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Preface

The main goal of these lectures is to give an introduction to sub-Riemannian
geometry and optimal transport, and to present some of the recent progress in
these two fields. This set of notes is divided into three chapters and two appen-
dices. Chapter 1 is concerned with the notions of totally nonholonomic distri-
butions and sub-Riemannian structures. The concepts of End-Point mappings
and singular horizontal paths which play a major role through these lectures are
introduced here. Chapter 2 deals with sub-Riemannian geodesics. We study
first and second-order variations of the End-Point mapping to derive necessary
and sufficient conditions for an horizontal path to be minimizing. We provide
several examples, including the Montgomery counter-example of singular min-
imizing curve. In Chapter 3, we study the Monge problem for sub-Riemannian
quadratic costs. We give a crash-course in optimal transport theory and ex-
plain how the sub-TWIST condition together with the Lipschitz regularity
of a ”variational” cost implies the well-posedness of Monge’s problem. Then
we study the fine regularity properties of sub-Riemannian distances to obtain
existence and uniqueness of optimal transport maps in the sub-Riemannian
context. We recall basic facts on ordinary differential equations in Appendix
1 and less classical results of differential calculus in normed vector spaces in
Appendix 2. The latter plays a key role in Chapter 2.

The reader of these notes should be familiar with the basics in differen-
tial geometry and measure theory. Possible references in these fields include
the textbooks by Lee [Lee03] and Evans-Gariepy [EG92]. For further reading,
we strongly encourage the reader to look at other texts in sub-Riemannian
geometry and optimal transport. Multiple viewpoints always lead to deeper
understanding and may open new directions for research. Among them, we
may suggest the textbooks by Montgomery [Mon02], Agrachev, Barilari and
Boscain [ABB12], and Villani [Vil08].

This set of notes grew from a series of lectures that I gave during a CIMPA
school in Beyrouth, Lebanon, on the invitation of Fernand Pelletier. I take the
opportunity of this preface to warmly thank Ali Fardoun, Mohamad Mehdi and
Fernand Pelletier who organized the school, Ahmed El Soufi for his support
and friendship, and through him the ”Centre International de Mathématiques
Pures et Appliquées”. My gratitude goes also to all faculties and students who
attended this sub-Riemannian CIMPA school in making it a success.
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Chapter 1

Sub-Riemannian structures

Throughout all the chapter, M denotes a smooth connected manifold without
boundary of dimension n ≥ 2.

1.1 Totally nonholonomic distributions

Distributions

A smooth distribution ∆ of rank m ≤ n (m ≥ 1) on M is a rank m subbundle
of the tangent bundle TM , that is a smooth map that assigns to each point
x of M a linear subspace ∆(x) of the tangent space TxM of dimension m. In
other terms, for every x ∈ M , there are an open neighborhood Vx of x in M
and m smooth vector fields X1

x, · · · , Xm
x linearly independent on Vx such that

∆(y) = Span
{
X1
x(y), · · · , Xm

x (y)
}

∀y ∈ Vx.

Such a family of smooth vector fields is called a local frame in Vx for the distri-
bution ∆. All the distributions which will be considered later will be smooth
with constant rank m ∈ [1, n]. Thus, from now on, ”distribution” always means
”smooth distribution with constant rank”. A co-rank k distribution on M is a
distribution of rank m = n− k and any smooth vector field X on M such that
X(x) ∈ ∆(x) for any x ∈M is called a section of ∆.

Example 1.1.1. We call trivial distribution on M the rank n distribution
∆ defined by ∆(x) = TxM for all x ∈ M . For topological reasons, such a
distribution may not admit non-vanishing sections (for example, by the hairy
ball theorem, there is no non-vanishing continuous vector fields on any even
dimensional sphere).

Example 1.1.2. In R3 with coordinates (x, y, z), the distribution ∆ defined by

∆(x, y, z) = Span
{
X(x, y, z), Y (x, y, z)

}
∀(x, y, z) ∈ R3

with
X = ∂x −

y

2
∂z and Y = ∂y +

x

2
∂z,

is a rank 2 (or co-rank 1) distribution on R3.

1



2 CHAPTER 1. SUB-RIEMANNIAN STRUCTURES

Example 1.1.3. More generally, if x = (x1, . . . , xn, y1, . . . , yn, z) denotes the
coordinates in R2n+1 and the 2n smooth vector fields X1, . . . , Xn, Y 1, . . . , Y n

are defined by

Xi = ∂xi −
yi
2
∂z, Y i = ∂yi +

xi
2
∂z ∀i = 1, . . . , n,

then the distribution ∆ defined by

∆(x) = Span
{
X1(x), , . . . , Xn(x), Y 1(x), . . . , Y n(x)

}
∀x ∈ R2n+1,

is a co-rank 1 distribution on R2n+1.

Example 1.1.4. Let α be a smooth non-degenerate 1-form on M , that is a
1-form which does not vanish (αx 6= 0 for any x ∈ M). The distribution ∆
defined as

∆(x) = Ker (αx) ∀x ∈M,

is a co-rank 1 distribution on M .

Example 1.1.5. As an example, consider the unit 3-sphere S3 in R4 with
coordinates (x1, y1, x2, y2), that is

S3 =
{

(x1, y1, x2, y2) ∈ R4 |x2
1 + y2

1 + x2
2 + y2

2 = 1
}
.

Let α be the smooth non-degenerate 1-form on S3 defined by

α =
(
x1dy1 − y1dx1 + x2dy2 − y2dx2

)
|S3
,

then ∆ = Ker(α) is a co-rank 1 distribution on S3.

We say that a given distribution ∆ on M admits a global frame if there are
m smooth vector fields X1, · · · , Xm on M such that

∆(x) = Span
{
X1(x), · · · , Xm(x)

}
∀x ∈M.

In general, distributions do not admit global frames (see Example 1.1.1). It is
worth noticing that in the particular case of Rn all distributions are trivial.

Proposition 1.1.6. Any distribution in Rn admits a global frame.

Proof. Let us first show how to construct a non-vanishing section of a given
distribution in Rn.

Lemma 1.1.7. Let ∆ be a distribution of rank m in Rn. Then there is a
non-vanishing smooth vector field X such that X(x) ∈ ∆(x), for any x ∈ Rn.

Proof of Lemma 1.1.7. Define the multivalued mapping δ : Rn → 2Rn by

δ(x) =
{
v ∈ ∆(x) | |v| = 1

}
∀x ∈ Rn.

By construction, δ is locally Lipschitz with respect to the Hausdorff distance
on compact subsets of Rn. By compactness of B̄(0n, 2), there is ε ∈ (0, 1)
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such that for any x, y ∈ B̄(0n, 2) with |x − y| < ε, and any v ∈ δ(x), there
is w ∈ δ(y) such that |v − w| < 1. Let N ≥ 2 be an integer such that the
increasing sequence of balls B1, . . . ,BN defined by

Bi = B (0n, iε) ∀i = 1, . . . , N,

satisfies B̄(0n, 1) ⊂ BN . For every x ∈ Rn, we denote by Projδ(x) the projection
onto the (m− 1)- dimensional sphere δ(x). Note that the mapping Projδ(x) is
well-defined and ”smooth” on the open set

Ox =
{
w ∈ Rn | 〈v, w〉 6= 0,∀v ∈ δ(x)

}
.

For every i ∈ {1, . . . , N − 1}, consider a smooth mapping Pi : Bi+1 → Bi such
that

|Pi(x)− x| < ε ∀x ∈ Bi+1. (1.1)

Note that such a smooth function exists because Bi is a ball and Bi+1 is con-
tained in the ε-neighborhood of Bi. Let w̄ ∈ δ(0) be fixed. We define the vector
field X : B̄(0n, 1)→ Rn as follows:
We first set

X1(x) = Projδ(x)(w̄) ∀x ∈ B1.

Then, given Xi : Bi → Rn, we define Xi+1 : Bi+1 → Rn as

Xi+1(x) = Projδ(x)

(
Xi

(
Pi(x)

))
∀x ∈ Bi+1.

By construction (by (1.1) and the definition of ε), Xi

(
Pi(x)

)
belongs to Ox

for any x ∈ Bi+1. In conclusion, X = XN is smooth on B̄(0n, 1) and satisfies
0n 6= X(x) ∈ δ(x) for any x ∈ B(0n, 1). Repeating the construction on the
annuli B(0n, 2) \ B(0n, 1), B(0n, 3) \ B(0n, 2), . . ., we obtain a non-vanishing
section of ∆ on Rn.

We now prove Proposition 1.1.6 by induction on m. Let ∆ be a rank (m+1)
distribution on Rn. By Lemma 1.1.7, it admits a non-vanishing section X on
Rn. The multivalued mapping ∆̃ : Rn → 2Rn defined by

∆̃(x) = ∆(x) ∩
{
X(x)

}⊥
∀x ∈ Rn,

is a smooth rank m distribution (here {X(x)}⊥ denotes the space which is
orthogonal to X(x) with respect to the Euclidean scalar product). Thus by
induction, there are smooth vector fields X1, . . . , Xm on Rn such that

∆̃(x) = Span
{
X1(x), . . . , Xm(x)

}
∀x ∈ Rn.

The family {X1, . . . , Xm, X} is a global frame for ∆.

A finite family of smooth vector fields {X1, . . . , Xk} is called a generating
family for ∆ on M if there holds

∆(x) = Span
{
X1(x), · · · , Xk(x)

}
∀x ∈M.

Any distribution can be represented by a generating family.
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Proposition 1.1.8. Let ∆ be a distribution of rank m ≤ n on M . Then there
are k = m(n + 1) smooth vector fields X1, · · · , Xk such that {X1, · · · , Xk} is
a generating family for ∆.

Proof. By definition, for every x ∈ M , there is an open neighborhood Vx of x
in M and m smooth vector fields X1

x, · · · , Xm
x linearly independent on Vx such

that
∆(y) = Span

{
X1
x(y), · · · , Xm

x (y)
}

∀y ∈ Vx.

Since M is paracompact, there is a locally finite covering V = {Vi}i∈I where
each open set Vi equals Vxi for some xi ∈M .

Lemma 1.1.9. There are a locally finite open covering {Uj}j∈J of M and a
partition ∪n+1

l=1 Jl of J such that the following properties are satisfied:

(a) for every j ∈ J , there is i = i(j) ∈ I such that Uj ⊂ Vi,

(b) for every l ∈ {1, . . . , n+ 1} and any j 6= j′ ∈ Jl, Uj ∩ Uj′ = ∅.

Proof of Lemma 1.1.9. Recall that every smooth manifold is triangulable. Let
T = {Tt}t∈T be a triangulation of M that refines the covering {Vi}i∈I , in the
sense that the closure of each face F of T is a subset of some Vi. For every
α ∈ {0, . . . , n}, denote by T α = {T αt }t∈Tα the family of α-dimensional faces in
T . For every α ∈ {0, . . . , n}, we can construct easily a collection of open sets
Wα = {Wα

s }s∈Sα satisfying the following properties:

- Wα is a refinement of {Vi}i∈I ,

- ∪t∈TαT αt ⊂ ∪s∈SαWα
s ,

- each Wα
s is an open neighborhood of some α-dimensional face of T α,

- for any s 6= s′ ∈ Sα,Wα
s ∩Wα

s′ = ∅,

- for any s 6= s′ ∈ S0,Wα
s ∩Wα

s′ = ∅,

- for any α ∈ {1, . . . , n} and any s 6= s′ ∈ Sα,Wα
s ∩Wα

s′ ⊂ ∪t∈Tα−1T α−1
t .

For that, it suffices to proceed by induction on α and to make use of the
properties of a triangulation. We conclude easily.

Let us now show how to construct for every r ∈ {1, . . . ,m} a family of
sections {Xj

1 , . . . , X
j
n+1 | 1 ≤ j ≤ r} of ∆ such that Span{Xj

l (x) | 1 ≤ j ≤
r, 1 ≤ l ≤ n+ 1} has dimension ≥ r for any x ∈ M . We proceed by induction
on r.
First, for each l ∈ {1, . . . , n + 1} and each j ∈ Jl, there is i = i(j) ∈ I such
that Uj ⊂ Vi = Vxi . Modifying X1

i = X1
xi outside Uj if necessary, we may

assume that X1
i is defined on M , does not vanish on Uj , and vanishes outside

Uj . Define X1
1 , . . . , X

1
n+1 by

X1
l =

∑
j∈Jl

X1
i(j) ∀l = 1, . . . , n+ 1.

By construction (Lemma 1.1.9 (b)), the interior of the supports of the X1
i(j)’s

are always disjoint. Therefore, each X1
l is a non-vanishing section of ∆ on
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∪j∈JlUj . This shows that Span{X1
l (x) | 1 ≤ l ≤ n + 1} has dimension ≥ 1 for

any x ∈M .
Assume now that we have constructed a family of smooth vector fields {Xj

i , | 1 ≤
j ≤ r, 1 ≤ i ≤ n+ 1} such that

Span
{
Xj
l (x) | 1 ≤ j ≤ r, 1 ≤ l ≤ n+ 1

}
has dimension ≥ r for any x ∈ M (with r < m). For every j ∈ J , there is
s = s(j) ∈ {1, . . . ,m} such that

Span
{
Xs
xi(j)

(x), Xj
l (x) | 1 ≤ j ≤ r, 1 ≤ l ≤ n+ 1

}
has dimension ≥ r + 1 for any x ∈ Uj . Define Xr+1

1 , . . . , Xr+1
n+1 by

Xr+1
l =

∑
j∈Jl

X
s(j)
i(j) ∀l = 1, . . . , n+ 1.

We leave the reader to check that by construction (modifying the Xs(j)
xi(j)

’s if
necessary as above), the vector space

Span
{
Xj
l (x) | 1 ≤ j ≤ r + 1, 1 ≤ l ≤ n+ 1

}
has dimension ≥ r + 1 for any x ∈M . The proof is complete.

The Hörmander condition

Recall that for any smooth vector fields X,Y on M given by

X(x) =
n∑
i=1

ai(x)∂xi , Y (x) =
n∑
i=1

bi(x)∂xi ,

in local coordinates x = (x1, . . . , xn), the Lie bracket [X,Y ] is the smooth
vector field defined as

[X,Y ](x) =
n∑
i=1

ci(x)∂xi ,

where c1, . . . , cn are the smooth scalar function given by

ci =
n∑
j=1

(
∂xj bi

)
aj −

(
∂xjai

)
bj ∀i = 1, · · · , n.

For the upcoming controllability results (like the Chow-Rashesvky Theorem),
it is important to keep in mind the following dynamical characterization of the
Lie bracket.

Proposition 1.1.10. Let X,Y be two smooth vector fields in an neighborhood
of x ∈ Rn. Then we have

[X,Y ](x) := DxY ·X(x)−DxX · Y (x)

= lim
t→0

(
e−tY ◦ e−tX ◦ etY ◦ etX

)
(x)− x

t2
, (1.2)

where etX and etY denote respectively the flows of X and Y .
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b

x

b

etX(x)

b
etY ◦ etX(x)

b

e−tX ◦ etY ◦ etX(x)

b
e−tY ◦ e−tX ◦ etY ◦ etX(x)

Proof. All the functions appearing in the proof will be defined locally for t close
to 0 and/or in a neighborhood of x. Define the smooth function h4 by

h4(t) :=
(
e−tY ◦ e−tX ◦ etY ◦ etX

)
(x) ∀t.

We have h′4(0) = 0. As a matter of fact, we have for any t,

h′4(t) = −Y (h4(t)) +
(
∂

∂x
e−tY

)
(t,h3(t))

· h′3(t)

where h3 is defined by h3(t) :=
(
e−tX ◦ etY ◦ etX

)
(x). Then we have

h′3(t) = −X(h3(t)) +
(
∂

∂x
e−tX

)
(t,h2(t))

· h′2(t),

where h2(t) :=
(
etY ◦ etX

)
(x) and

h′2(t) = Y (h2(t)) +
(
∂

∂x
etY
)

(t,h1(t))

· h′1(t),

with h1(t) := etX(x) and h′1(t) = X(etX(x)). Since partial derivatives of
the form ∂

∂xe
tX at t = 0 are equal to Id, we get h′1(0) = X(x), h′2(0) =

X(x) + Y (x), h′3(0) = Y (x) and h′4(0) = 0. Therefore, the left-hand side of
(1.2) is equal to 1

2h
′′
4(0). By derivating the above formulas, we get

h′′1(0) = dX(h1(0)) · h′1(0) = dX(x) ·X(x),

and

h′′2(0) = dY (h2(0)) · h′2(0) +

[
d

dt

[(
∂

∂x
etY
)

(t,h1(t))

· h′1(t)

]]
t=0

.

But dY (h2(0)) · h′2(0) = dY (x) · (X(x) + Y (x)) and[
d

dt

[(
∂

∂x
etY
)

(t,h1(t))

· h′1(t)

]]
t=0

=

[
d

dt

(
∂

∂x
etY
)

(t,h1(t))

]
t=0

· h′1(0) +
(
∂

∂x
etY
)

(0,h1(0))

· h′′1(0)

=

[(
∂2

∂t∂x

(
etY
))

(0,x)

+
(
∂2

∂x2

(
etY
))

(0,x)

· h′1(0)

]
·X(x) + dX(x) ·X(x)

=
(
∂

∂x

(
∂

∂t
etY
))

(0,x)

·X(x) + dX(x) ·X(x)

= dY (x) ·X(x) + dX(x) ·X(x).
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We infer that h′′2(0) = dY (x) · (2X(x) + Y (x)) + dX(x) · X(x). In the same
way, we have

h′′3(0) = −dX(h3(0)) · h′3(0) +

[
d

dt

[(
∂

∂x
e−tX

)
(t,h2(t))

· h′2(t)

]]
t=0

,

−dX(h3(0)) · h′3(0) = −dX(x) · Y (x) and[
d

dt

[(
∂

∂x
e−tX

)
(t,h2(t))

· h′2(t)

]]
t=0

=

[
d

dt

(
∂

∂x
e−tX

)
(t,h2(t))

]
t=0

· h′2(0) +
(
∂

∂x
e−tX

)
(0,h2(0))

· h′′2(0)

= −dX(x) · (X(x) + Y (x)) + dY (x) · (2X(x) + Y (x)) + dX(x) ·X(x)
= −dX(x) · Y (x) + dY (x) · (2X(x) + Y (x)).

Which implies h′′3(0) = −2dX(x) · Y (x) + dY (x) · (2X(x) + Y (x)). Finally

h′′4(0) = −dY (h4(0)) · h′4(0) +

[
d

dt

[(
∂

∂x
e−tY

)
(t,h3(t))

· h′3(t)

]]
t=0

=

[
d

dt

(
∂

∂x
e−tY

)
(t,h3(t))

]
t=0

· h′3(0) +
(
∂

∂x
e−tY

)
(0,h3(0))

· h′′3(0)

= −dY (x) · Y (x)− 2dX(x) · Y (x) + dY (x) · (2X(x) + Y (x))
= 2(dY (x) ·X(x)− dX(x) · Y (x))
= 2[X,Y ](x),

which concludes the proof.

Remark 1.1.11. We check easily that the following properties are satisfied:

(i) Given smooth vector fields X1, X2, Y1, Y2 and a1, a2 ∈ R, we have

[a1X1 + a2X2, Y1] = a1[X1, Y1] + a2[X2, Y1]
[X1, a1Y1 + a2Y2] = a1[X1, Y1] + a2[X1, Y2].

(ii) Given smooth vector fields X and Y , we have [X,Y ] = −[Y,X].

(iii) Given three smooth vector fields X,Y, Z, the Jacobi identity is satisfied:[
X, [Y,Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0.

Remark 1.1.12. Given a smooth diffeomorphism φ from a smooth manifold
U to a smooth manifold V and X a smooth vector field on U , we recall that
the push-forward φ∗(X) of X is defined by

φ∗(X)(y) := Dφ−1(y)φ
(
X(φ−1(y)

)
∀y ∈ V.

We have
[φ∗(X), φ∗(Y )] = φ∗ ([X,Y ]) .
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For any family F of smooth vector fields on an open set O ⊂ M , we
denote by Lie(F) the Lie algebra of vector fields generated by F . It is the
smallest vector subspace S of X∞(M) (the space of smooth vector fields on
M) containing F that also satisfies

[X,Y ] ∈ S ∀X ∈ F , ∀Y ∈ S.

It can be constructed as follows: Denote by Lie1(F) the space spanned by F
in X∞(M) and define recursively the spaces Liek(F) (k = 1, 2, . . .) by

Liek+1(F) = Span
(

Liek(F) ∪
{

[X,Y ] |X ∈ F , Y ∈ Liek(F)
})

∀k ≥ 0.

This defines an increasing sequence of vector spaces in X∞(M) satisfying

Lie(F) =
⋃
k≥1

Liek(F).

In general, Lie(F) is an infinite-dimensional subspace of X∞(M).

Example 1.1.13. Let A be a n×n real matrix, b be a vector in Rn, and X,Y
be the smooth vector fields in Rn defined by

X(x) = Ax, Y (x) = b ∀x ∈ Rn.

The non-zero Lie brackets of X and Y are always constant vector fields of the
form

ad1
X(Y ) := [X,Y ] = −Ab, ad2

X(Y ) :=
[
X, ad1

X(Y )
]

= A2b,

and
adk+1
X (Y ) :=

[
X, adkX(Y )

]
= (−1)k+1Ak+1b ∀k ≥ 0.

By the Cayley-Hamilton Theorem, An can be expressed as a linear combination
of A0, . . . , An−1. Therefore, Lie(X,Y ) is the set of vector fields Z in Rn of the
form

Z(x) = λAx+
n−1∑
i=0

λiA
ib ∀x ∈ Rn,

with λ, λ0, . . . , λn−1 ∈ R. It is a finite-dimensional Lie algebra.

