ξ|2x

)
|η|2x − c < ξ, η >2

x ,

where κ, c are positive constants, and Λ−1 is a symmetric
nonnegative matrix.
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In conclusion,

〈∇vhx ,w〉 = 0 =⇒ 〈∇2
vhx w ,w〉 > 0.

Which gives the quasiconvexity of the hx ’s.

Be careful with the regularity oh hx !!!
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Thank you for your attention !
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Sufficient conditions for TCP

Theorem (Figalli, R, Villani ’10)

Assume that (M , g) satisfies the following properties:

all the injectivity domains are strictly convex,

the MTW tensor S is � 0, that is, for every
x ∈ M , v ∈ I(x), and ξ, η ∈ TxM \ {0},

〈ξ, η〉x = 0 =⇒ S(x ,v)(ξ, η) > 0.

Then (M , g) satisfies TCP.
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Necessary conditions for TCP

Theorem (Figalli, R, Villani ’10)

Assume that (M , g) satisfies (TCP) then the following
properties hold:

all the injectivity domains are convex,

the cost c is regular,

the MTW tensor S is � 0.
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