Courbes auto-contractantes dans les variétés riemanniennes

Ludovic Rifford

Université de Nice - Sophia Antipolis &
Institut Universitaire de France

10ème Rencontre d'Analyse Mathématique et Applications Ouargla, Algérie, Février 2015

Champ de gradients

Soit $M=\mathbb{R}^n$ et $f:M\to\mathbb{R}$ une fonction de classe C^∞ supposée propre $(\lim_{|x|\to\infty}f(x)=+\infty)$. On s'intéresse aux orbites positives du champs $-\nabla f$ c'est à dire aux solutions de

$$\dot{\gamma}(t) = -\nabla f(\gamma(t)) \qquad t \geq 0.$$

On a pour tout $t \ge 0$,

$$\frac{d}{dt}\left\{f\big(\gamma(t)\big)\right\} = \left\langle \nabla f\big(\gamma(t)\big), \dot{\gamma}(t)\right\rangle = -\left|\nabla f\big(\gamma(t)\big)\right|^2$$

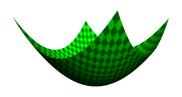
Soit

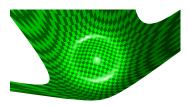
$$\mathcal{E} := \{ x \in \mathbb{R}^n \, | \, \nabla f(x) = 0 \} \, .$$

Théorème (La Salle)

$$\lim_{t\to+\infty}d\big(\gamma(t),\mathcal{E}\big)=0.$$

Exemples





Problèmes:

- Limite?
- Longueur de la courbe $\Gamma = \gamma([0, +\infty))$ finie ou infinie ?

Théorème de Lojasiewicz

Théorème (Łojasiewicz, 1962)

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction analytique telle que f(0) = 0, si il existe une suite $(t_k)_{k \in \mathbb{N}}$ tendant vers $+\infty$ telle que

$$\lim_{k\to+\infty}\gamma(t_k)=0,$$

alors la courbe $\Gamma = \gamma([0, +\infty[)$ est de longueur finie et $\lim_{t\to +\infty} \gamma(t) = 0$.

Conjecture du Gradient de Thom

La limite
$$\lim_{t \to +\infty} \frac{\gamma(t)}{|\gamma(t)|}$$
 existe.

Démontrée par Kurdyka, Mostowski et Parusinski (2000)

Inégalité de Lojasiewicz

Théorème (Inégalité de Łojasiewicz)

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction analytique telle que f(0) = 0, alors il existe c > 0, $\rho \in]0,1[$ et U un voisinage de 0 tel que

$$|\nabla f(x)| \ge c |f(x)|^{\rho} \quad \forall x \in U.$$

Preuve de long(Γ) < ∞ :

$$rac{d}{dt}\left\{fig(\gamma(t)ig)
ight\} = \left\langle
abla f(\gamma(t)), \dot{\gamma}(t)
ight
angle = -\left|
abla f(\gamma(t))\right|^2$$

Donc si $\gamma(t) \in U$, alors on a

$$\implies \frac{d}{dt} \left\{ f(\gamma(t)) \right\} \leq -c \left| \nabla f(\gamma(t)) \right| \left| f(\gamma(t)) \right|^{\rho}$$

$$\implies |\nabla f(\gamma(t))| \leq \frac{-1}{c(1-\rho)} \frac{d}{dt} \left\{ f(\gamma(t))^{1-\rho} \right\}$$

Preuve (suite)

Donc on a pour tout $T \ge t_k$ tel que $\gamma([t_k, T]) \in U$,

$$\int_{t_k}^{T} \left| \nabla f(\gamma(t)) \right| dt \leq \frac{1}{c(1-\rho)} \left[f(\gamma(t_k))^{1-\rho} - f(\gamma(T))^{1-\rho} \right]$$

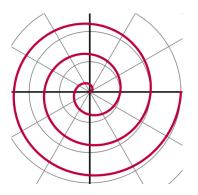
$$\leq \frac{1}{c(1-\rho)} f(\gamma(t_k))^{1-\rho}.$$

En conclusion:

- Si $\gamma(t_k)$ est très proche de 0 alors on ne pourra pas ressortir de U :
- La courbe Γ est de longueur finie ;
- $\lim_{t\to+\infty} \gamma(t) = 0$.

Le cas lisse

Le théorème de Łojasiewicz est faux dans le cas C^{∞} !! On part d'une spirale de longueur infinie $(r = g(\theta))$



Par le théorème d'extension de Whitney, on trouve une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ telle que la spirale est une orbite de $-\alpha(x)\nabla f(x)$ ($\alpha > 0$).