Example 1.1.14. Let X,Y be the two smooth vector fields in R2 (with coor-
dinates x = (x1, x2)) defined by

X(x) = ∂x1 , Y (x) = f(x1)∂x2 ∀x ∈ R2,

where f is a smooth scalar function. Then, Lie(X,Y ) is the space of smooth
vector fields spanned by X and

adkY (X) = f (k)∂x2 for k ≥ 0.

Thus, Lie(X,Y ) is infinite-dimensional whenever the derivatives of f span an
infinite-dimensional space of functions.
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For any point x ∈M , Lie(F)(x) denotes the set of all tangent vectors X(x)
with X ∈ Lie(F). It follows that Lie(F)(x) is always a linear subspace of TxM ,
hence finite-dimensional.

Example 1.1.15. Returning to Example 1.1.14 and denoting by (e1, e2) the
canonical basis of R2, we check that

Lie(X,Y )(x) = Span
{
e1, f

(k)(x1)e2 | k = 0, 1, 2, . . .
}

∀x ∈ R2.

In particular, Lie(X,Y )(x) = Re1 if f(x) and all its derivatives at x vanish
and Lie(X,Y )(x) = R2 otherwise.

We say that the smooth vector fields X1, . . . , Xm satisfy the Hörmander
condition on some open set O ⊂M if and only if

Lie
{
X1, · · · , Xm

}
(x) = TxM ∀x ∈ O.

A distribution ∆ on M is called totally nonholonomic on M if for every x ∈M ,
there are an open neighborhood Vx of x in M and a local frame X1

x, · · · , Xm
x on

Vx which satisfies the Hörmander condition on Vx. This definition is intrinsic,
it does not depend upon the choice of the local frame X1

x, . . . , X
m
x . This is a

consequence of the following result:

Proposition 1.1.16. Let {X1, . . . , Xm}, {Y 1, . . . , Y m} be two families of lin-
early independent smooth vector fields on an open set O ⊂M such that

Span
{
X1(x), . . . , Xm(x)

}
= Span

{
Y 1(x), . . . , Y m(x)

}
∀x ∈ O.

Then there holds for any integer k ≥ 1,

Liek
{
X1, . . . , Xm

}
(x) = Liek

{
Y 1, . . . , Y m

}
(x) ∀x ∈ O.

Proof. It is sufficient to show that the following inclusion holds for any integer
k ≥ 2,

Liek
{
X1, . . . , Xm

}
(x) ⊂ Liek

{
Y 1, . . . , Y m

}
(x) ∀x ∈ O.

Since the Y j(x) are always linearly independent, there are smooth functions
αji : O → R with i, j = 1, . . . ,m, such that

Xi(x) =
m∑
j=1

αji (x)Y j(x) ∀x ∈ O,∀i = 1, . . . ,m.

Then for every i = 1, . . . ,m and every smooth vector field Z, there holds

[Xi, Z] =

 m∑
j=1

αjiY
j , Z

 =
m∑
j=1

αji [Y
j , Z]−

m∑
j=1

dαji (Z)Y j .

Since Span
{
X1(x), . . . , Xm(x)

}
⊂ Span

{
Y 1(x), . . . , Y m(x)

}
for any x, this

shows that

Lie2
{
X1, . . . , Xm

}
(x) ⊂ Lie2

{
Y 1, . . . , Y m

}
(x) ∀x ∈ O.

We conclude easily by an inductive argument.
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We also observe that any generating family for ∆ does satisfy the Hörmander
condition provided ∆ is totally nonholonomic.

Proposition 1.1.17. Let ∆ be a totally nonholonomic distribution on M
and {X1, . . . , Xk} be a generating family for ∆. Then X1, . . . , Xk satisfy the
Hörmander condition on M .

Proof. We need to show that

Lie
{
X1, · · · , Xk

}
(x) = TxM ∀x ∈M.

Let x ∈ M be fixed. By assumption, there is an open neighborhood Vx and a
local frame Y 1

x , · · · , Y mx on Vx which satisfies the Hörmander condition on Vx.
Proceeding as in the proof of Proposition 1.1.16, we show that

Liek
{
X1, . . . , Xk

}
(x) ⊂ Liek

{
Y 1
x , . . . , Y

m
x

}
(x),

for every integer k ≥ 1. This proves that X1, . . . , Xk satisfy the Hörmander
condition on M .

Remark 1.1.18. Since for any smooth vector field X, there holds [X,X] = 0,
a one dimensional distribution cannot be totally nonholonomic.

Degree of nonholonomy

If ∆ is a rank m totally nonholonomic distribution on M , then for every x ∈M ,
there are an open neighborhood Vx of x and m smooth vector fields X1

x, . . . , X
m
x

which satisfy the Hörmander condition on Vx. We call degree of nonholonomy
of ∆ at x the smallest integer r = r(x) ≥ 1 such that

Lier
{
X1, . . . , Xm

}
(x) = TxM.

Thanks to Proposition 1.1.16, this definition does not depend upon the choice
of the local frame. Moreoever, we shall say that ∆ is totally nonholonomic of
degree r if the nonholonomy degree of any point in M is ≤ r.

Example 1.1.19. The distribution given in Example 1.1.2 is totally nonholo-
nomic. We check easily that

[X,Y ] = ∂z ∀i, j = 1, . . . , n,

which means that ∆ has degree 2.

Example 1.1.20. More generally, the distribution given in Example 1.1.3 is
totally nonholonomic of degree 2. We check easily that

[Xi, Y j ] = δij∂z ∀i, j = 1, . . . , n.

Example 1.1.21. The Martinet distribution in R3 (with coordinates (x, y, z))
is defined as

∆(x, y, z) = Span
{
X(x, y, z), Y (x, y, z)

}
∀x ∈ R3,
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where

X = ∂x, Y = ∂y +
x2

2
∂z.

The first Lie bracket of X,Y is given by

[X,Y ] = x∂z.

For any (x, y, z) ∈ R3 with x 6= 0, the three vectors

X(x, y, z), Y (x, y, z), [X,Y ](x, y, z)

are linearly independent. Hence, ∆ is a totally nonholonomic distribution of
degree 2 on R3 \ {x = 0}. The Lie bracket [[X,Y ], Y ] is given by

[[X,Y ], Y ] = ∂z.

Then, ∆ is a totally nonholonomic distribution of degree 3 on R3.

Example 1.1.22. More generally, if X,Y are given by

X = ∂x, Y = ∂y + xl∂z,

with l ∈ N∗, we check easily that the distribution spanned by X and Y is a
totally nonholonomic distribution of degree l + 1.

Example 1.1.23. Assume that M has dimension n = 2p + 1 and let α be a
1-form on M satisfying

α ∧ (dα)p 6= 0

then the distribution given by ∆ = Ker(α) is totally nonholonomic of degree 2.
Such a 1-form is called a contact form and the associated distribution is called
a contact distribution. As a matter of fact, given x̄ ∈ M , there is a local set
of coordinates (x1, . . . , xn) in an open neighborhood V̄ of x̄ such that α has the
form

α =

(
2p∑
i=1

aidxi

)
+ dxn,

where a1, . . . , a2p are smooth scalar function on V̄ such that

ai(x̄) = 0 ∀i = 1, . . . , 2p.

Hence, the family of smooth vector fields X̄1, . . . , X̄2p given by

X̄i = ∂xi − ai∂xn ∀i = 1, . . . , 2p,

defines a local frame for ∆ = Ker(α) in V̄. On the one hand, the n = 2p+ 1-
form α ∧ (dα)p at x̄ reads

(α ∧ (dα)p)x̄ =∑
σ∈P2p

 ∏
l=1,...,p

(
∂ajl
∂xil

− ∂ail
∂xjl

) dxn ∧ (dxi1 ∧ dxj1) . . . ∧
(
dxip ∧ dxjp

)
|x̄,

(1.3)
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where P2p denotes the set of p-tuples of the form σ = ((i1, j1), . . . , (ip, jp)) with
{i1, j1, . . . , ip, jp} = {1, . . . , 2p} and il < jl for all l = 1, . . . , p. On the other
hand, we check easily that[

X̄i, X̄j
]

(x̄) =
(
∂xiaj − ∂xjai

)
∂xn(x̄) ∀i, j = 1, . . . , 2p.

Therefore, if there is ī ∈ {1, . . . , 2p} such that [X̄ ī, X̄j ](x̄) = 0 for any j 6= i,
then all the products appearing in (1.3) vanish, which implies that (α ∧ (dα)p)x̄ =
0, contradiction. We deduce that for every i ∈ {1, . . . , n}, there holds

Span
{
X̄1(x̄), . . . , X̄2p(x̄),

[
X̄i, X̄1

]
(x̄), . . . ,

[
X̄i, X̄2p

]
(x̄)
}

= Tx̄M. (1.4)

This means that ∆ = Ker(α) is totally nonholonomic of degree 2.

Example 1.1.24. As an example, the 1-form given in Example 1.1.5 is a
contact form on S3. There holds

α ∧ dα = (x1dy1 − y1dx1 + x2dy2 − y2dx2) ∧ (2dx1 ∧ dy1 + 2dx2 ∧ dy2)
= 2x1dy1 ∧ dx2 ∧ dy2 − 2y1dx1 ∧ dx2 ∧ dy2

+2x2dx1 ∧ dy1 ∧ dy2 − 2y2dx1 ∧ dy1 ∧ dx2.

A basis of the tangent space to S3 at x = (x1, y1, x2, y2) ∈ S3 is given by
(V1, V2, V3) with  V1 = −y1e1 + x1e2 − y2e3 + x2e4

V2 = −x2e1 + y2e2 + x1e3 − y1e4

V3 = −y2e1 − x2e2 + y1e3 + x1e4.

Then

(α ∧ dα)x (V1, V2, V3) =

2x2
1

(
x2

1 + y2
1 + x2

2 + y2
2

)
− 2y2

1

(
−x2

1 − y2
1 − x2

2 − y2
2

)
+ 2x2

2

(
x2

1 + y2
1 + x2

2 + y2
2

)
− 2y2

2

(
−x2

1 − y2
1 − x2

2 − y2
2

)
= 2

(
x2

1 + y2
1 + x2

2 + y2
2

)2
= 2.

This means that the restriction of the 3-form α ∧ dα to the tangents spaces to
S3 does not vanish.

1.2 Horizontal paths and End-Point mappings

Horizontal paths

Let ∆ be a distribution of rank m ≤ n in M . A continuous path γ : [0, T ]→ Rn
is said to be horizontal with respect to ∆ if it is absolutely continuous with
square integrable derivative (see Appendix A) and satisfies

γ̇(t) ∈ ∆
(
γ(t)

)
a.e. t ∈ [0, T ].

For every x ∈ M and every T > 0, we denote by Ωx,T∆ the set of horizontal
paths γ : [0, T ] → M starting at x. If ∆ admits a global frame X1, . . . , Xm,
then there is a one-to-one correspondence between Ωx,T∆ and an open subset of
L2 ([0, T ]; Rm).
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Proposition 1.2.1. Let F =
{
X1, . . . , Xm

}
be a global frame for ∆. Then for

every x ∈ M and every T > 0, there is an open subset Ux,TF of L2 ([0, T ]; Rm)
such that the mapping

u ∈ Ux,TF 7−→ γu ∈ Ωx,T∆ ,

(where γu : [0, T ]→M is the unique solution to the Cauchy problem

γ̇u(t) =
m∑
i=1

ui(t)Xi (γu(t)) a.e. t ∈ [0, T ], γu(0) = x, ) (1.5)

is one-to-one.

Proof. The set of controls u ∈ L2 ([0, T ]; Rm) such that the solution γu of (1.5)
is well-defined on [0, T ] is a non-empty open set. Moreover, by construction,
any path γu is absolutely continuous with square integrable derivative and
almost everywhere tangent to ∆. This proves that the map under study is
well-defined. Let γ ∈ Ω∆,x,T be such that there are u, v ∈ L2 ([0, T ]; Rm) such
that

γ̇(t) =
m∑
i=1

ui(t)Xi (γ(t)) =
m∑
i=1

vi(t)Xi (γ(t)) a.e. t ∈ [0, T ].

Since the tangent vectors X1 (γ(t)) , . . . , Xm (γ(t)) are always linearly inde-
pendent in Tγ(t)M , we infer that u(t) = v(t) for almost every t ∈ [0, T ], which
proves that our map is injective. Furthermore, given γ ∈ Ωx,T∆ , for almost every
t ∈ [0, T ], the path γ is differentiable at t and there is a unique u(t) ∈ Rm such
that γ̇(t) =

∑m
i=1 ui(t)X

i (γ(t)). By construction, the function u : [0, T ]→ Rm
belongs to L2 ([0, T ]; Rm).

As seen before, a general distribution may have no global frame, but it can
be represented by k = m(n+ 1) vector fields (see Proposition 1.1.8).

Proposition 1.2.2. Let F =
{
X1, · · · , Xk

}
be a generating family for ∆ on

M . Then, for every x ∈ M and every T > 0, there is an open subset Ux,TF of
L2
(
[0, T ]; Rk

)
such that the mapping

u ∈ Ux,TF 7−→ γu ∈ Ωx,T∆ ,

(where γu : [0, T ]→M is the unique solution to the Cauchy problem

γ̇u(t) =
k∑
i=1

ui(t)Xi (γu(t)) a.e. t ∈ [0, T ], γu(0) = x, ) (1.6)

is onto.

Proof. Let γ ∈ Ωx,T∆ be fixed. For every t ∈ [0, T ], there is an open set Ot of
γ(t) in M and m integers it1, . . . , i

t
m ∈ {1, . . . , k} such that

Span
{
Xit1(x), . . . , Xitm(x)

}
= ∆(x) ∀x ∈ Ot.
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The curve γ([0, T ]) is compact and is contained in ∪t∈[0,T ]Ot. Hence, there are
N times t1, . . . , tN ∈ [0, T ] together with a partition of unity {ψj} such that

[0, T ] ⊂
N⋃
j=1

Otj , Supp (ψj) ⊂ Otj ,
N∑
j=1

ψj = 1.

For every j, there is a smooth mapping Uj : TM → Rm such that

v =
m∑
l=1

Uj(v)Xi
tj
l (x),

for every (x, v) ∈ TM with x ∈ Otj and v ∈ ∆(x). Then, there holds for almost
every t ∈ [0, T ] and any j ∈ {1, . . . , N},

γ(t) ∈ Otj =⇒ γ̇(t) =
m∑
l=1

Uj (γ̇(t))Xi
tj
l

(
γ(t)

)
.

By the properties satisfied by {ψj}, we infer that

γ̇(t) =
N∑
j=1

ψj
(
γ(t)

) [ m∑
l=1

Uj (γ̇(t))Xi
tj
l

(
γ(t)

)]

=
N∑
j=1

m∑
l=1

(
ψj
(
γ(t)

)
Uj (γ̇(t))

)
Xi

tj
l

(
γ(t)

)
,

for almost every t ∈ [0, T ]. Each mapping t 7→ ψj
(
γ(t)

)
Uj (γ̇(t)) belongs to

L2
(
[0, T ]; R

)
. We infer easily the existence of u ∈ L2

(
[0, T ]; Rk

)
such that

γ = γu.

Remark 1.2.3. If M is compact, then solutions to (1.5) (resp. (1.6)) are
defined for any u ∈ L2([0, T ]; Rm) (resp. u ∈ L2([0, T ]; Rk)).

Given a family of smooth vector fields F =
{
X1, · · · , Xk

}
on M and

x ∈ M,T > 0, a function u ∈ Ux,TF ⊂ L2
(
[0, T ]; Rk

)
is called a control and

the corresponding solution of (1.6) is called the trajectory starting at x and
associated with the control u. Since any horizontal path can be viewed as
a trajectory associated to a control system like (1.6), we restrict in the next
paragraph our attention to End-Point mappings associated with finite families
of smooth vector fields.

End-Point mappings

Let F =
{
X1, . . . , Xk

}
be a family of k ≥ 1 smooth vector fields on M . As be-

fore, given x and T > 0, there is a maximal open subset Ux,TF ⊂ L2
(
[0, T ]; Rk

)
such that for every u ∈ Ux,TF , there is a unique solution to the Cauchy problem

γ̇u(t) =
k∑
i=1

ui(t)Xi (γu(t)) a.e. t ∈ [0, T ], γu(0) = x. (1.7)
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The End-Point mapping associated to F at x in time T > 0 is defined as
follows,

Ex,TF : Ux,TF −→ M
u 7−→ γu(T ).

Given u ∈ Ux,TF , we denote by Xu
F the time-dependent vector field defined by

Xu
F (t, x) :=

m∑
i=1

ui(t)Xi(x) a.e. t ∈ [0, T ], ∀x ∈M.

Its flow ΦuF (t, x) is well-defined and smooth on a neighbourhood of x; we denote
by DxΦuF (t, x) its differential at (t, x) with respect to the x variable. The
following result holds. (We refer the reader to Appendix A for reminders in
differential equations and to Appendix B for reminders in differential calculus
in infinite dimension.)

Proposition 1.2.4. The End-Point mapping Ex,TF is of class C1 on Ux,TF and
for every control u ∈ Ux,TF , its differentiable at u,

DuE
x,T
F : L2([0, T ]; Rk) −→ TEx,TF (u)M

is given by

DuE
x,T
F (v) = DxΦuF (T, x) ·

∫ T

0

(
DxΦuF (t, x)

)−1 ·Xv
F
(
t, Ex,tF (u)

)
dt (1.8)

for every v ∈ L2([0, T ]; Rk). Moreover, the mapping

u ∈ Ux,TF 7−→ DuE
x,T
F (1.9)

is locally Lipschitz.

Proof. Any smooth manifold can be smoothly embedded in an Euclidean space.
Then without loss of generality we can assume that M is a smooth submanifold
of some RN and consequently that the Xi’s are the restrictions of smooth
vector fields X̃1, . . . , X̃k which are defined in an open neighborhood of M in
RN . Given u ∈ Ux,TF and v ∈ L2([0, T ]; Rk) let us look at

lim
ε→0

1
ε

(
Ex,TF

(
u+ εv

)
− Ex,TF

(
u
))
.

Using the previous notations, we have

γu+εv(T ) =
∫ T

0

k∑
i=1

(ui(t) + εvi(t))Xi
(
γu+εv(t)

)
dt

=
∫ T

0

k∑
i=1

(ui(t) + εvi(t)) X̃i
(
γu+εv(t)

)
dt, (1.10)

with γu+εv(0) = x. For every i = 1, . . . , k and every t ∈ [0, T ], the Taylor
expansion of each X̃i at γu(t) gives

X̃i
(
γu+εv(t)

)
= X̃i

(
γu(t)

)
+Dγu(t)X̃

i ·
(
γu+εv(t)− γu(t)

)
+ |γu+εv(t)− γu(t)| o(1). (1.11)
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Setting δx(t) := γu+εv(t) − γu(t) for any t, we may assume that δx has size ε,
then (1.10) yields formally

δx(T ) =
∫ T

0

k∑
i=1

ui(t)Dγu(t)X̃
i · δx(t) dt + ε

m∑
i=1

vi(t)X̃i
(
γu(t)

)
+ o(ε).

This suggests that the function t ∈ [0, T ] 7→ δx(t) should be solution to the
Cauchy problem

δ̇x(t) =

[
k∑
i=1

ui(t)Dγu(t)X̃
i

]
δx(t)

+

[
k∑
i=1

vi(t)X̃i
(
γu(t)

)]
a.e. t ∈ [0, T ], (1.12)

with δx(0) = 0. By (1.10)-(1.12) together with Gronwall’s Lemma (see Ap-
pendix A) we check easily that for every v ∈ L2

(
[0, T ]; Rk

)
, the quantity

1
ε

(
Ex,TF

(
u+ εv

)
− Ex,TF

(
u
)
− εδx(T )

)
tends to zero as ε tends to zero. For almost every t ∈ [0, T ], denote by Au(t)
the matrix in MN (R) representing the linear operator

∑k
i=1 ui(t)Dγu(t)X̃

i in
the canonical basis of RN and for every t ∈ [0, T ], denote by Bu(t) the matrix
in MN,k(R) whose the columns are the X̃i(γu(t))’s. Denote by Su : [0, T ] →
MN (R) the solution to the Cauchy problem

Ṡu(t) = Au(t)Su(t) a.e. t ∈ [0, T ], Su(0) = In.

Note that Su(t) is exactly the Jacobian of the flow ΦuF̃ (with F̃ = {X̃1, . . . , X̃k})
at (t, γu(t)) with respect to the x variable. The solution of (1.12) at time T is
given by (see Appendix A)

δx(T ) = DuE
x,T
F (v) = Su(T )

∫ T

0

Su(t)−1Bu(t)v(t)dt.

Thus we check that (1.8) is satisfied. Let us now prove the local Lipschitzness
of u 7→ DuE

x,T
F and indeed give more details on the estimates that were needed

in the above proof. Let ū a control be fixed in Ux,TF ⊂ L2([0, T ]; Rk). The curve
γū ([0, T ]) ⊂ M ⊂ RN is compact. Let ε > 0 be fixed, the set V ⊂ RN defined
by

V :=
{
γū(t) + z | t ∈ [0, T ], z ∈ B(0, ε)

}
is relatively compact. Then there is K > 0 such that all the X̃i’s are bounded
by K on V and all the X̃i’s are K-Lipschitz on V. Set

δ :=
ε

KTeKT‖ū‖L2

and pick a control u ∈ L2([0, T ]; Rk) with ‖u− ū‖L2 < δ. We claim that u
belongs to Ux,TF and that the trajectory γu : [0, T ] → M ⊂ RN (which is
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associated with u) is contained in V. Argue by contradiction and assume that
there is t̄ ∈ [0, T ] such that γu(t) is on the boundary of V. Taking t̄ > 0 smaller
if necessary, we may assume that γu(t) belongs to V for any t ∈ [0, t̄). Set

f(t) := |γu(t)− γū(t)| ∀t ∈ [0, t̄].

Then we have for every t ∈ [0, t̄),

f(t) =

∣∣∣∣∣
∫ t

0

k∑
i=1

ui(s)X̃i
(
γu(s)

)
−

k∑
i=1

ūi(s)X̃i
(
γū(s)

)
ds

∣∣∣∣∣
≤

∫ t

0

∣∣∣∣∣
k∑
i=1

(ui(s)− ūi(s)) X̃i
(
γu(s)

)∣∣∣∣∣ ds
+
∫ t

0

∣∣∣∣∣
k∑
i=1

ūi(s)
(
X̃i
(
γu(s)

)
− X̃i

(
γū(s)

))∣∣∣∣∣ ds
≤ Kt

∥∥u− ū∥∥
L2 +

∫ t

0

∣∣∣∣∣
k∑
i=1

ūi(s)

∣∣∣∣∣Kf(s) ds.

By Gronwall’s Lemma (see Appendix A) and definition of δ, we infer that

f
(
t̄
)
≤ KT

∥∥u− ū∥∥
L2e

KT‖ū‖L2 < ε.

Thus we get a contradiction and the claimed is proved. Let u, u′ ∈ L2([0, T ]; Rk)
with ‖u− ū‖L2 , ‖u′ − ū‖L2 < δ, by repeating the same argument we get

|γu′(t)− γu(t)| ≤ Kt
∥∥u′ − u∥∥

L2e
KT(‖ū‖L2+δ) ∀t ∈ [0, T ].

(This shows that End-Point mappings are locally Lipschitz.) Denote by Su, Su′ :
[0, T ]→MN (R) the solutions to the Cauchy problems

Ṡu(t) = Au(t)Su(t) a.e. t ∈ [0, T ], Su(0) = In,

Ṡu′(t) = Au′(t)Su′(t) a.e. t ∈ [0, T ], Su′(0) = In,

where Au, Au′ are defined by

Au(t) :=
k∑
i=1

ui(t)JX̃i
(
γu(t)

)
, Au(t) :=

k∑
i=1

u′i(t)JX̃i
(
γu′(t)

)
,

for almost every t ∈ [0, T ] (JX̃i (γu(t)) (resp. JX̃i (γu′(t)) denotes the Jacobian
matrix of X̃i at γu(t) (resp. at γu′(t))). Taking K > 0 larger if necessary,
we may assume that it is an upper bound for the JX̃i ’s on V and a Lipschitz
constant for the JX̃i ’s on V. Then we have for every t ∈ [0, T ],

‖Su(t)‖ =
∥∥∥∥In +

∫ t

0

Au(s)Su(s) ds
∥∥∥∥

≤ 1 +
∫ t

0

k∑
i=1

|ui(s)|
∥∥JX̃i(γu(t)

)∥∥ ‖Su(s)‖ ds

≤ 1 +
∫ t

0

K

k∑
i=1

|ui(s)| ‖Su(s)‖ ds.
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By Gronwall’s Lemma (see Appendix A), we infer that

‖Su(t)‖ ≤ eKT(‖ū‖L2+δ) ∀t ∈ [0, T ].

Set
g(t) := ‖Su′(t)− Su(t)‖ ∀t ∈ [0, T ].

Then all in all, we have for every t ∈ [0, T ],

g(t) =
∥∥∥∥∫ t

0

Au′(s)Su′(s)−Au(s)Su(s) ds
∥∥∥∥

≤
∫ t

0

∥∥(Au′(s)−Au(s)
)
Su′(s)

∥∥ ds
+
∫ t

0

∥∥Au(s)
(
Su′(s)− Su(s)

)∥∥ ds
≤

∫ t

0

k∑
i=1

|u′i(s)− ui(s)|
∥∥JX̃i(γu′(t))∥∥ ‖Su′(s)‖ ds

+
∫ t

0

k∑
i=1

|ui(s)|
∥∥JX̃i(γu′(t))− JX̃i(γu(t)

)∥∥ ‖Su′(s)‖ ds
+
∫ t

0

k∑
i=1

|ui(s)|
∥∥JX̃i(γu(t)

)∥∥ ‖Su′(s)− Su(s)‖ ds

≤
∫ t

0

KeKT(‖ū‖L2+δ)
k∑
i=1

|u′i(s)− ui(s)| ds

+
∫ t

0

K2Te2KT(‖ū‖L2+δ) ‖u′ − u‖L2

k∑
i=1

|ui(s)| ds

+
∫ t

0

K

k∑
i=1

|ui(s)| ‖Su′(s)− Su(s)‖ ds

≤ KT
[
1 +KT

(∥∥ū∥∥
L2 + δ

)]
e2KT(‖ū‖L2+δ) ‖u′ − u‖L2

+
∫ t

0

K

k∑
i=1

|ui(s)| g(s) ds,

which, by Gronwall’s Lemma, yields

‖Su′(t)− Su(t)‖ ≤ C
∥∥u′ − u∥∥

L2 ∀t ∈ [0, T ],

for some constant C > 0. The functions t ∈ [0, T ] 7→ Su(t)−1, Su′(t)−1 are
respectively solutions to the Cauchy problems

d
dt

(
Su(t)−1

)
= −Su(t)−1Au(t) a.e. t ∈ [0, T ], Su(0)−1 = In,

d
dt

(
Su′(t)−1

)
= −Su′(t)−1Au′(t) a.e. t ∈ [0, T ], Su′(0)−1 = In.

Then with the same arguments as before, we may assume that the constant
C > 0 is such that

‖Su(t)‖ ,
∥∥Su(t)−1

∥∥ , ‖Su′(t)‖ , ∥∥Su′(t)−1
∥∥ ≤ C ∀t ∈ [0, T ]
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and

‖Su′(t)− Su(t)‖ ,
∥∥Su′(t)−1 − Su(t)−1

∥∥ ≤ C∥∥u′ − u∥∥
L2 ∀t ∈ [0, T ].

Then we have∥∥Su′(T )Su′(t)−1 − Su(T )Su(t)−1
∥∥ ≤ 2C2

∥∥u′ − u∥∥
L2 ∀t ∈ [0, T ].

Fix now v ∈ L2([0, T ]; Rk), then we have

Du′E
x,T
F (v)−DuE

x,T
F (v)

=
∫ T

0

[
Su′(T )Su′(t)−1Bu′(t)− Su(T )Su(t)−1Bu(t)

]
v(t) dt.

And in turn,∣∣∣Du′E
x,T
F (v)−DuE

x,T
F (v)

∣∣∣ ≤∣∣∣∣∣
∫ T

0

Su′(T )Su′(t)−1 (Bu′(t)−Bu(t)) v(t) dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

(
Su′(T )Su′(t)−1 − Su(T )Su(t)−1

)
Bu(t)v(t) dt

∣∣∣∣∣ .
By the above estimates, we obtain a constant D > 0 such that∣∣∣Du′E

x,T
F (v)−DuE

x,T
F (v)

∣∣∣ ≤ D∥∥u′ − u∥∥
L2‖v‖L2 ,

which shows that the mapping given by (1.9) is locally Lipschitz on Ux,TF .

Remark 1.2.5. If M = Rn, the derivative of Ex,TF at u is given by

DuE
x,T
F (v) = S(T )

∫ T

0

S(t)−1B(t)v(t)dt,

where S : [0, T ]→Mn(R) is the solution to the Cauchy problem

Ṡ(t) = A(t)S(t) a.e. t ∈ [0, T ], S(0) = In.

and where the matrices A(t) ∈Mn(R), B(t) ∈Mn,k(R) are defined by

A(t) :=
k∑
i=1

ui(t)JXi
(
γu(t)

)
a.e. t ∈ [0, T ]

(γu(t) = Ex,tF (u) and JXi denotes the Jacobian matrix of Xi at γu(t)) and

B(t) :=
(
X1(γu(t)), · · · , Xk(γu(t))

)
a.e. t ∈ [0, T ].
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Properties of End-Point mappings

Given u ∈ Ux,TF , we set

Imx,T
F (u) := DuE

x,T
F
(
L2([0, T ]; Rk)

)
.

Defining y = Ex,TF (u), we observe that Imx,T
F (u) is a vector space contained in

TyM , hence of dimension ≤ n. We call rank of u ∈ Ux,TF with respect to Ex,TF ,
denoted by rankx,TF (u), the dimension of Imx,T

F (u).

For any u ∈ L2([0, T ]; Rk) and λ > 0, we denote by uλ the control in
L2
(
[0;λ−1T ],Rk

)
defined by

uλ(t) := λu(λt) a.e. t ∈ [0, λ−1T ].

Proposition 1.2.6. For every u ∈ Ux,TF and every λ > 0, uλ belongs to
Ux,λ

−1T
F and

DuλE
x,λ−1T
F (vλ) = DuE

x,T
F (v) ∀v ∈ L2

(
[0, T ]; Rk

)
.

In particular, rankx,TF (u) = rankx,λ
−1T

F (uλ).

Proof. We just notice that if γu : [0, T ] → M is a solution of (1.7), then the
path γu,λ : [0, λ−1T ]→M defined by

γu,λ(t) = γu(λt) ∀t ∈
[
0, λ−1T

]
,

satisfies for a.e. t ∈ [0, λ−1T ],

γ̇u,λ(t) = λγ̇u(λt) =
k∑
i=1

λui(λt)Xi (γu(λt))

=
k∑
i=1

uλ(t)Xi (γu,λ(t)) .

The remaining part of the result follows easily.

For every u ∈ L2([0, T ]; Rk), we denote by ǔ the control in L2
(
[0, T ]; Rk

)
defined by

ǔ(t) := −u(T − t) a.e. t ∈ [0, T ].

Proposition 1.2.7. For every u ∈ Ux,TF , ǔ belongs to Uy,TF with y := Ex,TF (u)
and

(DxΦF )u (T, x)−1 ·DuE
x,T
F (v) +DǔE

y,T
F (v̌) = 0 ∀v ∈ L2

(
[0, T ]; Rk

)
.

In particular, rankx,TF (u) = ranky,TF (ǔ).

Proof. First, we note that

E
Ex,TF (u),T
F (ǔ) = x ∀u ∈ Ux,TF .

The mapping (z, v) 7→ Ez,TF (v) is smooth and its derivative with respect to

the z variable at
(
y = Ex,TF (u), ǔ

)
is given by DxΦuF (T, x)−1. Derivating the

above equality at u yields the result.
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For any u ∈ L2([0, T ]; Rk) and u′ ∈ L2[0, T ′]; Rk), we denote by u ∗ u′ the
concatenation of u and u′, that is the control in L2[0, T + T ′]; Rk) defined by

u ∗ u′(t) =
{
u(t) if 0 ≤ t ≤ T ;
u′(t− T ) if T < t ≤ T + T ′

for a.e. t ∈ [0, T + T ′].

Proposition 1.2.8. For every u ∈ Ux,TF and u′ ∈ Uy,T
′

F with y = Ex,TF (u),
there holds u ∗ u′ ∈ Ux,T+T ′

F and

Du∗u′E
x,T+T ′

F
(
v ∗ v′

)
= DxΦu

′

F (T ′, y) · dEx,TF (v) + Du′E
y,T ′

F (v′), (1.13)

for any v ∈ L2([0, T ]; Rk) and v′ ∈ L2([0, T ′]; Rk). In particular,

Du∗u′E
x,T+T ′

F
(
v ∗ 0

)
= DxΦu

′

F (T ′, y) ·DuE
x,T
F (v) ∀v ∈ L2([0, T ]; Rk),

(1.14)

Du∗u′E
x,T+T ′

F
(
0 ∗ v′

)
= Du′Ey,T ′(v′) ∀v′ ∈ L2([0, T ]; Rk), (1.15)

and

rankx,T+T ′

F
(
u ∗ u′

)
≥ max

{
rankx,TF (u), ranky,T

′

F (u′)
}
. (1.16)

Proof. We note that

Ex,T+T ′

F (u ∗ u′) = E
Ex,TF (u),T ′

F (u′),

for any u ∈ Ux,TF and u′ ∈ Uy,T
′

F with y = Ex,TF (u). The mapping (z, v) 7→
Ez,T

′

F (v) is smooth and its derivative with respect to the z variable at (y, u′) is
given by DxΦu

′
(T, x). Derivating the above equality at u yields the result.

Example 1.2.9. Let F = {X1, X2} be the family of smooth vectors fields on
R4 (with coordinates x = (x1, x2, x3, x4) and canonical basis (e1, e2, e3, e4) )
defined by

X1 = ∂x1 and X2 = ∂x2 + x2
1∂x3 + x1x2∂x4 .

Set x = (−1, 0, 0, 0), y = (0, 0, 0, 0), and define the controls u, u′ ∈ L2
(
[0, 1]; R2

)
by

u(t) = (1, 0) and u′(t) = (0, 1) ∀t ∈ [0, 1].

The control u has rank 3 with respect to Ex,1F . As a matter of fact, the trajectory
γu : [0, 1]→ R4 starting at x and associated with u equals

γu(t) = (−1 + t, 0, 0, 0) ∀t ∈ [0, 1],

and using the representation formula given in Remark 1.2.5, we have

DuE
x,1
F (v) =

∫ T

0

B(t)v(t)dt ∀v ∈ L2
(
[0, 1]; R2

)
,
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where B(t) =
(
X1(γu(t)), X2(γu(t))

)
for any t ∈ [0, 1]. Then,

Imx,1
F (u) = Span

{∫ 1

0

v1(t)dt e1 | v1 ∈ L2([0, 1]; R)
}

+ Span
{∫ 1

0

v2(t)dt e2 +
∫ 1

0

(1− t)2v2(t)dt e3 | v2 ∈ L2([0, 1]; R)
}

= Span {e1, e2, e3} .

The trajectory γu′ : [0, 1]→ R4 starting at y and associated with u′ equals

γu′(t) = (0, t, 0, 0) ∀t ∈ [0, 1],

and there holds

Du′E
y,1
F (v) = S(T )

∫ T

0

S(t)−1B(t)v(t)dt,

where

S(t) =


1 0 0 0
0 1 0 0
0 0 1 0
t2

2 0 0 1

 and B(t) =


1 0
0 1
0 0
0 0

 ∀t ∈ [0, 1].

We infer that

Imy,1
F (u′) = Span

{∫ 1

0

v2(t)dt e2 | v2 ∈ L2([0, 1]; R)
}

+ Span
{∫ 1

0

v1(t)dt e1 +
∫ 1

0

(
1− t2

2

)
v1(t)dt e4 | v1 ∈ L2([0, 1]; R)

}
= Span {e1, e2, e4} .

Finally, we note that
DxΦu

′

F (1, y)(e3) = e3.

Therefore, by (1.13)-(1.14), this implies

Imx,2
F (u ∗ u′) = R4,

which means that

4 = rankx,2F
(
u ∗ u′

)
> max

{
rankx,1F (u), ranky,1F (u′)

}
= 3.

The following proposition implies that the rank of a control is always larger
or equal than the dimension of the family {X1, . . . , Xk} at the end-point.

Proposition 1.2.10. We have for every u ∈ Ux,TF ,

Xi
(
Ex,TF (u)

)
∈ Imx,T

F (u) ∀i = 1, · · · , k.



1.2. HORIZONTAL PATHS AND END-POINT MAPPINGS 23

Proof. Let us first assume that we work in Rn. In this case (see Remark 1.2.5),
the derivative of Ex,TF at u is given by

DuE
x,T
F (v) = S(T )

∫ T

0

S(t)−1B(t)v(t)dt ∀v ∈ L2
(
[0, T ]; Rk

)
, (1.17)

where S(·) is the solution to the Cauchy problem

Ṡ(t) = A(t)S(t), a.e. t ∈ [0, T ], S(0) = In.

and where the matrices A(t) ∈Mn(R), B(t) ∈Mn,k(R) are defined by

A(t) :=
k∑
i=1

ui(t)JXi
(
γu(t)

)
a.e. t ∈ [0, T ]

and
B(t) :=

(
X1(γu(t)), · · · , Xk(γu(t))

)
a.e. t ∈ [0, T ].

Fix i ∈ {1, · · · , k} and denote by ei the i-th vector of the canonical basis in
Rk. Define, for every ε ∈ (0, T ), the control vε ∈ L2

(
[0, T ]; Rk

)
by

vε(t) =
{

0 if 0 ≤ t ≤ T − ε;
(1/ε)ei if T − ε < t ≤ T.

We have

DuE
x,T
F (vε) = S(T )

∫ T

T−ε
S(t)−1

(
(1/ε)Xi(γu(t)

)
dt.

Hence∣∣∣DuE
x,T
F (vε)−Xi(γu(T ))

∣∣∣
=

∣∣∣∣∣(1/ε)S(T )
∫ T

T−ε
S(t)−1Xi(γu(t) dt− (1/ε)S(T )

∫ T

T−ε
S(T )−1Xi(γu(T )) dt

∣∣∣∣∣
≤ (1/ε) |S(T )|

∫ T

T−ε

∣∣S(t)−1Xi(γu(t))− S(T )−1Xi(γu(T ))
∣∣ dt

≤ (1/ε) |S(T )|
∫ T

T−ε

∥∥S(t)−1
∥∥ ∣∣Xi(γu(t))−Xi(γu(T ))

∣∣ dt
+ (1/ε) |S(T )|

∫ T

T−ε

∥∥S(t)−1 − S(T )−1
∥∥ ∣∣Xi(γu(T ))

∣∣ dt.
Both mappings t 7→ Xi (xu(t)) and t 7→ S(t)−1 are continuous at t = T .
Therefore, there holds

lim
ε↓0

DuE
x,T
F (vε) = Xi(γu(T )).

Since Imx,T
F (u) = DuE

x,T
F
(
L2([0, T ]; Rk)

)
is a closed subset of Rk, we infer

that Xi(γu(T )) belongs to Imx,T
F (u).

If we are now in M , then there exists a local chart around x and t̄ ∈ (0, T )
such that γu(t̄) ∈ O. Set T ′ := T − t̄ and define u1 ∈ L2([0, t̄]; Rk) and
u2 : L2([0, T ′]; Rk) by {

u1(t) = u(t) ∀t ∈ [0, t̄]
u2(t) = u(t+ t̄) ∀t ∈ [0, T ′]

We conclude easily by the above proof in Rn together with (1.15).
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1.3 Regular and singular horizontal paths

Regular and singular controls

Let F = {X1, . . . , Xk} be a family of k ≥ 1 smooth vector fields on M . Given
x ∈M and T > 0, we say that the control u ∈ Ux,TF is regular with respect to x
and F if rankx,TF (u) = n (recall that M has dimension n). Otherwise, we shall
say that u is singular. In other terms, u is singular if and only if it is a critical
point of the End-Point mapping Ex,TF , that is if Ex,TF is not a submersion at u.

Remark 1.3.1. Proposition 1.2.10 shows that if F = {X1, . . . , Xk} is a family
of smooth vector fields on M such that

Span
{
X1(x), . . . , Xk(x)

}
= TxM ∀x ∈M,

then every non-trivial admissible control (that is u in some Ux,TF with u 6=
0, T > 0) is regular.

By Propositions 1.2.6, 1.2.7, we observe that a given control u ∈ Ux,TF
is singular with respect to x and F if and only if any control of the form
uλ ∈ Ux,λ

−1T
F (with λ 6= 0) is singular with respect to x and F and if and only

if ǔ ∈ Uy,TF (with y = Ex,TF ) is singular with respect to y and F . Furthermore,
Proposition 1.2.8 yields immediately the following result.

Proposition 1.3.2. Let u ∈ Ux,TF be a control which is singular with respect
to x and F . Let T 1, T 2, T 3 > 0 be such that T 1 +T 2 +T 3 = T and x1, x2 ∈M ,
and u1 ∈ Ux,T

2

F , u2 ∈ Ux
1,T 2

F , u3 ∈ Ux
2,T 3

F be defined as u1(t) = u(t) ∀t ∈ [0, T 1]
u2(t) = u(t+ T 1) ∀t ∈ [0, T 2]
u3(t) = u(t+ T 2) ∀t ∈ [0, T 3]

and

{
x1 = Ex,T

1

F (u1)
x2 = Ex

1,T 2

F (u2).

Then all the controls u1, u2, u3 are singular with respect to x and F .

Define k Hamiltonians h1, · · · , hk : T ∗M → R by

hi = hXi , ∀i = 1, · · · , k,

that is

hi(ψ) = p ·Xi(x) ∀ψ = (x, p) ∈ T ∗M, ∀i = 1, . . . , k.

For every i = 1, . . . ,m,
−→
h i denote the Hamiltonian vector field on T ∗M as-

sociated to hi, that is satisfying ι−→
H
ω = −dH, where ω denotes the canonical

symplectic form on T ∗ M . In local coordinates on T ∗M , the Hamiltonian
vector field

−→
h i reads

−→
h i(x, p) =

(
∂hi
∂p

(x, p),−∂hi
∂x

(x, p)
)
.

Singular controls can be characterized as follows.
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Proposition 1.3.3. The control u ∈ Ux,TF is singular with respect to x and F
if and only if there exists an absolutely continuous arc ψ : [0, T ] → T ∗M that
never intersects the zero section of T ∗M , such that

ψ̇(t) =
k∑
i=1

ui(t)
−→
h i(ψ(t)) a.e. t ∈ [0, T ] (1.18)

and

hi(ψ(t)) = 0, ∀t ∈ [0, T ] ∀i = 1, · · · , k. (1.19)

We say that ψ is an abnormal extremal lift of γu : [0, T ] → M (defined by
(1.7)).

Proof. Let us first assume that we work in Rn. If DuE
x,T
F : L2([0, T ]; Rk)→ Rn

is not surjective, there exists p ∈ (Rn)∗ \ {0} such that

p ·DuE
x,T
F (v) = 0 ∀v ∈ L2

(
[0, T ]; Rk

)
.

Remembering Remark 1.2.5, the above identity can be written as∫ T

0

pS(T )S(t)−1B(t)v(t)dt = 0 ∀v ∈ L2([0, T ]; Rk).