Le cas convexe

Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^{∞} , **convexe**, propre.

L'inégalité de Lojasiewicz est fausse pour les fonctions convexes (ainsi que la conjecture de Thom).

Soit $\gamma:[0,+\infty)\to\mathbb{R}^n$ une solution de

$$\dot{\gamma}(t) = -\nabla f(\gamma(t))$$
 $t \ge 0.$

Lemma

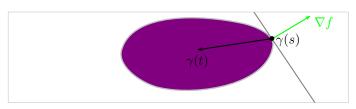
Pour tout $t \ge 0$, la fonction $s \in [0, t] \mapsto |\gamma(s) - \gamma(t)|$ est décroissante.

Preuve du lemme : On a pour tous $t, s \ge 0$,

$$\frac{d}{ds} |\gamma(s) - \gamma(t)|^2 = 2\langle \dot{\gamma}(s), \gamma(s) - \gamma(t) \rangle$$
$$= \langle \nabla f(\gamma(s)), \gamma(t) - \gamma(s) \rangle.$$

Courbes auto-contractantes

Si $s \in [0, t]$, $\gamma(t)$ appartient au sous-ensemble de niveau $\{f \leq f(\gamma(s))\}$ et par convexité :



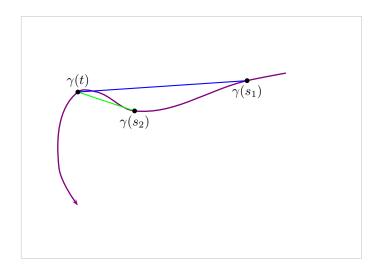
Definition (Daniilidis, Ley, Sabourau)

Soit $I = [0, b) \subset \mathbb{R}$, une courbe $\gamma : I \to \mathbb{R}^n$ est dite auto-contractante si pour tout $t \in I$, la fonction

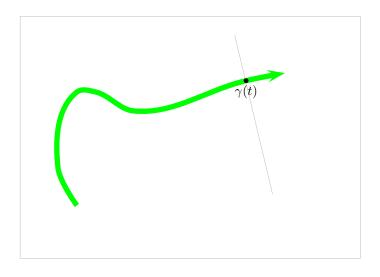
$$s \in [0, t] \longmapsto |\gamma(s) - \gamma(t)|$$

est décroissante.

Courbes auto-contractantes



Serpent à lunettes auto-phobique



Courbes auto-contractantes

Remarque

Toute courbe associée à une fonction quasiconvexe lisse ou a un feuilletage convexe lisse est auto-contractante.

Remarque

Une courbe auto-contractante n'est pas forcément continue.

Théorème (David, Daniilidis, Durand-Cartagena, Lemenant)

Soit $I = [0, b) \subset \mathbb{R}$ et une courbe $\gamma : I \to \mathbb{R}^n$ contenue dans une boule de rayon R > 0. Alors

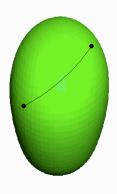
$$long(\Gamma) \leq C_n R$$
,

(où C_n est une constante ne dépendant que de la dimension n).

D'après une idée de Manselli-Pucci (1991).

Le cas riemannien

Soit M une variété lisse connexe de dimension n équipée d'une métrique riemannienne g (complète). Pour tout $x, y \in M$, on définit la **distance géodésique** entre x et y, notée $d^g(x, y)$, comme le minimum des longueurs des courbes joignant x à y.



Le théorème riemannien

Definition

Soit $I = [0, b) \subset \mathbb{R}$, une courbe $\gamma : I \to M$ est dite auto-contractante si pour tout $t \in I$, la fonction

$$s \in [0, t] \longmapsto d^{g}(\gamma(s), \gamma(t))$$

est décroissante.

Théorème (Daniilidis, Deville, Durand-Cartagena, R)

Soit $I = [0, b) \subset \mathbb{R}$, $\mathcal{K} \subset M$ un ensemble compact et $\gamma : I \to \mathcal{K}$ une courbe auto-contractante, alors l'ensemble $\Gamma = \gamma(I)$ est rectifiable de longueur finie.