Taking v ∈ L2([0, T ]; Rk) defined as

v(t) =
(
pS(t)S(t)−1B(t)

)∗ ∀t ∈ [0, T ],

we deduce that ∫ T

0

∣∣∣(pS(T )S(t)−1B(t)
)∗∣∣∣2 ds = 0,

which implies that pS(T )S(t)−1B(t) = 0 for any t ∈ [0, T ] (note that t 7→
pS(T )S(t)−1B(t) is continuous). Let us now define, for each t ∈ [0, T ],

p(t) := pS(T )S(t)−1.

By construction, p : [0, T ]→ (Rn)∗ is an absolutely continuous arc. Since p 6= 0
and S(t) is invertible for all t ∈ [0, T ], p(t) does not vanish on [0, T ]. Moreover,
recalling that, by definition of S,

d

dt
S(t)−1 = −S(t)−1A(t) a.e. t ∈ [0, T ],

we conclude that p satisfies the following properties:

ṗ(t) = −p(t)A(t) a.e. t ∈ [0, T ]

and
p(t)B(t) = 0 ∀t ∈ [0, T ].

Which shows that (1.18)-(1.19) are satisfied with ψ(t) = (γu(t), p(t)) for any
t ∈ [0, T ). By the way, we note that by construction, we have for every t ∈
(0, T ],

p(t) ·DutE
x,t
F (v) = 0 ∀v ∈ L2

(
[0, t]; Rk

)
, (1.20)
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where ut denotes the restriction of u to [0, t].

Conversely, let us assume that there exists an absolutely continuous arc
p : [0, T ]→ (Rn)∗\{0} such that (1.18) and (1.19) are satisfied with ψ = (γu, p).
This means that

−ṗ(t) = p(t)A(t) a.e. t ∈ [0, T ]

and
p(t)∗B(t) = 0 ∀t ∈ [0, T ].

Setting p := p(T ) 6= 0, we have, for any t ∈ [0, T ],

p(t) = pS(T )S(t)−1.

Hence, we obtain

pS(T )S(t)−1B(t) = 0 ∀t ∈ [0, T ],

which in turn implies

p ·DuE
x,T
F (v) = 0, ∀v ∈ L2([0, T ]; Rk).

This concludes the proof. Again, the above proof shows indeed that (1.20)
holds for any t ∈ (0, T ].

Assume now that we work on M . By Proposition 1.3.2, we can cut the path
γu : [0, T ] → M associated with u and u itself into a finite number of peaces
γ1, . . . , γl and u1, . . . , ul such that each control ul is singular and each path γl

is valued in a chart of M . Then we can apply the previous arguments on each
chart and thanks to (1.20) obtain a non-vanishing absolutely continuous arc ψ
satisfying (1.18)-(1.19) on [0, T ].

Remark 1.3.4. We keep in mind that if ψ : [0, T ] → T ∗M is an absolutely
continuous arc satisfying (1.18)-(1.19), then

p(t) ·DutE
x,t
F (v) = 0 ∀v ∈ L2

(
[0, t]; Rk

)
,

where ψ(t) = (γu(t), p(t)) and ut denotes the restriction of u to [0, t]. (In the
sequel, ψ · v or p · v with ψ = (x, v) in local coordinates denotes the evaluation
of the form ψ at v ∈ TxM .)

Remark 1.3.5. In local coordinates, Proposition 1.3.3 means that there exists
an absolutely continuous arc p : [0, T ]→

(
Rn
)∗ \ {0} satisfying

ṗ(t) = −
k∑
i=1

ui(t) p(t) ·Dγu(t)X
i a.e. t ∈ [0, T ] (1.21)

and

p(t) ·Xi
(
γu(t)

)
= 0 ∀t ∈ [0, T ], ∀i = 1, . . . k. (1.22)
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Regular and singular paths

Let ∆ be a distribution of rank m ≤ n in M . As seen before, it can be
represented by a generating family F = {X1, . . . , Xk} of smooth vector fields
(see Proposition 1.1.8). Given a point x ∈M , a time T > 0, and an horizontal
path γ ∈ Ωx,T∆ , we set

Im∆(γ) := DuE
x,T
F
(
L2([0, T ]; Rk)

)
⊂ TEx,TF (u)M,

where u ∈ Ux,TF is any control such that γ = γu (see Proposition 1.2.2). The
definition does not depend on the frame.

Proposition 1.3.6. Let F = {X1, . . . , Xk},F ′ = {Y 1, . . . , Y k
′} be two gen-

erating families for ∆ and x ∈ M,T > 0 be fixed. If u ∈ Ux,TF and u′ ∈ Ux,TF ′
satisfy

γFu (t) = γF
′

u′ (t) ∀t ∈ [0, T ],

where γFu (resp. γF
′

u′ ) denotes the solution to the Cauchy problem (1.7) associ-
ated with F (resp. F ′), then

Imx,T
F (u) = Imx,T

F ′ (u′).

Proof. It is sufficient to prove that Imx,T
F ′ (u′) ⊂ Imx,T

F (u). For every t ∈ [0, T ],
there is an open set Ot of γFu (t) in M and m integers it1, . . . , i

t
m ∈ {1, . . . , k}

such that
Span

{
Xit1(x), . . . , Xitm(x)

}
= ∆(x) ∀x ∈ Ot.

The curve γFu ([0, T ]) is compact and is contained in ∪t∈[0,T ]Ot. Hence, there
are N times t1, . . . , tN ∈ [0, T ] together with a partition of unity {ψj} such
that

[0, T ] ⊂
N⋃
j=1

Otj , Supp (ψj) ⊂ Otj ,
N∑
j=1

ψj = 1.

For every j, there is a smooth mapping U j : TM → Rm with Uj(0) = 0 such
that

v =
m∑
l=1

U jl (v)Xi
tj
l (x),

for every (x, v) ∈ TM with x ∈ Otj and v ∈ ∆(x). Then, there holds for every
x ∈ Otj , every w′ ∈ Rk′ , and every v ∈ ∆(v),

k′∑
i=1

w′iY
i(x) = v +

m∑
l=1

U jl

 k′∑
j=1

w′jY
j(x)− v

Xi
tj
l (x).

By Gronwall’s Lemma (see Appendix A), there is a neighborhood U ′ ⊂ Ux,TF ′ of
u′ in L2([0, T ]; Rk′) such that for every w′ ∈ U ′, the trajectory γF

′

w′ starting at
x associated with w′ is contained in ∪Nj=1Otj . We infer that for every w′ ∈ U ′,
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there holds

k′∑
i=1

w′i(t)Y
i
(
γF
′

w′ (t)
)
−

k∑
i=1

ui(t)Xi
(
γF
′

w′ (t)
)

=
N∑
j=1

m∑
l=1

ψj(γF ′w′ (t))U jl
 k′∑
i=1

w′i(t)Y
i
(
γF
′

w′ (t)
)
−

k∑
i=1

ui(t)Xi
(
γF
′

w′ (t)
)

Xi
tj
l

(
γF
′

w′ (t)
)
,

for almost every t ∈ [0, T ]. Each mapping

w′ ∈ U ′

7−→ ψj
(
γF
′

w′ (t)
)
U j

 k′∑
j=1

w′j(·)Y j
(
γF
′

w′ (·)
)
−

k∑
i=1

ui(·)Xi
(
γF
′

w′ (·)
)

∈ L2
(
[0, T ]; Rm

)
is at least of class C1. Therefore, since γF

′

u′ (t) = γFu (t) for any t ∈ [0, T ] and
U j(0) = 0 for all j, there is a C1 mapping G′ : U ′ → Ux,TF with G′(u′) = u
such that

Ex,TF ′ (w′) = Ex,TF
(
G′(w′)

)
∀w′ ∈ U ′.

We infer that Imx,T
F ′ (u′) ⊂ Imx,T

F (u).

We call rank of γ ∈ Ωx,T∆ , denoted by rank∆(γ), the dimension of Im∆(u).
We shall say that γ is singular (with respect to ∆) if rank∆(γ) < n and regular
otherwise.

Remark 1.3.7. By Remark 1.3.1, if ∆ has rank m = n then any non-trivial
horizontal path is regular.

Propositions 1.2.6, 1.2.7, 1.2.8, 1.2.10, 1.3.2 do apply to horizontal paths.
The rank of an horizontal path depends only on the curve drawn by the path
in M , it does not depend upon its parametrization. Proposition 1.2.8 yields
the following result (the concatenation of paths is defined in the same way as
the concatenation of controls):

Proposition 1.3.8. Let γ ∈ Ωx,T∆ be a singular horizontal path, T 1, T 2, T 3 > 0

be such that T 1 + T 2 + T 3 = T and γ1 ∈ Ωx,T
1

∆ , γ2 ∈ Ωγ
1(T 1),T

∆ , γ3 ∈ Ωγ
2(T 2),T

∆

be such that
γ = γ1 ∗ γ2 ∗ γ3.

Then the horizontal paths γ1, γ2, γ3 are singular.

γ1

γ2

γ3
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In a more geometric way, singular horizontal paths can be characterized as
follows. Recall that T ∗M denotes the cotangent bundle of M , π : T ∗M → M
the canonical projection, and ω the canonical symplectic form on T ∗M . We
denote by ∆⊥ ⊂ T ∗M the annihilator of ∆ in T ∗M , that is

∆⊥(x) =
{
p ∈ T ∗xM | p · v = 0, ∀v ∈ ∆(x)

}
∀x ∈M.

It is a rank n−m subbundle of the cotangent bundle T ∗M , that is a smooth
map that assigns to each point x of M a linear subspace ∆⊥(x) of T ∗xM of
dimension n −m (or co-dimension m). In particular, the subbundle ∆⊥ is a
submanifold of T ∗M of dimension 2n −m. Let ω̄ denote the restriction of ω
to ∆⊥. This restriction needs not be symplectic, and hence it might admits
characteristics subspaces Ker w̄(ψ) at ψ ∈ ∆⊥. We recall that the kernel of a
bilinear form σ = ω̄ψ on Tψ∆⊥ is defined as

Ker σ =
{
ξ ∈ Tψ∆⊥ |σ

(
ξ, ξ′

)
= 0, ∀ξ′ ∈ Tψ∆⊥

}
.

Definition 1.3.9. A characteristic curve of ω̄ on [0, T ] is an absolutely con-
tinuous curve ψ : [0, T ]→ T ∗M that never intersects the zero section of T ∗M
such that

ψ(t) ∈ ∆⊥ ∀t ∈ [0, T ]

and
ψ̇(t) ∈ Ker ω̄

(
ψ(t)

)
a.e. t ∈ [0, T ].

Proposition 1.3.10. The horizontal path γ ∈ Ωx,T∆ is singular if and only if
it is the projection of a characteristic curve of ω̄ on [0, T ].

Proof. Let γ ∈ Ωx,T∆ and a k generating family F = {X1, . . . , Xk} for ∆ be
fixed.

Lemma 1.3.11. The tangent space to ∆⊥ at some ψ ∈ ∆⊥ satisfies

Tψ∆⊥ =
{
ξ ∈ TψT ∗M |ωψ

(−→
h i(ψ), ξ

)
= 0, ∀i = 1, . . . , k

}
(1.23)

and

−→
h i(ψ) ∈ Tψ∆⊥ ∀i = 1, . . . , k. (1.24)

Proof of Lemma 1.3.11. Let ψ = (x, p) : (−ε, ε) → T ∗M be a smooth curve
in ∆⊥ such that ψ(0) = ψ and ψ̇(0) = ξ in Tψ∆⊥. There holds for every
i = 1, . . . , k,

p(t) ·Xi
(
x(t)

)
= 0 ∀t ∈ (−ε, ε),

which means that hi(ψ(t)) = 0 for any t ∈ (−ε, ε). Derivating yields

Dψ(t)h
i · ψ̇(t) = 0 ∀t ∈ (−ε, ε),

which by definition of the
−→
h i’s means that

ωψ(t)

(−→
h i(ψ(t)), ψ̇(t)

)
= 0 ∀t ∈ (−ε, ε), ∀i = 1, . . . , k.
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Taking the above equality at t = 0, we infer that ωψ
(−→
h i(ψ), ξ

)
= 0, which in

turn shows that

Tψ∆⊥ ⊂
{
ξ ∈ TψT ∗M |ωψ

(−→
h i(ψ), ξ

)
= 0, ∀i = 1, . . . , k

}
.

By definition of the
−→
h i’s, the vector space appearing in the right-hand side can

be seen as
∩ki=1Ker Dψh

i

Since F = {X1, . . . , Xk} is a k generating family for ∆ of rank m, the linear
forms Dψh

1, . . . , Dψh
k span a space of dimension m in the dual of TψT ∗M .

This shows that the intersection of the Ker Dψh
i’s has dimension 2n−m. The

equality (1.23) follows. Consider now for every i = 1, . . . , k, ψi : [0, ε]→ T ∗M
a local solution to the Cauchy problem

ψ̇i(t) =
−→
h i
(
ψi(t)

)
∀t ∈ [0, ε], ψi(0) = ψ.

Since hi is constant along the integral curves of
−→
h i and ψ ∈ ∆⊥, there holds

hi
(
ψi(t)

)
= 0 ∀t ∈ [0, ε], ∀i = 1, . . . , k.

This implies that ψi(t) always remains in ∆⊥ and in turn gives (1.24).

Let us first assume that γ is singular. By definition, this means that there
exists a control u ∈ Ux,TF which is singular and such that

γ̇(t) =
k∑
i=1

ui(t)Xi (γ(t)) a.e. t ∈ [0, T ].

By Proposition 1.3.3, there exists an absolutely continuous arc ψ : [0, T ] →
T ∗M that never intersects the zero section of T ∗M , such that

ψ̇(t) =
k∑
i=1

ui(t)
−→
h i(ψ(t)) a.e. t ∈ [0, T ]

and

hi(ψ(t)) = 0, ∀t ∈ [0, T ] ∀i = 1, · · · , k.

The first property together with Lemma 1.3.11 shows that

ωψ(t)

(
ψ̇(t), ξ

)
= 0 a.e. t ∈ [0, T ], ∀ξ ∈ Tψ(t)∆⊥,

while the second property means that ψ(t) belongs to ∆⊥ for all t ∈ [0, T ],
which implies

ψ̇(t) ∈ Tψ(t)∆⊥ a.e. t ∈ [0, T ].

Therefore, we deduce that ψ̇(t) belongs to Ker ω̄
(
ψ(t)

)
for a.e. t ∈ [0, T ], which

shows that γ is the projection of a characteristic curve of ω̄ on [0, T ].

Conversely, assume now that γ is the projection of a characteristic curve of
ω̄ on [0, T ], that is that there exists an absolutely continuous curve ψ : [0, T ]→
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T ∗M that never intersects the zero section of T ∗M whose projection is γ and
such that

ψ(t) ∈ ∆⊥ ∀t ∈ [0, T ]

and
ψ̇(t) ∈ Ker ω̄

(
ψ(t)

)
a.e. t ∈ [0, T ].

Let t ∈ [0, T ] be fixed such that ψ is differentiable at t. Thanks to Lemma
1.3.11, there holds for every i = 1, . . . , k,

−→
h i
(
ψ(t)

)
∈ Tψ∆⊥ and ωψ(t)

(−→
h i
(
ψ
)
, ξ
)

= 0∀ξ ∈ Tψ∆⊥.

This means that
−→
h i
(
ψ(t)

)
belongs to Ker ω̄

(
ψ(t)

)
. Hence

ξ(t) := ψ̇(t)−
k∑
i=1

ui(t)
−→
h i
(
ψ(t)

)
∈ Ker ω̄

(
ψ(t)

)
.

Since γ is the projection of ψ, ψ(t) and ξ(t) have the form (in local coordinates):

ψ(t) =
(
γ(t), p(t)

)
and ξ(t) =

(
0, θ(t)

)
.

Therefore, there holds

0 = ωψ(t)

(
ξ(t), ξ

)
= −θ(t) · v ∀ξ = (v, θ) ∈ Tψ∆⊥.

Since ∆⊥ can be seen as the graph of the mapping x 7→ ∆(x) ⊂ T ∗xM , there
holds

Dψπ
(
Tψ∆⊥

)
= TxM.

Therefore, we infer that θ(t) = 0, which proves that ψ̇(t) =
∑k
i=1 ui(t). We

conclude easily by Proposition 1.3.3.

Examples

Example 1.3.12. Returning to Examples 1.1.2 and 1.1.19, consider in R3 with
coordinates x = (x1, x2, x3), the totally nonholonomic rank two distribution ∆
defined by

∆(x) = Span
{
X1(x), X2(x)

}
∀x ∈ R3

with
X1 = ∂x1 −

x2

2
∂x3 and X2 = ∂x2 +

x1

2
∂x3 .

We claim that the singular horizontal paths are the constant curves or equiva-
lently that the only singular control with respect to F = {X1, X2} is the control
u ≡ 0. Let us prove this claim. Let x ∈ R3, T > 0 be fixed and u ∈ Ux,TF be a
singular control. Denote by x : [0, T ]→ R3 the solution to the Cauchy problem

ẋ(t) = u1(t)X1(x(t)) + u2(t)X2(x(t)) a.e. t ∈ [0, T ], x(0) = x. (1.25)

From Proposition 1.3.3, there exists an absolutely continuous arc p : [0, T ] →(
R3
)∗ \ {0} such that

ṗ(t) = −u1(t) p(t) ·Dx(t)X
1 − u2(t) p(t) ·Dx(t)X

2 (1.26)
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for a.e. t ∈ [0, T ] and

p(t) ·X1(x(t)) = p(t) ·X2(x(t)) = 0 ∀t ∈ [0, T ]. (1.27)

Taking the derivatives in (1.27) gives

ṗ(t) ·Xi(x(t)) + p(t) ·Dx(t)X
i
(
ẋ(t)

)
= 0 a.e. t ∈ [0, T ], ∀i = 1, 2.

Which implies, by (1.25)-(1.26),

u1(t) p(t) · [X1, Xi](x(t)) + u2(t) p(t) · [X2, Xi](x(t)) = 0 a.e. t ∈ [0, T ].

Taking i = 1 and i = 2, we obtain that for almost every t ∈ [0, T ],

u1(t) p(t) · [X1, X2](x(t)) = u2(t) p(t) · [X1, X2](x(t)) = 0.

This can be written as

|u(t)|2
(
p(t) · [X1, X2](x(t))

)2
= 0 a.e. t ∈ [0, T ],

Since [X1, X2] = − ∂
∂x3

and (1.27) is satisfied with p(t) 6= 0, we deduce that
u ≡ 0.

Example 1.3.13. The property of the previous example is satisfied by much
more general distributions. A distribution ∆ on M is called fat if, for every
x ∈M and every section X of ∆ with X(x) 6= 0, there holds

TxM = ∆(x) +
[
X,∆

]
(x), (1.28)

where [
X,∆

]
(x) :=

{
[X,Z](x) |Z section of ∆

}
.

The condition above being very restrictive, there are very few fat distributions.
Fat distributions on three-dimensional manifolds are the rank-two distributions
∆ satisfying

TxM = Span
{
X1(x), X2(x),

[
X1, X2

]
(x)
}

∀x ∈ V,

where (X1, X2) is a local frame for ∆ in V. Another example of co-rank one
fat distributions in odd dimension is given by contact distributions which were
introduced in Example 1.1.23. In this case property (3.44) is an easy conse-
quence of (1.4). Let us now prove that fat distributions do not admit non-trivial
singular horizontal paths. By Proposition 1.3.8, we just need to show that non-
constant short horizontal paths cannot be singular. Taking a local chart if nec-
essary we can work in Rn and assume that ∆ has a local frame X1, . . . , Xm.
Let x ∈ Rn, T > 0 be fixed and u ∈ Ux,TF be a singular control. By Remark
1.3.5, there exists an absolutely continuous arc p : [0, T ] →

(
Rn
)∗ \ {0} satis-

fying (1.21)-(1.22). For almost every fixed t ∈ [0, T ] and every i = 1, . . . ,m,
derivating (1.22) yields

m∑
j=1

uj(t) p(t) ·
[
Xj , Xi

] (
γu(t)

)
= p(t) ·

 m∑
j=1

uj(t)Xj , Xi

(γu(t)
)

= 0.

Setting the autonomous vector field X(·) :=
∑m
j=1 uj(t)X

j(·), we deduce that
p(t) annihilates all the Xi

(
γu(t)

)
’s and all the

[
X,Xi

] (
γu(t)

)
’s. This contra-

dicts (3.44).
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Example 1.3.14. Returning to Example 1.1.21, we consider in R3 with co-
ordinates x = (x1, x2, x3), the totally nonholonomic rank two distribution ∆
defined by

∆(x) = Span
{
X1(x), X2(x)

}
∀x ∈ R3

with

X1 = ∂x1 and X2 = ∂x2 +
x2

1

2
∂x3 .

We claim that the singular horizontal curves are exactly the ”traces of the
distribution” on the surface

Σ∆ :=
{
x ∈ R3 |x1 = 0

}
,

which in other terms means that the singular horizontal paths are either con-
stant curves or are contained in a line lz of the form

lz =
{
x = (x1, x2, x3) ∈ R3 |x1 = 0 and x3 = z

}
for some z ∈ R.

b

0
l0

lz

Σ∆

Let us prove this claim. Let x ∈ R3, T > 0 be fixed and u ∈ Ux,TF be a non-
trivial singular control. Denote by x : [0, T ] → R3 the solution to the Cauchy
problem

ẋ(t) = u1(t)X1(x(t)) + u2(t)X2(x(t)) a.e. t ∈ [0, T ], x(0) = x.

As in the previous example, from Proposition 1.3.3, there exists an absolutely
continuous arc p : [0, T ]→

(
R3
)∗ \ {0} such that

ṗ(t) = −u1(t) p(t) ·Dx(t)X
1 − u2(t) p(t) ·Dx(t)X

2 (1.29)

for a.e. t ∈ [0, T ] and

p(t) ·X1(x(t)) = p(t) ·X2(x(t)) = 0 ∀t ∈ [0, T ]. (1.30)
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We deduce that

|u(t)|2
(
p(t) · [X1, X2](x(t))

)2
= 0 a.e. t ∈ [0, T ].

Since the three vectors X1(x), X2(x), [X1, X2](x) span R3 for every x with
x1 6= 0, this shows that x1(t) = 0 for all t ∈ [0, T ], which in turn implies that
u1 ≡ 0. We deduce that x has the form

x(t) =
(

0, x2(0) +
∫ t

0

u2(s)ds, 0, x3(0)
)
,

which shows that it is contained in lx3(0). Conversely, if an horizontal path
x ∈ Ωx,T∆ has the form

x(t) = (0, x2(t), z) ∀t ∈ [0, T ],

with z ∈ R, then any absolutely continuous arc p : [0, T ]→ R3 \{0} of the form

p(t) = (0, 0, p3) ∀t ∈ [0, T ],

with p3 6= 0 satisfies (1.29) and (1.30). This shows that any horizontal path
which is contained in a line lz for some z ∈ R is singular.

Example 1.3.15. More generally, consider a totally nonholonomic distribu-
tion ∆ of rank two in a manifold M of dimension three. We define the Martinet
surface of ∆ as the set defined by

Σ∆ :=
{
x ∈M |∆(x) + [∆,∆](x) 6= TxM

}
,

where [
∆,∆

]
(x) :=

{
[X,Y ](x) |X,Y sections of ∆

}
.

In other terms, a point x ∈M belongs to Σ∆ if and only if ∆ is not a contact
distribution at x, that is if for any (or for only one) local frame {X1, X2} in
a neighborhood of x the three vectors X1(x), X2(x), [X1, X2](x) do not span
TxM . The singular paths with respect to ∆ are exactly the horizontal paths
which are contained in Σ∆. Let us prove this claim. The fact that singular
curves are necessary included in Σ∆ follows by the same argument an in Ex-
ample 1.3.12. Let us now prove that any horizontal path which is included in
Σ∆ is singular. Let γ : [0, T ] → M such a path be fixed, set γ(0) = x, and
consider a local frame {X1, X2} for ∆ in a neighborhood V of x. Let δ > 0 be
small enough so that γ(t) ∈ V for any t ∈ [0, δ], in such a way that there is
u ∈ L2([0, δ]; R2) satisfying

γ̇(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t)) a.e. t ∈ [0, δ].

Taking a change of coordinates if necessary, we can assume that we work in
R3. Let p0 ∈ (R3)∗ \ {0} be such that p0 · X1(x) = p0 · X2(x) = 0, and let
p : [0, δ]→ (R3)∗ be the solution to the Cauchy problem

ṗ(t) = −
∑
i=1,2

ui(t) p(t) ·Dγ(t)X
i a.e. t ∈ [0, δ], p(0) = p0.
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Define two absolutely continuous function h1, h2 : [0, δ]→ R by

hi(t) = p(t) ·Xi(γ(t)) ∀t ∈ [0, δ], ∀i = 1, 2.

As above, for every t ∈ [0, δ] we have

ḣ1(t) =
d

dt

[
p(t) ·X1(γ(t))

]
= −u2(t) p(t) · [X1, X2]

(
γ(t)

)
and

ḣ2(t) = u1(t) p(t) ·
[
X1, X2

]
(γ(t)).

But since γ(t) ∈ Σ∆ for every t, there are two continuous functions λ1, λ2 :
[0, δ]→ R such that[

X1, X2
]
(γ(t)) = λ1(t)X1(γ(t)) + λ2(t)X2(γ(t)) ∀t ∈ [0, δ].

This implies that the pair (h1, h2) is a solution of the linear differential system{
ḣ1(t) = −u2(t)λ1(t)h1(t)− u2(t)λ2(t)h2(t)
ḣ2(t) = u1(t)λ1(t)h1(t) + u1(t)λ2(t)h2(t).

Since h1(0) = h2(0) = 0 by construction, we deduce by the Cauchy-Lipschitz
Theorem that h1(t) = h2(t) = 0 for any t ∈ [0, δ]. In that way, we have con-
structed an absolutely continuous arc p : [0, δ]→

(
R3
)∗ \{0} satisfying (1.3.5)-

(1.3.5) (with γu = γ). We can repeat this construction on a new interval of
the form [δ, 2δ] (with initial condition p(δ)) and finally obtain an absolutely
continuous arc satisfying (1.3.5)-(1.3.5) on [0, T ]. By Proposition 1.3.3, we
conclude that γ is singular.

Example 1.3.16. Consider in R4 the two smooth vector fields X1, X2 given
by

X1 = ∂x1 , X2 = ∂x2 + x1∂x3 + x3∂x4 .

These two vector fields are always linearly independent in R4. Moreover we
have

[X1, X2] = ∂x3 ,
[
X2, [X1, X2]

]
= −∂x4 .

Therefore the family F = {X1, X2} spans a totally nonholonomic distribu-
tion ∆ of rank two in R4. Let us look at singular horizontal paths of ∆
or equivalently at singular controls with respect to End-Point mapping Ex,TF
with x ∈ R4 and T > 0. Let u ∈ Ux,TF be a control satisfying |u(t)| = 1
for a.e. t ∈ [0, T ]. This control is singular if and only if there is an arc
p = (p1, p2, p3, p4) : [0, T ] →

(
R4
)∗ \ {0} which satisfies (1.21) and (1.22).

Denoting by x = (x1, x2, x3, x4) : [0, T ]→ R4 the trajectory uniquely associated
to x and u, (1.21) yields

ẋ1(t) = u1(t)
ẋ2(t) = u2(t)
ẋ3(t) = u2(t)x1(t)
ẋ4(t) = u2(t)x3(t),


ṗ1(t) = −u2(t)p3(t)
ṗ2(t) = 0
ṗ3(t) = −u2(t)p4(t)
ṗ4(t) = 0,

(1.31)

for a.e. t ∈ [0, T ], while (1.22) yields

p1(t) = p2(t) + x1(t)p3(t) + x3(t)p4(t) = 0 ∀t ∈ [0, T ]. (1.32)
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System (1.31) implies that p2 and p4 are constant on [0, T ]. If p4 = 0, then
(1.31) also implies that p3 is constant on [0, T ]. Hence we obtain that p2 +
x1(t)p3 = 0 for every t ∈ [0, T ]. Which means that either x1 is constant
or p2 = p3 = 0. Since p does not vanish on [0, T ], we deduce that x1 is
constant, which means that u1 ≡ 0. But u2(t)p3 = 0 for almost every t, hence
p3 = 0 (remember that |u(t)| = 1 a.e. t ∈ [0, T ]). We obtain a contradiction.
Therefore, p4 6= 0, hence we deduce easily that

0 = u2(t)p3(t) =
(
− ṗ3(t)

p4

)
p3(t) = 0 a.e. t ∈ [0, T ].

Since p3 is absolutely continuous, this means that it is constant on [0, T ]. This
implies that u2(t) = 0 for all t ∈ [0, T ]. Then, the curve x has the form

x(t) =
(
x1(t), x2(0), x3(0), x4(0)

)
∀t ∈ [0, T ].

In conclusion, a singular curve passes through each point in R4.

Example 1.3.17. The previous phenomena happens for more general rank
two distributions in dimension four. Let ∆ be a rank two distribution on a
four-dimensional manifold M such that for every x ∈M , there holds

∆(x) + [∆,∆](x) has dimension three (1.33)

and

TxM = ∆(x) + [∆,∆](x) +
[
∆, [∆,∆]

]
(x) ∀x ∈M, (1.34)

where [
∆,∆

]
(x) :=

{
[X,Y ](x) |X,Y sections of ∆

}
and

[
∆, [∆,∆]

]
(x) :=

{[
X, [Y, Z]

]
(x) |X,Y, Z sections of ∆

}
.

As above, we can work locally. so let us consider a frame {X1, X2} and a
trajectory x : [0, T ]→ R4 associated to some control u ∈ L2([0, T ]; R2). If x is
singular (with respect to ∆), there is p : [0, T ]→

(
R4
)∗ \ {0} satisfying (1.21)

and (1.22). Derivative two times yields for almost every t ∈ [0, T ] such that
u(t) 6= 0,

p(t) ·
[
X1, X2

](
x(t)

)
= 0 (1.35)

and

u1(t) p(t) ·
[
X1,

[
X1, X2

]] (
x(t)

)
+ u2(t) p(t) ·

[
X2,

[
X1, X2

]] (
x(t)

)
= 0. (1.36)

Since M has dimension four and [∆, [∆,∆]] has dimension three, there is (lo-
cally) a smooth non-vanishing 1-form α such that

αx · v = 0 ∀v ∈ ∆(x) + [∆,∆](x), ∀x.

The, by (1.22) and (1.35)-(1.36), we infer that for almost every t ∈ [0, T ] such
that u(t) 6= 0,

u1(t)αx(t) ·
[
X1,

[
X1, X2

]] (
x(t)

)
+ u2(t)αx(t) ·

[
X2,

[
X1, X2

]] (
x(t)

)
= 0.
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By the above assumptions, for every x, the linear form

(λ1, λ2) ∈ R2 7−→
(
αx ·

[
X1,

[
X1, X2

]]
(x)
)
λ1 +

(
αx ·

[
X2,

[
X1, X2

]]
(x)
)
λ2

has a kernel of dimension one. This shows that there is a smooth line field (a
distribution of rank one) L ⊂ ∆ on M such that the singular curves are exactly
the integral curves of L.

1.4 The Chow-Rashevsky Theorem

Openness of End-Point mappings

The following result will imply easily the Chow-Rashevsky Theorem. We recall
that a map is said to be open if the image of any open set is open.

Proposition 1.4.1. Let F =
{
X1, · · · , Xk

}
be a family of smooth vector fields

on M satisfying the Hörmander condition on M . Then for every x ∈ M and
every T > 0, the End-Point mapping Ex,TF : Ux,TF →M is open.

Proof. Let x ∈M and T > 0 be fixed. Set for every ε > 0,

d(ε) = max
{

rankx,εF (u) |u ∈ Ux,εF s.t. ‖u‖L2 < ε
}
.

By Proposition 1.2.8, the function ε ∈ (0,+∞) 7→ d(ε) is nondecreasing with
values in N. So, there is ε0 and d0 ∈ N such that d(ε) = d0 for any ε ∈ (0, ε0).
Since F satisfies the Hörmander condition at x, the space Span{X1(x), . . . , Xk(x)}
has dimension ≥ 1. Then, thanks to Proposition 1.2.10, there holds

d(ε) = d0 ≥ 1 ∀ε ∈ [0, ε0].

Let ε ∈ (0, ε0) and uε ∈ Ux,εF such that ‖uε‖L2 < ε and rankx,εF (uε) = d0 be
fixed. There are d0 controls v1, · · · , vd0 in L2([0, ε]; Rk) such that the linear
map

L : Rd0 −→ TxM

λ =
(
λ1, · · · , λd0

)
7−→ DuεE

x,ε
F

(∑d0
j=1 λ

jvj
)

is injective. By construction and the fact that the mapping u 7→ rankx,εF (u) is
lower semicontinuous, the rank of any control u is equal to rankx,εF (uε) = d0

as soon as u is close enough to uε in L2([0, ε]; Rk). Hence, there is an open
neighborhood V of 0 ∈ Rd0 where the mapping

E : V −→ M

λ 7−→ Ex,εF

(
uε +

∑d0
j=1 λ

jvj
)

is an embedding, whose the image is a submanifold N of class C1 in M of
dimension d0. Moreover by construction again, there holds for every small
λ ∈ Rd0 ,

Imx,ε
F

uε +
d0∑
j=1

λjvj

 = DλE
(
Rd0
)

= TE(λ)N.

By Proposition 1.2.10, we infer that

Xi(y) ∈ TyN ∀i = 1, . . . , k, ∀y ∈ N.
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Lemma 1.4.2. Let Ω be an open subset of Rl (l ≥ 2) and S be a submanifold
of Ω of class C1. Let X,Y be two smooth vector fields on Ω such that

X(x), Y (x) ∈ TxS ∀x ∈ S.

Then [X,Y ](x) ∈ TxS for any x ∈ S.

Proof of Lemma 1.4.2. As in Proposition 1.1.10, we denote respectively by etX

and etY the flows of X and Y . Since by assumption X and Y is always tangent
to S, we have for every x ∈ S,

etX(x), etY (x) ∈ S ∀t small.

Then (
e−tY ◦ e−tX ◦ etY ◦ etX

)
(x) ∈ S ∀x ∈ S and t small.

By Proposition 1.1.10, we infer that [X,Y ](x) ∈ TxS for any x ∈ S.

It follows from the above lemma that all the brackets involving X1, . . . , Xk

at y ∈ N belong to TyN . Since F satisfies the Hörmander condition, this shows
that d0 = n and indeed that d(ε) = n for any ε > 0.
Let O be an open subset of Ux,TF , v ∈ O and ε > 0 to be chosen later. Since
d(ε) = n, there is u ∈ Ux,εF such that ‖u‖L2 < ε and rankx,εF (u) = n. Define the
control ṽ ∈ L2([0, T ]; Rk) by

ṽ = u ∗ ǔ ∗ v T
T−2ε

.

The trajectory associated with ṽ is the concatenation of the curve xu starting
at x and associated with u, xǔ starting at xu(ε) and associated with ǔ, and a
reparametrization of xv starting at x and associated with v.

b

x

xu

xǔ

xv

b Ex,T
F (ṽ)

By construction (thanks to Propositions 1.3.2), ṽ belongs to Ux,TF , is regular
and satisfies Ex,TF (ṽ) = Ex,TF (v). Then, as above, the image of a small ball
centered at the origin in L2([0, T ]; Rk) by the mapping w 7→ Ex,TF (ṽ+w) is an
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open neighboorhood of Ex,TF (ṽ) = Ex,TF (v). Furthermore, we have

∥∥ṽ − v∥∥2

L2 =
∫ ε

0

|u(t)− v(t)|2 dt+
∫ 2ε

ε

|−u(2ε− t)− v(t)|2 dt

+
∫ T

2ε

∣∣∣∣∣
(

T

T − 2ε

)
v

(
T
(
t− 2ε

)
T − 2ε

)
− v(t)

∣∣∣∣∣
2

dt

≤ 2
∫ ε

0

|u(t)|2 dt+
∫ 2ε

0

|v(t)|2 dt

−2
∫ ε

0

〈u(t), v(t)〉 dt+ 2
∫ 2ε

ε

〈u(2ε− t), v(t)〉 dt

+
∫ T

2ε

∣∣∣∣( T

T − 2ε

)
u(t)− u(t)

∣∣∣∣2 dt
+
(

T

T − 2ε

)2 ∫ T

2ε

∣∣∣∣∣u
(
T
(
t− 2ε

)
T − 2ε

)
− u(t)

∣∣∣∣∣
2

dt

+2
(

T

T − 2ε

)∫ T

2ε

〈
u

(
T
(
t− 2ε

)
T − 2ε

)
− u(t),(

T

T − 2ε

)
u(t)− u(t)

〉
dt.

Then since ‖u‖L2 < ε and both functions

t ∈ [2ε, T ] 7−→
(

T

T − 2ε

)
u(t)− u(t)

and t ∈ [2ε, T ] 7−→ u

(
T
(
t− 2ε

)
T − 2ε

)
− u(t)

tend to zero in L2, we infer that ṽ belong to O if ε is small enough. This shows
that Ex,TF (O) contains a neighborhood of Ex,TF (ṽ) = Ex,TF (v).

Statement and proof

The aim of the present section is to prove the following result.

Theorem 1.4.3 (Chow-Rashevsky’s Theorem). Let ∆ be a totally nonholo-
nomic distribution on M (assumed to be connected). Then, for every x, y ∈M
and every T > 0, there is an horizontal path γ ∈ Ωx,T∆ such that γ(T ) = y.

Thanks to the above discussion, the Chow-Rashevsky Theorem will be a
straightforward consequence of the following result.

Theorem 1.4.4. Let F =
{
X1, · · · , Xk

}
be a family of smooth vector fields on

M . Assume that M is connected and that F satisfies the Hörmander condition
on M . Then for every x, y ∈ M and every T > 0, there is a control u ∈ Ux,TF
such that the solution of (1.7) satisfies γu(T ) = y.
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Proof. Let x and T > 0 be fixed. Denote by AF (x, T ) the set of points in M

which can be joined from x by a control in Ux,TF , that is

AF (x, T ) = Ex,TF

(
Ux,TF

)
.

By Proposition 1.4.1, AF (x, T ) is an open set in M . Let us show that this set
is closed as well. Let {zk}k be a sequence of points in M converging to some
z ∈ M . By openness of the mapping Ez,1F and the fact that Ez,1F (0) = z, the

set Ez,1F
(
Uz,1F

)
is an neighborhood of z. Then, there is k large enough such

that zk belongs to that set.

b

x

b zk

b

z

The concatenation of uk together with ǔ steers x to z. This shows that
AF (x, T ) is closed in M . In conclusion AF (x, T ) is open, closed and nonempty
(it contains x). By connectedness of M , we infer that AF (x, T ) = M .

Remark 1.4.5. The Chow-Rashevsky may be of course obtained in different
ways. For instance, consider in R3 a totally nonholonomic rank two distribu-
tion ∆ generated by two smooth vector fields X1, X2 such that

Span
{
X1(x), X2(x),

[
X1, X2

]
(x)
}

= R3 ∀x ∈ R3.

Let x ∈ R3 and λ > 0 be fixed, define the function Φλ : R3 → R3 by

Φλ
(
t1, t2, t3

)
:=
(
eλX

1 ◦ et3X2 ◦ e−λX1 ◦ et2X2 ◦ et1X1
)

(x),

for every (t1, t2, t3) ∈ R3. It can be shown that Φλ is a local diffeomorphism
in a neighborhood of the origin provided λ is small enough. This implies easily
the Chow-Rashevsky Theorem for contact distributions in dimension three.

On the set of regular controls

The proof of Proposition 1.4.1 implies indeed the following result.

Proposition 1.4.6. Let F =
{
X1, · · · , Xk

}
be a family of smooth vector fields

on M satisfying the Hörmander condition on M (assumed to be connected).
Then for every x ∈ M and T > 0, the set of regular controls Rx,TF ⊂ Ux,TF is
open and dense in Ux,TF . Moreover, for every y ∈M , there is a smooth control
u ∈ Rx,TF such that the solution of (1.7) satisfies γu(T ) = y.

Proof. The density part follows from the last part of the proof of Proposition
1.4.1. The openness of Rx,TF is a straightforward consequence of the C1 regu-
larity of Ex,TF and the fact that regular controls are nothing but regular points
of Ex,TF . Let x, y ∈ M and T > 0 be fixed. Let us show that x can be steered
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to y by a smooth regular control. From Theorem 1.4.4, we know that there is
u ∈ Ux,TF such that the solution of (1.7) satisfies γu(T ) = y. Replacing u by a
control of the form

v ∗ v̌ ∗ u T
T−2ε

with v ∈ Rx,εF and ε > 0 small enough, we may assume that u is indeed a
regular control joining x to y. Therefore, there are n controls v1, · · · , vn in
L2([0, T ]; Rk) such that the linear map

L : Rn −→ TxM

λ =
(
λ1, · · · , λn

)
7−→ DuE

x,T
F

(∑n
j=1 λ

jvj
)

is bijective. In fact, since the set of smooth functions is dense in L2
(
[0, T ]; Rk

)
,

we may assume that all the vj ’s are smooth. Therefore, by the Inverse Func-
tion Theorem (and up to take a set of local coordinates), there is an open
neighborhood V of 0 ∈ Rn such that the mapping

Eu : V −→ M

λ 7−→ Ex,TF

(
u+

∑n
j=1 λ

jvj
)

is a diffeomorphism from V to E(V). The open set E(V) contains a ball centered
at Eu(0) = Ex,TF (u) = y whose the radius r > 0 is controlled by D0Eu and the
local Lipschitz constant of λ 7→ DλEu (see Theorem B.1.4). Therefore, there is
ν > 0 such that if ũ ∈ Ux,TF is such that ‖ũ− u‖L2 < ν, then the image of the
mapping

Eũ : V −→ M

λ 7−→ Ex,TF

(
ũ+

∑n
j=1 λ

jvj
)

contains a ball centered at Eũ(0) with radius r/2. Taking ũ smooth with
‖ũ− u‖L2 small enough implies that

|Eũ(0)− y| = |Eũ(0)− Eu(0)| < r

2
,

which shows that y can be steered from x by a smooth control.

Given a totally nonholonomic distribution ∆ on M , x ∈ M and T > 0,
we denote by Rx,T∆ the set of regular horizontal paths in Ωx,T∆ . The following
result is an immediate corollary of Proposition 1.4.6.

Theorem 1.4.7. Let ∆ be a totally nonhonomic distribution on M (assumed
to be connected). Then, for every x, y ∈M and every T > 0, there is a smooth
path γ ∈ Rx,T∆ such that γ(T ) = y.

1.5 Sub-Riemannian structures

Definition

Let M be a smooth connected manifold of dimension n. A sub-Riemannian
structure on M is given by a pair (∆, g) where ∆ is a totally nonholonomic
distribution on M and g is a smooth Riemannian metric on ∆, that is for
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every x ∈ M , g(·, ·) is a scalar product on ∆x. A simple way to construct a
sub-Riemannian structure is to take a smooth connected Riemannian manifold
(M, g), to consider a totally nonholonomic distribution ∆ on M , and to take
as sub-Riemannian metric the restriction of g to the distribution. In fact, any
sub-Riemannian structure can be obtained in this way.