Soit $\gamma:[0,+\infty)\to\mathbb{R}^n$ une courbe auto-contractante contenue dans la boule B(0,R) supposée lisse. On définit pour tout $t\geq 0$,

$$\Gamma(t) := \{ \gamma(s) \mid s \geq t \}.$$

Lemma

Pour tout $t \ge 0$, pour tous $z, z' \in \Gamma(t)$, on a

$$\langle z - \gamma(t), z' - \gamma(t) \rangle \geq 0.$$

Preuve du lemme : On a par hypothèse (z' > z)

$$|z-z'|^2 \leq |\gamma(t)-z'|^2.$$

Par conséquent

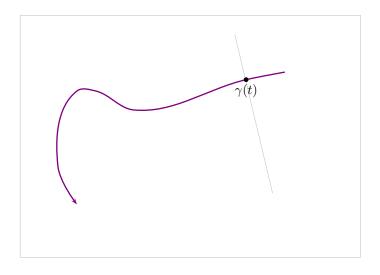
$$|z - \gamma(t)|^{2} + |\gamma(t) - z'|^{2} + 2\langle z - \gamma(t), \gamma(t) - z' \rangle$$

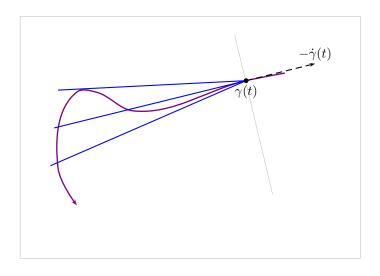
$$\leq |\gamma(t) - z'|^{2}$$

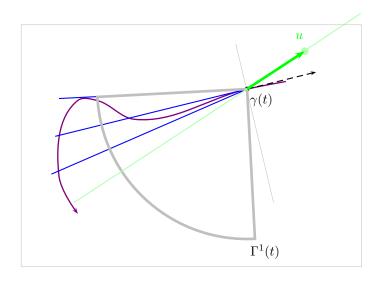
$$\implies 2\langle \gamma(t) - z, \gamma(t) - z' \rangle \geq |z - \gamma(t)|^{2} \geq 0.$$

Remarque

Si un cône dans \mathbb{R}^n contient des vitesses ayant deux à deux un produit scalaire ≥ 0 , alors il est pointu !!!







• Pour tout $t \ge 0$, il existe $u \in \mathbb{S}^{n-1}$ tel que

$$\langle u, -\dot{\gamma}(t) \rangle \geq 1/10$$
 et $\langle u, \Gamma^1(t) \rangle \leq -1/10$.

- Soit $K \subset \mathbb{R}^n$ un compact convexe fixé. Pour tout vecteur unitaire $u \in \mathbb{S}^{n-1}$ la **projection orthogonale** $P_u(K)$ de K sur la droite $\mathbb{R}u$ est intervalle compact de longueur $\mathcal{L}^1(P_u(K))$.
- Par conséquent, la fonction largeur moyenne de $\overline{\Gamma(t)}$ définie par

$$W(t) = rac{1}{\sigma_n} \int_{\mathbb{S}^{n-1}} \mathcal{L}^1\left(P_u\left(\overline{\Gamma(t)}
ight)
ight) du.$$

a une dérivée $\leq -c < 0$.

• Mais W > 0 et $W(+\infty) < R$!!!!

• Pour tout $t \ge 0$, il existe $u \in \mathbb{S}^{n-1}$ tel que

$$\langle u, -\dot{\gamma}(t) \rangle \geq 1/10$$
 et $\langle u, \Gamma^1(t) \rangle \leq -1/10$.

- Soit $K \subset \mathbb{R}^n$ un compact convexe fixé. Pour tout vecteur unitaire $u \in \mathbb{S}^{n-1}$ la **projection orthogonale** $P_u(K)$ de K sur la droite $\mathbb{R}u$ est intervalle compact de longueur $\mathcal{L}^1(P_u(K))$.
- Par conséquent, la fonction largeur moyenne de $\overline{\Gamma(t)}$ définie par

$$W(t) = rac{1}{\sigma_n} \int_{\mathbb{S}^{n-1}} \mathcal{L}^1\left(P_u\left(\overline{\Gamma(t)}
ight)
ight) du.$$

a une dérivée $\leq -c < 0$.

• Mais $W \ge 0$ et $W(+\infty) < R$!!!!

Le cas riemannien

• On a passé sous le tapis de nombreux détails techniques.

• Dans (M, g), on ne peut pas adapter la notion de largeur moyenne. Il faut localiser !!!

 Celà revient à étudier des serpents auto-phobiques sans lunettes avec oeillères. Merci pour votre attention !!