Example 1.5.1. The space R3 (with coordinates (x, y, z)) equipped with the
rank two distribution ∆ given in Example 1.1.2 and with the metric g = dx2 +
dy2 is the most simple sub-Riemannian structure we can imagine. The length
of a vector v = (v1, v2, v3) ∈ ∆(x, y, z) is given by

|v|g =
√
v2

1 + v2
2 .

Since v is an horizontal vector, the latter quantity does not vanishes unless
v = 0.

If the distribution ∆ admits a frame X1, . . . , Xm on an open set O ⊂ M ,
then the family F =

{
X1, . . . , Xm

}
is called an orthonormal family of vector

fields or an orthonormal frame for (∆, g) in O if there holds

gx
(
Xi(x), Xj(x)

)
= δij ∀i, j = 1, . . . ,m, ∀x ∈ O,

where δij denotes the Kronecker symbol (that is δij = 1 if i = j and δij = 0
if i 6= j). Sub-Riemannian structures admit local orthonormal frames in a
neighborhood of each point of M .

The sub-Riemannian distance

From now on, for every x ∈ M we denote by | · |gx the sub-Riemannian norm
on ∆(x), that is

|v|gx =
√
gx(v, v) ∀v ∈ ∆(x).

The length of an horizontal path γ ∈ Ωx,T∆ is defined by

lengthg(γ) :=
∫ T

0

∣∣γ̇(t)
∣∣g
γ(t)

dt. (1.37)

Note that since any horizontal path is absolutely continuous with square inte-
grable derivative, the length of any horizontal path is finite.

Thanks to the Chow-Rashevsky Theorem, for every x, y ∈ M , there is at
least one horizontal path joining x to y in time 1. For every x, y ∈ M , the
sub-Riemannian distance between x and y, denoted by dSR(x, y), is defined as
the infimum of lengths of horizontal paths joining x to y, that is,

dSR(x, y) := inf
{

lengthg(γ) | γ ∈ Ωx,1∆ s.t. γ(1) = y
}
.

The function dSR defines a distance on M×M (the triangular inequality is easy,
the fact that dSR(x, y) ⇒ x = y follows from the proof of Proposition 1.5.2)
and makes M a metric space. Given x ∈M and r ≥ 0, we call sub-Riemannian
ball centered at x with radius r the set defined as

BSR(x, r) =
{
y ∈M | dSR(x, y) < r

}
.

In fact, the Chow-Rashevsky Theorem yields the following result.
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Proposition 1.5.2. Let (∆, g) be a sub-Riemannian structure on M , then the
topology defined by dSR coincides with the original topology of M . In particular,
the sub-Riemannian distance dSR is continuous on M ×M .

Proof. We need to show that for every x ∈ M , the family of sub-Riemannian
balls {BSR(x, r)}r>0 is a basis of neighborhoods for x with respect to the
original topology. Let F = {X1, . . . , Xm} be an orthonormal frame for ∆ on
an open neighborhood Vx of some x ∈M Let V ⊂ Vx be an open and relatively
compact neighborhood of x with respect to the initial topology. Let us show
that there is r > 0 small enough such that BSR(x, r) ⊂ V. Let W be an open
neighborhood of x such that W ⊂ V. Define the compact annulus A by

A = V \W.

Any continuous path joining x to a point outside V has to cross A. Hence
since X1, . . . , Xm are bounded on A, there is δ > 0 such that any solution
γu : [0, 1]→M to the Cauchy problem

γ̇u(t) =
m∑
i=1

ui(t)Xi (γu(t)) a.e. t ∈ [0, 1], γu(0) = x, (1.38)

with u ∈ Ux,1F and γu(1) /∈ V satisfies

∫ 1

0

∣∣∣∣∣
m∑
i=1

ui(t)Xi (γu(t))

∣∣∣∣∣
g

γu(t)

dt > δ.

By Proposition 1.2.1, this means that the sub-Riemannian ball BSR(x, δ/2)
is included in V. Let us now show that any sub-Riemannian ball BSR(x, r)
contains an open neighborhood of x with respect to the initial topology. The
set Ux,1F is open in L2

(
[0, 1]; Rm

)
and contains the control u ≡ 0. Thus there

is ν > 0 such that the L2-ball BL2(0, ν) is contained in Ux,1F . Moreover, since
F is orthonormal with respect to g, there holds for every u ∈ BL2(0, ν)

lengthg(γu) =
∫ 1

0

|u(t)|dt.

Thanks to the Cauchy-Schwarz inequality, we infer that

Ex,1F (BL2(0, ν)) ⊂ BSR(x, ν).

Proposition 1.4.1 together with Ex,1F = x concludes the proof.

Thanks to the above result, the sub-Riemannian balls BSR(x, r) are always
open with respect to the original topology of M and the closed sub-Riemannian
balls BSR(x, r) defined as

B̄SR(x, r) =
{
y ∈M | dSR(x, y) ≤ r

}
are always closed sets.
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1.6 Notes and comments

Proposition 1.1.8 is taken from a paper by Sussmann [Sus10]; we note that it
could also be proven by transversality arguments (see [GG73]).

The Hörmander condition introduced in Section 1.1 is also refered as bracket
generating condition. The term comes from the analysis literature; it is named
after Hörmander who obtained hypoellipticity results for linear operators asso-
ciated with families of vector fields [Hör67]. Several other terms may be used to
refer to totally nonholonomic distributions. They are called bracket generating
by Montgomery [Mon02], nonholonomic by Bellaiche [Bel96], and they refer
to completely nonholonomic families of vector fields by Agrachev and Sachkov
[AS04].

The notion of singular curves play a major role in this monograph. Most
of the examples of singular horizontal paths given in Section 1.3 are classical.
The most valuable (Example 1.3.17) is taken from [Sus96].

Theorem 1.4.3 has been proved independently by Chow [Cho39] and Ra-
shevsky [Ras38] in the 30s, see [Cho39, Ras38]. The proof that we present here
is an adaptation of the one given by Bellaiche [Bel96] to prove the so-called
Orbit Theorem (see also [AS04, Jur97]). Other proofs of the Chow-Rashevsky
Theorem can be found in the texts of Bismut [Bis84], Gromov [Gro96], or
Montgomery [Mon02].



Chapter 2

Sub-Riemannian geodesics

Throughout all the chapter, M denotes a smooth connected manifold without
boundary of dimension n ≥ 2 equipped with a sub-Riemannian structure (∆, g)
of rank m ≤ n.

2.1 Minimizing horizontal paths and geodesics

Definitions

Given x, y ∈M , we call minimizing horizontal path between x and y any path
γ ∈ Ωx,T∆ with T ≥ 0 such that

dSR(x, y) = lengthg(γ).

Like in the Riemannian case, minimizing paths with constant speed minimize
the so-called sub-Riemannian energy. Given x, y ∈ M , we define the sub-
Riemannian energy between x and y by

eSR(x, y) := inf
{

energyg(γ) | γ ∈ Ωx,1∆ s.t. γ(1) = y
}
,

where the energy of a path γ ∈ Ωx,1∆ is defined as

energyg(γ) :=
∫ T

0

(∣∣γ̇(t)
∣∣g
γ(t)

)2

dt. (2.1)

The following result whose the proof is based on Cauchy-Schwarz’s inequal-
ity, is fundamental.

Proposition 2.1.1. For any x, y ∈M , eSR(x, y) = dSR(x, y)2.

Proof. Let x, y ∈M be fixed. First, we observe that, for every horizontal path
γ : [0, 1]→M satisfying γ(0) = x and γ(1) = y, the Cauchy-Schwarz inequality
yields (∫ 1

0

|γ̇(t)|gγ(t) dt

)2

≤
∫ 1

0

(
|γ̇(t)|gγ(t)

)2

dt. (2.2)

45
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Taking the infimum over the set of γ ∈ Ωx,1∆ such that γ(1) = y yields
dSR(x, y)2 ≤ eSR(x, y). On the other hand, for every ε > 0, there exists
an horizontal path γ ∈ Ωx,1∆ , with γ(1) = y, such that

lengthg(γ) =
∫ 1

0

|γ̇(t)|gγ(t) dt ≤ dSR(x, y) + ε.

Reparametrizing γ by arc-length, we get a new path ξ ∈ Ωx,1∆ with γ(1) = y
satisfying ∣∣∣ξ̇(t)∣∣∣g

ξ(t)
= lengthg(γ) a.e. t ∈ [0, 1].

Consequently,

eSR(x, y) ≤
∫ 1

0

(∣∣∣ξ̇(t)∣∣∣g
ξ(t)

)2

dt = lengthg(γ)2 ≤ (dSR(x, y) + ε)2
.

Letting ε tend to 0 completes the proof of the result.

Given x, y ∈ M , we call minimizing geodesic between x and y any path
γ ∈ Ωx,1∆ joining x to y such that

eSR(x, y) = energyg(γ).

Thanks to the above proof and the fact that equality holds in the Cauchy-
Schwarz inequality (2.2) if and only γ has constant speed (that is |γ̇(t)|gγ(t) is
constant), we obtain the following result.

Proposition 2.1.2. Given x, y ∈M , a path γ ∈ Ωx,1∆ is a minimizing geodesic
between x and y if and only if it is a minimizing horizontal path between x and
y with constant speed.

Sufficiently near points can be joined by minimizing geodesics and a fortiori
by minimizing horizontal paths.

Proposition 2.1.3. Let x ∈ M , then there is ρ > 0 such that the following
property is satisfied:
For every y, z ∈ BSR(x, ρ) and any minimizing sequence {γk}k : [0, 1]→M of
horizontal paths with constant speed such that

lim
k→+∞

γk(0) = y, lim
k→+∞

γk(1) = z, lim
k→+∞

lengthg
(
γk
)

= dSR(y, z), (2.3)

up to taking a subsequence, {γk}k converges uniformly to some minimizing
geodesic γ̄ ∈ Ωy,1∆ joining y to z.
In particular, for every y, z ∈ BSR(x, ρ), there is a minimizing geodesic between
y and z.

Proof. Fix x ∈ M and F = {X1, . . . , Xm} an orthonormal frame for ∆ on an
open and relatively compact neighborhood Vx of x. From Proposition 1.5.2,
there is r > 0 small enough such that BSR(x, r) ⊂ Vx. For any y ∈ BSR(x, r/4)
and any horizontal path γ : [0, 1]→M with constant speed satisfying

dSR
(
γ(0), y

)
<

r

24
and lengthg(γ) ≤ 2r

3
,
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we have for every t ∈ [0, 1],

dSR
(
x, γ(t)

)
≤ dSR(x, y) + dSR

(
y, γ(t)

)
≤ r/4 + dSR

(
y, γ(0)

)
+ lengthg(γ)

≤ r/4 + r/24 + 2r/3 = 23r/24 < r.

Which means that γ is contained in BSR(x, r). Furthermore, for every such
horizontal path, there is u ∈ L2

(
[0, 1]; Rm

)
such that

γ̇(t) =
m∑
i=1

ui(t)Xi
(
γ(t)

)
and |γ̇(t)|gγ(t) = ‖u‖L2 = lengthg(γ),

for a.e. t ∈ [0, 1]. Let y, z ∈ BSR(x, r/4) be fixed and {γk}k : [0, 1] → M
be a sequence of horizontal paths with constant speed verifying (2.3). By the
above discussion, we may assume without loss of generality that all the paths
γk : [0, 1]→M are valued in the compact set Vx with derivatives bounded by
r and associated with a sequence of controls {uk}k in L2

(
[0, 1]; Rm

)
such that

‖uk‖L2 = lengthg(γk). Then by Arzela-Ascoli’s theorem taking a subsequence
if necessary the sequence {γk}k converges to some γ̄ : [0, 1] → M . Moreover,
the sequence {uk}k is bounded in L2 so it weakly converges up to a subsequence
to some v̄ ∈ L2

(
[0, 1]; Rm

)
. We obtain easily that γ̄(0) = y, γ̄(1) = z,

˙̄γ(t) =
m∑
i=1

v̄i(t)Xi
(
γ̄(t)

)
a.e. t ∈ [0, 1],

and by lower semicontinuity of the L2-norm under weak convergence we imme-
diately deduce that

‖v̄‖L2 ≤ lim
k

∥∥uk∥∥
L2 = dSR(y, z).

Furthermore, since γ̄ is an horizontal path joining y to z, there holds

dSR(y, z) ≤ lengthg(γ̄).

By Cauchy-Schwarz’s inequality, we have lengthg(γ̄) ≤ ‖v̄‖L2 . Then we infer
that

energyg
(
γ̄
)

= ‖v̄‖2L2 = dSR(y, z)2 = eSR(y, z).

Which shows that γ̄ is a minimizing geodesic joining y to z.

Remark 2.1.4. The above proof shows indeed that up to taking a subsequence,
the sequence {uk}k converges strongly to v̄ in L2([0, 1]; Rm). As a matter of
fact, it converges weakly to v̄ and satisfies

lim
k

∥∥uk∥∥
L2 = ‖v̄‖L2 .

The SR Hopf-Rinow Theorem

The following sub-Riemannian version of the classical Riemannian Hopf-Rinow
Theorem holds.
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Theorem 2.1.5 (Hopf-Rinow Theorem). Let (∆, g) be a sub-Riemannian struc-
ture on M . Assume that (M,dSR) is a complete metric space. Then the fol-
lowing properties hold:

(i) The balls B̄SR(x, r) are compact,

(ii) for every x, y ∈ M there exists at least one minimizing geodesic joining
x to y.

Proof. Let us first recall that thanks to Proposition 1.5.2, the metric space
(M,dSR) is locally compact. That is for every x ∈M , there is r > 0 such that
the ball B̄SR(x, r) is compact. Let x ∈M be fixed. We first show that all the
balls B̄SR(x, r) with r ≥ 0 are compact. Denote by Ix the set of r ≥ 0 such that
B̄SR(x, r) is compact. By inclusion of the balls B̄SR(x, r′) ⊂ B̄SR(x, r) if r′ ≤ r
and local compactness of (M,dSR), Ix is an interval whose the supremum Rx
is strictly positive. We claim that I is both closed and open in [0,+∞).

Lemma 2.1.6. The interval Ix is closed in [0,+∞).

Proof of Lemma 2.1.6. We need to show that Rx belongs to Ix, that is that
B̄SR(x,Rx) is compact. Let {yk}k be a sequence of points in B̄SR(x,Rx), we
need to show that it has a convergent subsequence. We construct a Cauchy
subsequence of {yk}k as follows. For every integer l ≥ 1, we set

Kl = B̄SR
(
x,Rx

(
1− 2−l

))
.

By assumption, {Kl}l is an increasing sequence of compact sets in B̄SR(x,Rx).
For every k ∈ N, there is y1

k ∈ K1 such that

dSR
(
yk, y

1
k

)
= inf

{
dSR(yk, z) | z ∈ K1

}
≤ Rx

2
.

By compactness of K1, there is a strictly increasing mapping ϕ1 : N→ N such
that the sequence {y1

ϕ1(k)}k converges to some ȳ1 ∈ K1. Thus there exists
k1 ≥ 0 such that

dSR

(
y1
ϕ1(k), ȳ

1
)
≤ Rx

2
∀k ≥ k1.

Set z1 := yϕ1(k1). Now for every k ∈ N, there is y2
k ∈ K2 such that

dSR
(
yϕ1(k), y

2
k

)
= inf

{
dSR(yϕ1(k), z) | z ∈ K2

}
≤ Rx

4
.

Again, by compactness of K2 there exists a strictly increasing mapping ϕ2 :
N→ N such that the sequence {y2

ϕ2(k)}k converges to some ȳ2 ∈ K2 and then
there is k2 ≥ k1 such that

dSR

(
y2
ϕ2(k), ȳ

2
)
≤ Rx

4
∀k ≥ k2.
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Set z2 := y(ϕ1◦ϕ2)(k2). By construction, there holds

dSR(z1, z2)

≤ dSR

(
z1, y

1
ϕ1(k1)

)
+ dSR

(
y1
ϕ1(k1), z2

)
= dSR

(
yϕ1(k1), y

1
ϕ1(k1)

)
+ dSR

(
y1
ϕ1(k1), y(ϕ1◦ϕ2)(k2)

)
≤ Rx

2
+ dSR

(
y1
ϕ1(k1), ȳ

1
)

+ dSR

(
ȳ1, y1

(ϕ1◦ϕ2)(k2)

)
+dSR

(
y1

(ϕ1◦ϕ2)(k2), z2

)
≤ Rx

2
+
Rx
2

+
Rx
2

+
Rx
2
≤ 2Rx.

Repeating this construction yields a sequence of strictly increasing mappings
{ϕl}l, a sequence (with two indices) {ylk}k,l, a sequence of limits {ȳl}l, and a
nondecreasing sequence of integers {kl}l such that

dSR
(
yk, y

l
k

)
= inf

{
dSR(yk, z) | z ∈ Kl

}
≤ Rx

2l

and
dSR

(
ylϕl(k), ȳ

l
)
≤ Rx

2l
∀k ≥ kl.

Define the sequence {zl}l by

zl := y(ϕ1◦ϕ2◦···◦ϕl)(kl)

Then proceeding as above shows that for every l ≥ 1, one has

dSR
(
zl, zl+1

)
≤ 4Rx

2l
.

Hence {zk}k is a Cauchy sequence in B̄SR(x,Rx). Since (M,dSR) is complete,
it converges to some z ∈ B̄SR(x,Rx).

Lemma 2.1.7. The interval Ix is open in [0,+∞).

Proof of Lemma 2.1.7. We need to show that if R ∈ Ix, then there is δ > 0
such that R+δ belongs to Ix. Let R > 0 in Ix be fixed. Denote by ∂BSR(x,R)
the boundary of B̄SR(x,R), that is ∂BSR(x,R) = B̄SR(x,R) \ BSR(x,R).
Since B̄SR(x,R) is assumed to be compact, its boundary is compact too. From
Proposition 2.1.3, we know that for every y ∈ ∂BSR(x,R), there is δy > 0 such
that B̄SR(y, 2δy) is compact. Since

∂BSR(x,R) ⊂ ∪y∈∂BSR(x,R)BSR (y, δy) ,

there is a finite number of points y1, . . . , yN in ∂BSR(x,R) such that

∂BSR(x,R) ⊂ ∪Ni=1BSR (yi, δyi) .

Set

δ = min
{
δyi
2
| i = 1, . . . , N

}
.
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We prove easily that

B̄SR(x,R+ δ) ⊂
(
B̄SR(x,R) ∪ ∪Ni=1B̄SR (yi, 2δyi)

)
which is a finite union of compact sets, hence compact as well. This shows that
B̄SR(x,R+ δ) is compact.

In conclusion, Ix is both open and closed in [0,+∞). Hence Ix = [0,+∞)
which concludes the proof of (i). Let us now prove assertion (ii). We note
that since ∆ does not necessarily admit a global orthonormal frame on M , we
cannot repeat verbatim the proof of Proposition 2.1.3. Let x, y ∈ M be fixed,
set R := max{2dSR(x, y), 1}. By (i), we know that B̄SR(x,R) is compact. Let
{γk}k be a sequence of horizontal paths with constant speed in Ωx,1∆ joining x
to y such that

dSR(x, y) = lim
k→+∞

length(γk).

Without loss of generality we may assume that

length(γk) < R ∀k,

which means that all the curves γk remain in B̄SR(x,R). By Proposition
2.1.3, for every z ∈ B̄SR(x,R) there is ρz > 0 such that any minimizing se-
quence of horizontal paths with constant speed contained in BSR(z, ρz) con-
verges uniformly (up to taking a subsequence) to some minimizing geodesic.
By compactness, there are z1, . . . , zL ∈ B̄SR(x,R) and an integer N > 1 with
R/N < min{ρ1, . . . , ρL}/4 such that

BSR(x,R) ⊂
L⋃
l=1

BSR
(
zl, 1/N

)
.

Set for every j = 0, . . . , N , tj := j/N , for every j = 0, . . . , N−1, Ij := [tj , tj+1],
and denote by γkj the restriction of γk to the interval Ij . Fix j ∈ {0, . . . , N −
1}. For every k, there is l ∈ {1, . . . , L} (which may depend on k) such that
dSR(γk(tj), zl) < 1/N , then

dSR
(
γk(t), zl

)
≤ dSR(γk(tj), zl) +

lengthg(γk)
N

<
1
N

+
R

N
< ρl,

for every t ∈ Ij . This shows that each piece of horizontal path γkj with length
lengthg(γk)/N is contained in some BSR(zl, ρl). Therefore, up to taking a
subsequence, the sequence {γkj }k converges to some minimizing geodesic with
length dSR(x, y)/N . We deduce easily the existence of a subsequence of {γk}k
converging to some minimizing geodesic between x and y.

Remark 2.1.8. In fact, we proved a global version of Proposition 2.1.3. If
(M,dSR) is a complete metric space, then for every x, y ∈M and every mini-
mizing sequence {γk}k of horizontal paths with constant speed in Ωx,1∆ joining
x to y such that

dSR(x, y) = lim
k→+∞

length(γk),

up to taking a subsequence, {γk}k converges uniformly to some minimizing
geodesic joining x to y.
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We shall say that the sub-Riemannian structure (∆, g) on M is complete if
the metric space (M,dSR) is complete. The following result holds.

Proposition 2.1.9. Let (∆, g) be a sub-Riemannian structure on M (assumed
to be connected). Assume that (M, g) is a complete Riemannian manifold.
Then for any totally nonholonomic distribution ∆, the SR structure (∆, g) on
M is complete.

Proof. Denote by dg the Riemannian geodesic distance on M with respect to
g. Since the set of paths joinging x to y contains the set of horizontal paths
joining x to y, there holds

dg(x, y) ≤ dSR(x, y) ∀x, y ∈M.

Therefore, any Cauchy sequence with respect to dSR is a Cauchy sequence
with respect to dg. Hence it is convergent. Since both topology coincide, it is
convergent with respect to dSR as well.

2.2 The Hamiltonian geodesic equation

Throughout all the section, we assume that the SR structure (∆, g) is complete.
Thanks to Theorem 2.1.5, minimizing geodesics exist between any pair of points
in M .

Normal and abnormal geodesics

Let x, y ∈M and a minimizing geodesic γ ∈ Ωx,1∆ joining x to y be fixed. Since
γ minimizes the distance between x and y it cannot have self-intersection.
Hence (∆, g) admits an orthonormal frame along γ.

b

x

b

y

γ V

There is an open neighborhood V of γ([0, 1]) in M and an orthonormal
family F (with respect to the metric g) of m smooth vector fields X1, . . . , Xm

such that
∆(z) = Span

{
X1(z), . . . , Xm(z)

}
∀z ∈ V.

Moreover, there is a control uγ ∈ L2([0, 1]; Rm) (which indeed belong to the
open set Ux,1F which was defined in Proposition 1.2.1) such that

γ̇(t) =
m∑
i=1

uγi (t)Xi(γ(t)) a.e. t ∈ [0, 1].

Since γ is a minimizing geodesic between x and y, it minimizes the energy
among all horizontal paths joining x to y. Since there is a local one-to-one
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correspondence between the set of horizontal paths starting at x and the set
of trajectories of some control system (see Proposition 1.2.1), the control uγ

minimizes the quantity∫ 1

0

gγu(t)

( m∑
i=1

ui(t)Xi(γx,u(t)),
m∑
i=1

ui(t)Xi(γu(t))
)
dt

=
∫ 1

0

m∑
i=1

ui(t)2dt =: C(u),

among all controls u ∈ L2([0, 1]; Rm) such that the solution γu : [0, 1]→ M of
the Cauchy problem

γ̇u(t) =
k∑
i=1

ui(t)Xi (γu(t)) a.e. t ∈ [0, 1], γu(0) = x, (2.4)

is well-defined on [0, 1] and satisfies (the End-Point mapping Ex,1F has been
defined in Chapter 1)

Ex,1F (u) = y.

In other terms, there is an open set U ⊂ L2([0, 1]; Rm) such that uγ is solution
to the following optimization problem:

uγ minimizes C(u) among all u ∈ U with Ex,1F (u) = 1. (2.5)

By the Lagrange Multiplier Theorem (see Theorem B.1.5), there is p ∈ T ∗yM '
(Rn)∗ and λ0 ∈ {0, 1} with (λ0, p

)
6= (0, 0) such that

p ·DuγE
x,1
F (v) = λ0DuγC(v) ∀v ∈ L2

(
[0, 1]; Rm

)
. (2.6)

Two cases may appear, either λ0 = 0 or λ0 = 1. By restricting V if necessary,
we can assume that the cotangent bundle T ∗M is trivializable with coordinates
(x, p) ∈ V × (Rn)∗ over V.

First case: λ0 = 0.
Then we have p ∈ T ∗yM \ {0} ' (Rn)∗ \ {0} satisfying

p ·DuγE
x,1
F (v) = 0 ∀v ∈ L2

(
[0, 1]; Rm

)
.

This means that some nonzero linear form annihilates the image of Ex,1F . Then
uγ is singular with respect to x and F or equivalently the path γ is singular
with respect to ∆. By Proposition 1.3.3 and Remark 1.3.5 (see also Proposition
1.3.10), γ admits an abnormal extremal lift, that is there is an absolutely
continuous arc p : [0, 1]→ (Rn)∗ \ {0} with p(1) = p which satisfies

ṗ(t) = −
k∑
i=1

ui(t) p(t) ·Dγ(t)X
i a.e. t ∈ [0, 1]

and

p(t) ·Xi
(
γ(t)

)
= 0, ∀t ∈ [0, 1] ∀i = 1, · · · ,m.
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In other terms, γ is a singular minimizing geodesic.

Second case: λ0 = 1.
Define in local coordinates, the Hamiltonian H : V × (Rn)∗ → R by

H(x, p) :=
1
2

m∑
i=1

(
p ·Xi(x)

)2 = max
u∈Rm

{ m∑
i=1

ui p ·Xi(x)− 1
2

m∑
i=1

u2
i

}
(2.7)

for all (x, p) ∈ V × (Rn)∗. Then the following result holds.

Proposition 2.2.1. Equality (2.6) with λ0 = 1 yields the existence of a smooth
arc p : [0, 1] −→ (Rn)∗ with p(1) = p

2 , such that the pair (γ, p) satisfies{
γ̇(t) = ∂H

∂p (γ(t), p(t)) =
∑m
i=1

[
p(t) ·Xi(γ(t))

]
Xi(γ(t))

ṗ(t) = −∂H∂x (γ(t), p(t)) = −∑m
i=1

[
p(t) ·Xi(γ(t))

]
p(t) ·Dγ(t)X

i (2.8)

for a.e. t ∈ [0, 1] and

uγi (t) = p(t) ·Xi(γ(t)) for a.e. t ∈ [0, 1], ∀i = 1, . . . ,m. (2.9)

In particular, the path γ is smooth on [0, 1].

Proof. The differential of C : L2([0, 1]; Rm)→ R at uγ is given by

DuγC(v) = 2〈uγ , v〉L2 ∀v ∈ L2([0, 1]; Rm).

Moreover by Remark 1.2.5, the differential of Ex,1F at uγ is given by

DuγE
x,1
F (v) = S(1)

∫ 1

0

S(t)−1B(t)v(t)dt ∀v ∈ L2([0, 1]; Rm), (2.10)

where the functions A,B, S were defined in Remark 1.2.5. Hence (2.6) yields∫ 1

0

[
p · S(1)S(t)−1B(t)− 2uγ(t)∗

]
v(t)dt = 0 ∀v ∈ L2([0, 1]; Rm).

Which implies

uγ(t) =
1
2
(
p · S(1)S(t)−1B(t)

)∗
a.e. t ∈ [0, 1].

Let us define p : [0, 1]→ (Rn)∗ by

p(t) :=
1
2
p · S(1)S(t)−1 ∀t ∈ [0, 1].

By construction, for a.e. t ∈ [0, 1] we have uγ(t)∗ = p(t) · B(t), which means
that (2.9) is satisfied. Furthermore, as in the proof of Proposition 1.3.3, we
have ṗ(t) = −p(t) ·A(t) for a.e. t ∈ [0, 1]. This means that (2.8) is satisfied for
a.e. t ∈ [0, 1]. The pair (γ, p) is solution to a smooth autonomous differential
equation, hence it is smooth.
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The curve ψ : [0, 1]→ T ∗M given by ψ(t) = (γ(t), p(t)) for every t ∈ [0, 1] is
a normal extremal whose the projection is γ and which satisfies ψ(1) = (y, p2 ).
We say that ψ is a normal extremal lift of γ. We also say that γ is a normal
minimizing geodesic.

Define the Hamiltonian H : T ∗M → R as follows. For every x ∈ M , the
restriction of H to the fiber T ∗xM is given by the nonnegative quadratic form

p 7−→ 1
2

max
{

p(v)2

gx(v, v)
| v ∈ ∆(x) \ {0}

}
. (2.11)

Let
−→
H denote the Hamiltonian vector field on T ∗M associated to H, that is,

ι−→
H
ω = −dH, or in local coordinates

−→
H (x, p) =

(
∂H

∂p
(x, p),−∂H

∂x
(x, p)

)
.

A normal extremal is an integral curve of
−→
H defined on some interval [0, T ],

i.e., a curve ψ : [0, T ] → T ∗M such that ψ̇(t) =
−→
H (ψ(t)), for t ∈ [0, T ]. The

projection of a normal extremal ψ : [0, T ]→ T ∗M is a smooth horizontal path
γ := π ◦ ψ : [0, T ]→M with constant speed given by∣∣γ̇(t)

∣∣g
γ(t)

=
√

2H
(
ψ(t)

)
∀t ∈ [0, T ].

We check easily that the Hamiltonian defined by (2.11) reads as (2.7) in local
coordinates. Then the previous study yields the following result.

Theorem 2.2.2. Let γ : [0, 1] → M be a minimizing geodesic between x and
y in M . One of the two following non-exclusive cases may occur:

• γ is singular;

• γ admits a normal extremal lift in T ∗M .

Be careful, a minimizing geodesic could be both singular and the projection
of a normal extremal. In Section 2.5, we shall see several examples of minimiz-
ing geodesics, including the cases of singular normal minimizing geodesics and
strictly abnormal minimizing geodesic, that is abnormal geodesics admitting
no normal extremal lift.

Remark 2.2.3. In the Riemannian case, that is if ∆ has rank m = n, any path
is horizontal and regular (see Remark 1.3.7). As a consequence any minimizing
geodesic is normal.

Short normal geodesics are minimizing

Projections of normal extremals are minimizing for short times.

Proposition 2.2.4. Let x̄ ∈M and p̄ ∈ T ∗xM with H(x̄, p̄) 6= 0 be fixed. Then
there is a neighborhood W of p̄ in T ∗x̄M and ε > 0 such that every normal
extremal so that ψ(0) = (x̄, p) (in local coordinates) belongs to W minimizes
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the SR energy on the interval [0, ε]. That is if we set γ := π ◦ ψ : [0, ε] → M ,
then we have

eSR
(
γ(0), γ(ε)

)
= 2H(x, p)ε2.

In particular, γ minimizes the length between x̄ and γ(ε).

Proof. Since the result is local, we can assume that we work in Rn. Then
we can assume that (∆, g) admits an orthonormal frame F = {X1, . . . , Xm}.
For sake of simplicity, we identify (Rn)∗ with Rn. Then the Hamiltonian H :
Rn × Rn → R which were defined in (2.7)-(2.11) is given by

H(x, p) := max
u∈Rm

{
〈p,

m∑
i=1

uiX
i(x)〉 − 1

2

m∑
i=1

u2
i

}
=

1
2

m∑
i=1

〈p,Xi(x)〉2,

for every (x, p) ∈ Rn × Rn.
Our aim is now to prove the following result: for every p0 ∈ Rn such that
H(x̄, p0) 6= 0, there exist a neighborhood W of p0 in Rn and ε > 0 such that
every solution (x, p) : [0, ε]→ Rn × Rn of the Hamiltonian system

ẋ(t) =
∂H

∂p
(x(t), p(t)) =

m∑
i=1

〈p(t), Xi(x(t))〉Xi(x(t))

ṗ(t) = −∂H
∂x

(x(t), p(t)) = −
m∑
i=1

〈p(t), Xi(x(t))〉
(
Dx(t)X

i
)∗(

p(t)
)
,

(2.12)

with x(0) = x̄ and p(0) ∈ W, satisfies

2εH
(
x̄, p0

)
=
∫ ε

0

m∑
i=1

〈p(t), Xi(x(t))〉2dt ≤
∫ ε

0

m∑
i=1

ui(t)2dt, (2.13)

for every control u ∈ L2([0, ε]; Rm) such that the solution of

ẏ(t) =
m∑
i=1

ui(t)Xi(y(t)), y(0) = x̄, (2.14)

satisfies y(ε) = x(ε). Let p0 ∈ Rn with H(x̄, p0) 6= 0 be fixed, we need the
following lemma.

Lemma 2.2.5. There exist a neighborhood W of p0 and ρ > 0 such that, for
every p ∈ W, there exists a function S : B(x̄, ρ)→ R of class C1 which satisfies

H(x,∇S(x)) = H(x̄, p), ∀x ∈ B(x̄, ρ), (2.15)

and such that, if (xp, pp) : [−ρ, ρ] → Rn × Rn denotes the solution of (2.12)
satisfying xp(0) = x̄ and pp(0) = p, then

∇S(xp(t)) = pp(t), ∀t ∈ (−ρ, ρ). (2.16)

Proof of Lemma 2.2.5. The proof consists in applying the method of charac-
teristics. Let Π be the linear hyperplane such that 〈p0, v〉 = 0 for every v ∈ Π.
We first show how to construct locally S as the solution of the Hamilton-Jacobi
equation (2.15) which vanishes on x̄ + Π and such that ∇S(x̄) = p0. Up to
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considering a smaller neighborhood V, we assume that H(x, p0) 6= 0 for every
x ∈ V ′. For every x ∈ (x̄+ Π) ∩ V, set

p̄(x) :=

√
H(x̄, p0)
H(x, p0)

p0.

Then, H(x, p̄(x)) = H(x̄, p0) and p̄(x) ⊥ Π, for every x ∈ V ′. There exists
µ > 0 such that, for every x ∈ (x̄ + Π) ∩ V, the solution (xx, px) of (2.12),
satisfying xx(0) = x and px(0) = p̄(x), is defined on the interval (−µ, µ).

b

x̄ p0

x̄ + Π

b

x xx(t)

For every x ∈ (x̄ + Π) ∩ V and every t ∈ (−µ, µ), set θ(t, x) := xx(t).
The mapping (t, x) 7→ θ(t, x) is smooth. Moreover, θ(0, x) = x for every
x ∈ (x̄ + Π) ∪ V and θ̇(0, x̄) =

∑m
i=1〈p̄(x), Xi(x̄)〉Xi(x̄) does not belong to Π.

Hence there exists ρ ∈ (0, µ) with B(x̄, ρ) ⊂ V such that the mapping θ is a
smooth diffeomorphism from (−ρ, ρ)×((x̄+ Π) ∩B(x̄, ρ)) into a neighborhood
V ′ of x̄. Denote by ϕ = (τ, π) the inverse function of θ, that is the function
such that (θ ◦ϕ)(x) = (τ(x), π(x)) = x for every x ∈ V ′. Define the two vector
fields X and P by

X(x) := θ̇(τ(x), π(x)) and P (x) := pπ(x)(τ(x)), ∀x ∈ V ′.
Then,

X(θ(t, x)) = θ̇(t, x) = ẋx(t) =
m∑
i=1

〈px(t), Xi(xx(t))〉Xi(xx(t))

=
m∑
i=1

〈P (θ(t, x)), Xi(θ(t, x))〉Xi(θ(t, x)),

and
m∑
i=1

〈P (θ(t, x)), Xi(xx(t))〉2 =
m∑
i=1

〈px(t), Xi(xx(t))〉2

= 2H(x, p̄(x)) = 2H(x̄, p0),
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for every t ∈ (−ρ, ρ) and every x ∈ (x̄ + Π) ∩ B(x̄, ρ). For every x ∈ V ′, set
αi(x) := 〈P (x), Xi(x)〉. Hence,

X(x) =
m∑
i=1

αi(x)Xi(x) and
m∑
i=1

αi(x)2 = 2H(x̄, p0),

for every x ∈ V ′. Define the function S : V ′ 7→ R by

S(x) := 2H(x̄, p0)τ(x), ∀x ∈ V ′.
We next prove that ∇S(x) = P (x) for every x ∈ V ′. For every t ∈ (−ρ, ρ),
denote by Wt := {y ∈ V ′ | τ(y) = t}. In fact, Wt coincides with the set
of y ∈ V ′ such that S(y) = 2H(x̄, p0)t. It is a smooth hypersurface which
satisfies ∇S(y) ⊥ TyWt for every y ∈ Wt. Let y ∈ Wt be fixed, there exists
x ∈ (x̄ + Π) ∪ B(x̄, ρ) such that y = θ(t, x) = xx(t). Let us first prove that
P (y) = px(t) is orthogonal to TyWt. To this aim, without loss of generality we
assume that t > 0. Let w ∈ TyWt, there exists v ∈ Π such that w = Dxθt(v).
For every s ∈ [0, t], set z(s) := Dxθ(s, x)(v). We have

ż(s) =
d

ds
Dxθ(s, x)v =

d

dx
θ̇(t, x)v =

d

dx
X(θ(t, x))v = Dθ(t,x)X(z(s)).

Hence,

d

ds
〈z(s), px(s)〉 = 〈ż(s), px(s)〉+ 〈z(s), ṗx(s)〉

= 〈dX(θ(s, x))z(s), px(s)〉

−〈z(s),
m∑
i=1

〈px(s), Xi(xx(s))〉
(
Dxx(s)X

i
)∗(

px(s)
)
〉.

Since X(x) =
∑m
i=1 αi(x)Xi(x) and

∑m
i=1 αi(x)2 = 2H(x̄, p0) for every x ∈ V ′,

there holds(
Dxx(s)X

)∗(
px(s)

)
=

m∑
i=1

αi(xx(s))
(
Dxx(s)X

i
)∗(

px(s)
)

+
m∑
i=1

〈Xi(xx(s)), px(s)〉∇αi(xx(s))

=
m∑
i=1

αi(xx(s))
(
Dxx(s)X

i
)∗(

px(s)
)

+
m∑
i=1

αi(xx(s))∇αi(xx(s))

=
m∑
i=1

αi(xx(s))
(
Dxx(s)X

i
)∗(

px(s)
)
.

We deduce that d
ds 〈z(s), px(s)〉 = 0 for every s ∈ [0, t]. Hence,

〈w,P (y)〉 = 〈w, px(t)〉 = 〈z(t), px(t)〉 = 〈z(0), p̄(x)〉 = 0.

This proves that P (y) is orthogonal to TyWt, which implies that P (y) and
∇S(y) are colinear. Furthermore, since S(xx(s)) = 2H(x̄, p0)s for every s ∈
[0, t], one gets

〈∇S(xx(t)), ẋx(t)〉 = 2H(x̄, p0) = 〈px(t), ẋx(t)〉.
Since ẋx(t) = X(y) does not belong to TyWt, we deduce that ∇S(xx(t)) =
px(t). In consequence, we proved that ∇S(x) = P (x) for every x ∈ V ′.
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Let us now conclude the proof of Proposition 2.2.4. Clearly, there exists
ε > 0 such that every solution (x, p) : [0, ε]→ Rn×Rn of (2.12), with x(0) = x̄
and p(0) ∈ W, satisfies

x(t) ∈ B(x̄, ρ), ∀t ∈ [0, ε].

Moreover, we have
S(x(ε))− S(x̄) = 2εH(x̄, p).

Let u ∈ L1([0, ε]; Rm) be a control such that the solution y : [0, ε] → W of
(2.14) starting at x̄ satisfies y(ε) = x(ε). We have

S(x(ε))− S(x̄) = S(y(ε))− S(y(0))

=
∫ ε

0

d

dt
(S(y(t))) dt

=
∫ ε

0

〈∇S(y(t)), ẏ(t)〉dt

≤
∫ ε

0

H(y(t), dS(y(t))) +
1
2

m∑
i=1

ui(t)2dt

= εH(x̄, p) +
1
2

∫ ε

0

m∑
i=1

ui(t)2dt.

The conclusion follows.

2.3 The sub-Riemannian exponential map

Definition

Recall that the Hamiltonian H : T ∗M → R which is canonically associated
with our SR structure (∆, g) is defined by

H(x, p) =
1
2

max
{

p(v)2

gx(v, v)
| v ∈ ∆(x) \ {0}

}
∀(x, p) ∈ T ∗M. (2.17)

We recall that a normal extremal is a curve ψ : [0, T ]→ T ∗M satisfying

ψ̇(t) =
−→
H (ψ(t)) ∀t ∈ [0, T ].

Let x ∈M be fixed. We first define the domain Ex ⊂ T ∗xM of the SR exponen-
tial map by,

Ex :=
{
p ∈ T ∗xM |ψx,p is defined on the interval [0, 1]

}
,

where ψx,p is the normal extremal so that ψx,p(0) = (x, p) in local coordinates.
The set Ex is an open subset of T ∗xM containing the origin and star-shaped
with respect to 0.

Definition 2.3.1. The sub-Riemannian exponential map from x is defined by

expx : Ex ⊂ T ∗xM −→ M
p 7−→ π (ψx,p(1)) .



2.3. THE SUB-RIEMANNIAN EXPONENTIAL MAP 59

By rescaling, if (xp, pp) : [0, T ]→ T ∗M is the trajectory of the Hamiltonian
vector field

−→
H with x(0) = x, p(0) = p, then we have(

xp(λt), λpp(λt)
)

=
(
xλp(t), pλp(t)

)
∀t ∈ [0, T/λ], ∀λ > 0.

Then, for every p ∈ T ∗xM , the curve γp : [0, 1]→M defined by

γp(t) := expx(tp) = π (ψx,p(t)) ∀t ∈ [0, 1],

is an horizontal path with constant speed satisfying

energyg(π(ψx,p)) = (lengthg(π(ψx,p)))
2 = 2H

(
ψx,p(0)

)
= 2H(x, p).

Proposition 2.3.2. Assume that (∆, g) is complete. Then

Ex = T ∗xM ∀x ∈M.

Proof. We argue by contradiction. Let x̄ ∈M and ψ = (γ̄, pp̄) : [0, T )→ T ∗M
be a normal extremal starting at (x̄, p̄) ∈ T ∗x̄M that extends to no interval
[0, T + ε) for ε > 0. Let {tk}k be any increasing sequence that approaches
T , and set yk := γ̄(tk). Since γ̄ is an horizontal path with constant speed
V =

√
2H(x̄, p̄), we have

dSR
(
yk, yl

)
≤ V

∣∣tk − tl∣∣ ∀k, l.

Then {yk}k is a Cauchy sequence in M . By completeness {yk}k converges to
some point y ∈M . Let {X1, . . . , Xm} be a local orthonormal frame in a small
ball BSR(y, r). In local coordinates near y, H reads

H(x, p) =
1
2

m∑
i=1

(
p ·Xi(x)

)2
and (γ̄, pp̄) satisfies the differential system{ ˙̄γ(t) = ∂H

∂p

(
γ̄(t), pp̄(t)

)
=
∑m
i=1

[
pp̄(t) ·Xi

(
γ̄(t)

)]
Xi
(
γ̄(t)

)
ṗp̄(t) = −∂H∂x

(
γ̄(t), pp̄(t)

)
= −∑m

i=1

[
pp̄(t) ·Xi

(
γ̄(t)

)]
pp̄(t) ·Dγ̄(t)X

i,

for t ∈ [T − δ, T ) with δ > 0 small enough. Since H is constant along (γ̄, pp̄),
we have ∣∣pp̄(t) ·Xi

(
γ̄(t)

)∣∣ ≤ √mV ∀i = 1, . . . ,m,

and by compactness the X ′i’s and the dXi’s are bounded in B̄SR(y, r). Thus
there is a constant K > 0 such that

|ṗp̄(t)| ≤ K |pp̄(t)| ∀t ∈ [T − δ, T ).

By Gronwall’s Lemma (see Lemma A.1.1), we infer that both γ̄ and pp̄ are
uniformly bounded near T . This means that the extremal ψ can be extended
beyong T , which gives a contradiction.

Remark 2.3.3. Let (x, p) ∈ T ∗ M such that γp is singular be fixed. By
Proposition 1.3.10, γp is the projection of a characteristic curve ψ : [0, 1] →
T ∗M (written as (γp, q) in local coordinates). Then taking local coordinates,
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for every λ ∈ R the curve (here ψx,p = (γp, pp) denotes the normal extremal
starting at (x, p))

t ∈ [0, 1] 7−→ ψx,p(t) + λψ(t) =
(
γp(t), pp(t) + λq(t)

)
is a normal extremal starting at (x, p+ λq). Then we have

expx
(
p+ λq

)
= expx(p) ∀λ ∈ R.

Remark 2.3.4. Let (∆, g) be a complete sub-Riemannian structure on M and
x ∈ M be fixed. If (∆, g) does not admit singular minimizing curves from x,
then the exponential map from x is onto. As a matter of fact, for every y ∈M ,
there is a minimizing geodesic γ : [0, 1] → M joining x to y. Since γ is not
singular, it is the projection of a normal extremal (see Theorem 2.2.2), which
means that there is p ∈ T ∗xM such that expx(p) = y.

On the image of expx

Sub-Riemannian exponential maps are ”almost” onto.

Theorem 2.3.5. Assume that (∆, g) is complete and let x ∈M be fixed. There
is an open and dense set D ⊂M such that for every y ∈ D there is py ∈ T ∗xM
satisfying

expx
(
py
)

= y and dSR(x, y) =
√

2H (x, py). (2.18)

In particular, the set expx(T ∗xM) contains an open dense subset of M .

Proof. Let us begin with a preparatory lemma.

Lemma 2.3.6. Let y 6= x in M be such that there is a function φ : M → R
differentiable at y such that

φ(y) = d2
SR(x, y) and d2

SR(x, z) ≥ φ(z) ∀z ∈M. (2.19)

Then there is a unique minimizing geodesic γ : [0, 1] → M between x and y.
It is the projection of a normal extremal ψ : [0, 1] → T ∗M satisfying ψ(1) =
(y, 1

2Dyφ). In particular x = expy(− 1
2Dyφ).

Proof of Lemma 2.3.6. Since eSR(x, z) = d2
SR(x, z) for any z ∈ M , the as-

sumption of the proposition implies that there is a neighborhood U of y in M
such that

eSR(x, z) ≥ φ(z) ∀z ∈ U and eSR(x, y) = φ(y). (2.20)

Since (M,dSR) is complete, there exists a minimizing geodesic γ : [0, 1] → M
between x and y. As before, we can parametrize the distribution ∆ by a or-
thonormal family F of smooth vector fields X1, . . . , Xm in a neighborhood V of
γ([0, 1]), and we denote by uγ the control corresponding to γ. By construction,
it minimizes the quantity

C(u) =
∫ 1

0

m∑
i=1

ui(t)2dt,
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among all the controls u ∈ L2([0, 1]; Rm) which are admissible with respect to
x,F and V and which satisfy the constraint Ex,1F (u) = y. Let u ∈ L2([0, 1]; Rm)
be a control admissible with respect to x,F and V such that Ex,1F (u) ∈ U . By
(2.20) one has

C(u) ≥ eSR
(
x,Ex,1F (u)

)
≥ φ

(
Ex,1F (u)

)
.

Moreover
C(uγ) = eSR(x, y) = φ(y) = φ

(
Ex,1F (uγ)

)
.

Hence uγ minimizes the functional D : L2([0, 1]; Rm)→ R defined as

D(u) := C(u)− φ
(
Ex,1F (u)

)
,

over the set of controls u ∈ L2([0, 1]; Rm) such that Ex,1F (u) ∈ U . This means
that uγ is a critical point of D. Setting λ = Dyφ, we obtain

λ ·DuγE
x,1
F −DuγC = 0.

By Proposition 2.2.1, the path γ admits a normal extremal lift ψ : [0, 1]→ T ∗M
satisfying ψ(1) = (y, 1

2Dyφ). By the Cauchy-Lipschitz Theorem, such a normal
extremal is unique.

Denote by Px the set of points in M such that there is a unique normal
minimizing geodesic γy from x to y. The previous lemma yields easily the
following result.

Lemma 2.3.7. The set Px is dense in M .

Proof of Lemma 2.3.7. Let y ∈ M and r > 0 be fixed. Let ϕ : M → R be a
smooth function such that

ϕ(y) = 0 and ϕ(z) ≥ 2r ∀z ∈ ∂BSR(y, r).

The continuous function

z ∈ B̄SR(x, r) 7−→ dSR(x, z) + ϕ(z)

is equal to dSR(x, y) at z = y and by the triangle inequality it is larger than
dSR(x, y) + r for z ∈ ∂BSR(y, r). Then there is z̄ ∈ BSR(y, r) such that

dSR(x, z) ≥ dSR
(
x, z̄
)

+ ϕ
(
z̄
)
− ϕ(z) ∀z ∈ BSR(y, r).

We conclude easily by Lemma 2.3.6.

For every y ∈M denote by rank(y) the rank of the horizontal path γy (see
Section 1.3).

Lemma 2.3.8. The set of y ∈ Px with rank(y) = n is dense in M .
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Proof of Lemma 2.3.8. We argue by contradiction. Assume that there is an
open set O ⊂M such that any point y ∈ Px ∩ O has rank < n. Set

r̂ := max
{

rank(y) | y ∈ Px ∩ O
}
.

Fix ŷ ∈ Px ∩ O such that rank(ŷ) = r̂ and set γ̂ := γŷ. For every y ∈ Px ∩ O
denote by Πy the affine subspace of T ∗xM such that γp = γy, that is the space
of p ∈ T ∗xM such that

γp(t) = expx(tp) = π (ψx,p(t)) = γy(t) ∀t ∈ [0, 1].

Remembering Remark 2.3.3, we observe that the dimension of Πy is exactly
equal to n−rank(y). As a matter of fact, given y ∈ Px∩O and an orthonormal
family F = {X1, . . . , Xm} in a neighborhood V along γy, remembering the
arguments given in Proposition 2.2.1 we check that p ∈ T ∗xM belongs to Πy if
and only if ψx,p(1) = (y, pp(1)) satisfies

2pp(1) ·DuγyE
x,1
F (v) = DuγyC(v) ∀v ∈ L2

(
[0, 1]; Rm

)
. (2.21)

Let {yk}k be a sequence in Px ∩ O converging to ŷ, F = {X1, . . . , Xm} be an
orthonormal family in a neighborhood V along γ̂, and û the control associated
with γ̂ through F . The End-Point mapping Ex,1F is valued in Rn; denote by
E1, . . . , En its n coordinates. The vector space (we identify L2([0, 1]; Rm) with
its dual)

Span
{
DûE1, . . . , DûEn

}
has dimension rank(ŷ) = r̂. Let i1, . . . , ir̂ ∈ {1, . . . , n} be such that

Span
{
DûEi1 , . . . , DûEir̂

}
= Span

{
DûE1, . . . , DûEn

}
. (2.22)

Proceeding as in the proof of Proposition 2.1.3 and using completeness of (∆, g),
we show that taking a subsequence if necessary, {γk := γyk}k converges uni-
formly to some minimizing geodesic joining x to y. By uniqueness, we infer that
limk γk = γ̂. Furthermore, the proof also shows that the controls uk := uγk
which are associated to the γk’s through the orthonormal family F converges
strongly to û in L2([0, 1]; Rm) (see Remark 2.1.4). Then by regularity of Ex,1F
and the fact that rank(yk) ≤ r̂, we deduce that rank(yk) = rank(y) for k large
enough and that

Span
{
DukEi1 , . . . , DukEir̂

}
= Span

{
DukE1, . . . , DukEn

}
.

By (2.21) and (2.22), there is λ̂ = (λ̂1, . . . , λ̂r̂) ∈ T ∗ŷM ' (Rr̂)∗ such that
(remember that we identify L2([0, 1]; Rm) with its dual)

r̂∑
j=1

λ̂jDuγyEij = uγy ,

and more generally for every k there is λk = (λk1 , . . . , λ
k
r̂ ) ∈ T ∗ykM ' (Rr̂)∗ such

that
r̂∑
j=1

λkjDukEij = uγk ,
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Since {uk}k converges to û in L2([0, 1]; Rm), {DukE
x,1
F }k converges to DûE

x,1
F

and DûEi1 , . . . , DûEir̂ are linearly independant, we infer that {λk}k tends to
λ̂ as k tends to +∞. Define {pk}k and p̂ in T ∗xM by

ψx,pk(1) = (yk, λk/2) ∀k and ψx,p̂(1) =
(
ŷ, λ̂/2

)
.

By regularity of the Hamiltonian flow, {pk}k tends to p̂ and if a bounded
sequence {pk + qk}k is contained in Πk then it converges (up to a subsequence)
to some point in Πŷ. This shows that Πk tends to Πŷ. All in all we proved
that the mapping y ∈ Px 7→ Πy is continuous at ŷ. Let S be a smooth compact
submanifold of dimension r̂ in T ∗xM which is transverse to Πŷ at p̂, that is such
that

Πŷ ∩ S = {p̂} and Tp̂S ∩ Tp̂Πŷ = {0}.
By regularity of y 7→ Πy, there is an open neighrborhood O′ ⊂ O of ŷ such
that S is transverse to any Πy with y ∈ Px ∩ O′. We infer that

{y} = expx (Πy) = expx (Πy ∩ S) ⊂ expx (S) ∀y ∈ Px ∩ O′.

But since S has dimension strictly less than n, the set expx(S) is a compact
set of measure zero in M . Then Px ∩ O′ cannot be dense in O′. Which gives
a contradiction.

Returning to the proof of Theorem 2.3.5, we fix ȳ ∈ Px with rank(ȳ) = n.
Given an open set Ω ⊂ M , we call a function f : Ω → R Lipschitz in charts
if it is Lipschitz in a set of local coordinates in a neighborhood of any point
of Ω. This is equivalent to saying that f is locally Lipschitz with respect to a
(complete) Riemannian distance on M .

Lemma 2.3.9. There is an open set Oȳ of ȳ in M such that the function

y ∈ Oȳ 7−→ dSR
(
x, y
)

is Lipschitz in charts.

Proof of Lemma 2.3.9. As before we fix an orthonormal family of vector fields
F in an open neighborhood V along γ̄ := γȳ which is associated with ū ∈
L2([0, 1]; Rm) through F . By a uniqueness-compactness argument, if {yk}k
converges to ȳ and {γk}k is a sequence of minimizing geodesics between x and
yk then it converges (up to a subsequence) to γ̄ and is associated with a sequence
of controls {uk}k which converges to ū in L2([0, 1]; Rm) (see Proposition 2.1.3
and Remark 2.1.4). Then there is a neighborhood O of ȳ such that for every
y ∈ O every minimizing geodesic between x and y is contained in V with rank
n. Let v1, . . . vn in L2([0, 1],Rm) be such that the linear operator

Rn −→ TȳM

α 7−→ ∑m
i=1 αiDūE

x,1
F
(
vi
)

is invertible. By continuity of u 7→ DuE
x,1
F , taking O smaller if necessary, we

may assume that for every y ∈ O and for every minimizing geodesic γy from x
to y associated with a control uy, the linear operator

Rn −→ TyM

α 7−→ ∑m
i=1 αiDuyE

x,1
F
(
vi
)



64 CHAPTER 2. SUB-RIEMANNIAN GEODESICS

is invertible. For every y ∈ O, define Fy : Rn →M by

Fy(α) := Ex,1F

(
uy +

m∑
i=1

αiv
i

)
∀α ∈ Rn.

This mapping is well-defined and smooth in a neighborhood of the origin,
satisfies

Fy(0) = y,

and its differential at 0 is invertible. Hence by the Inverse Function Theorem,
there are an open neighborhood By of y in M and a function Gy : By → Rn
with Gy(y) = 0 such that

Fy ◦ Gy(z) = z ∀z ∈ By.

From the definition of the sub-Riemannian distance between two points, we
infer that for any z ∈ By we have

dSR(x, z) =
√
eSR(x, z) ≤

∥∥∥∥∥uy +
m∑
i=1

(Gy(z))i v
i

∥∥∥∥∥
L2

=: φy(z).

We conclude that, for every y ∈ O, there are a open set By containing y and a
C1 function φy : By → Rn such that

dSR(x, y) = φy(y) and dSR(x, z) ≤ φy(z) ∀z ∈ By.

The C1 norms of the φy’s are uniformly bounded. This proves the lemma.

To conclude the proof of Theorem 2.3.5, we note that by the Rademacher
Theorem, the function y ∈ Oȳ 7→ dSR(x, y) is differentiable almost everywhere
in Oȳ. By Lemma 2.3.6, for every y ∈ Oȳ where the function is differentiable,
there is py ∈ T ∗xM such that

y = expx
(
py
)
, dSR(x, y) =

√
2H (x, py), ψx,py (1) =

(
y,

1
2
Dyd

2
SR(x, ·)

)
.

Since dSR(x, ·) is Lipschitz in Oȳ, there is some constant K > 0 such that all
the py’s remain in a compact subset of T ∗xM . Now every y ∈ Oȳ can be approx-
imated by a sequence {yk}k of points in Oȳ where dSR(x, ·) is differentiable.
By compactness, up to taking a subsequence, the normal extremals starting at
(x, pyk) will converge to a normal extremal starting whose the projection is a
minimizing geodesic from x to y.

Remark 2.3.10. We already know that the sub-Riemannian distance is con-
tinuous on M ×M (see Proposition 1.5.2). The proof of Theorem 2.3.5 shows
that if (∆, g) is complete and x ∈ M be fixed, then the function y ∈ M →
dSR(x, y) ∈ R is locally Lipschitz (in charts) on an open and dense subset of
M .



2.4. THE GOH CONDITION 65

2.4 The Goh condition

Theorem 2.2.2 provides firt-order conditions for a given horizontal path to be
a minimizing geodesic. The aim of the present section is to present a second-
order necessary condition for a given singular path to be minimizing. For sake
of simplicity, we fix an orthonormal family F = {X1, . . . , Xm} of smooth vector
fields in some open chart V which contains a minimizing geodesic γ̄ : [0, 1]→M
from x to y (with x 6= y). As before, we denote by ū = uγ̄ the control which is
associated with γ̄ through F . Recall that C : L2([0, 1]; Rm) is defined by

C(u) := ‖u‖2L2 ∀u ∈ L2
(
[0, 1]; Rm

)
.

Define F : L2([0, 1]; Rm)→ Rn × R by

F (u) :=
(
Ex,1F (u), C(u)

)
∀u ∈ L2

(
[0, 1]; Rm

)
.

The Lagrange Multiplier Theorem asserts that if ū minimizes C(u) under the
constraint Ex,1F (u) = y, then there are λ ∈ (Rn)∗ and λ0 ∈ {0, 1} with (λ, λ0) 6=
(0, 0) such that

λ ·DūE
x,1
F = λ0DūC.

In Section 2.2, we saw that whenever λ0 = 0 we cannot deduce that γ̄ satisfies
the geodesic equation, that is that it is the projection of a normal extremal. In
the case λ0 = 0, the control ū ∈ Ux,1F is necessarily singular which means that it
is a critical point of Ex,1F . Thus we have to study what happens at second order.

Let U be an open set in L2 = L2([0, 1]; Rm) and F : U → RN be a function
of class C2 with respect to the L2-norm. We recall that we call critical point
of F any u ∈ U such that DuF : U → RN is not surjective. Given a critical
point u, we call corank of u, the quantity

corankF (u) := N − dim
(
Im
(
DuF

))
.

For every u ∈ U the second differential of F at u is the quadratic mapping on
D2
uF : L2 → RN satisfying

F (u+ v) = F (u) +DuF (v) +
1
2
D2
uF · (v, v) + ‖v‖2L2 o(1).

If Q : L2 → R is a quadratic form, we define its negative index by

ind−(Q) := max
{

dim(L) | Q|L\{0} < 0
}
.

We are now ready to state the result whose the proof is given in Appendix B.

Theorem 2.4.1. Let F : U → RN be a mapping of class C2 in an open set
U ⊂ L2 and ū ∈ U be a critical point of F of corank r. If

ind−
(
λ∗
(
D2
ūF
)
|Ker(DūF )

)
≥ r ∀λ ∈

(
Im
(
DūF

))⊥ \ {0}, (2.23)

then the mapping F is locally open at ū, that is the image of any neighborhood
of ū is an neighborhood of F (ū).
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From Proposition 1.3.3 and Remark 1.3.5, we know that for every non-zero
form p̄ ∈ (Rn)∗ with

p̄ ·DūE
x,1
F = 0,

the absolutely continuous arc p̄ : [0, 1]→ (Rn)∗ \ {0} defined by

p̄(t) := p̄ · S̄(1)S̄(t)−1 ∀t ∈ [0, 1], (2.24)

satisfies p̄(1) = p̄,

˙̄p(t) = −
k∑
i=1

ūi(t) p̄(t) ·Dγū(t)X
i a.e. t ∈ [0, T ], (2.25)

and

p̄(t) ·Xi
(
γū(t)

)
= 0 ∀t ∈ [0, T ], ∀i = 1, . . .m, (2.26)

where S̄ : [0, T ]→Mn(R) is the solution to the Cauchy problem

˙̄S(t) = Ā(t)S̄(t) a.e. t ∈ [0, T ], S̄(0) = In, (2.27)

and the matrices Ā(t) ∈Mn(R), B̄(t) ∈Mn,k(R) are defined by

Ā(t) :=
m∑
i=1

ūi(t)JXi
(
γū(t)

)
a.e. t ∈ [0, T ] (2.28)

and

B̄(t) :=
(
X1(γū(t)), · · · , Xm(γū(t))

)
∀t ∈ [0, T ]. (2.29)

The following result combined with Theorem 2.4.1 will yield a necessary con-
dition for a minimizing horizontal path to be strictly abnormal. It holds in the
general case of a control ū which belongs to Ux,1F ∩ L∞

(
[0, 1]; Rm

)
. We do not

need ū to be minimizing.

Theorem 2.4.2. Let ū ∈ Ux,1F ∩ L∞
(
[0, 1]; Rm

)
and p̄ ∈ (Rn)∗ \ {0} be such

that

p̄ ·DūE
x,1
F = 0. (2.30)

Assume that

ind−

(
p̄ ·
(
D2
ūE

x,1
F

)
|Ker(DūE

x,1
F )

)
< +∞. (2.31)

Then the absolutely continuous arc p̄ : [0, 1] → (Rn)∗ \ {0} defined by (2.24)
satisfies

p̄(t) ·
[
Xi, Xj

](
γū(t)

)
= 0 ∀t ∈ [0, 1], ∀i, j = 1, . . . ,m. (2.32)
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Proof. Let us first check that F is of class C2 on Ux,1F (we refer the reader
to Appendix B for basics in differential calculus in infinite dimension). Given
u ∈ Ux,1F and v ∈ L2([0, T ]; Rm) we need to study the quantity

γu+εv(1)− γu(1) = Ex,1F
(
u+ εv

)
− Ex,1F

(
u
)
,

at second order when ε is small. We have

γu+εv(1) =
∫ 1

0

k∑
i=1

(ui(t) + εvi(t))Xi
(
γu+εv(t)

)
dt, (2.33)

with γu+εv(0) = x. For every i = 1, . . . ,m and every t ∈ [0, 1], the Taylor
expansion of each Xi at γu(t) at second order gives

Xi
(
γu+εv(t)

)
= Xi

(
γu(t)

)
+Dγu(t)X

i ·
(
γu+εv(t)− γu(t)

)
+

1
2
D2
γu(t)X

i ·
(
γu+εv(t)− γu(t), γu+εv(t)− γu(t)

)
+ |γu+εv(t)− γu(t)|2 o(1).

Setting δx(t) := γu+εv(t)− γu(t) for any t, (2.33) yields formally (δx has size ε,
see the proof of Proposition 1.2.4)

δx(1) =
∫ 1

0

[
m∑
i=1

ui(t)Dγu(t)X
i · δx(t) + ε

m∑
i=1

vi(t)Xi
(
γu(t)

)]
dt

+
∫ 1

0

[
ε

m∑
i=1

vi(t)Dγu(t)X
i · δx(t) +

1
2

m∑
i=1

ui(t)D2
γu(t)X

i · (δx(t), δx(t))

]
dt

+ ‖v‖2∞o(1).

Write δx(t) as
δx(t) = δ1

x(t) + δ2
x(t) + o(ε2),

where δ1
x is linear in ε and δ2

x is quadratic in ε. Then δ1
x and δ2

x must satisfy

δ̇1
x(t) =

[
m∑
i=1

ui(t)Dγu(t)X
i

]
· δ1
x(t) +

[
ε

k∑
i=1

vi(t)Xi
(
γu(t)

)]
a.e. t ∈ [0, 1]

and

δ̇2
x(t) =

[
m∑
i=1

ui(t)Dγu(t)X
i

]
· δ2
x(t) +

[
ε

m∑
i=1

vi(t)Dγu(t)X
i

]
· δ1
x(t)

+
1
2

m∑
i=1

ui(t)D2
γu(t)X

i ·
(
δ1
x(t), δ1

x(t)
)

a.e. t ∈ [0, 1].

Then using the notations of the proof of Proposition 1.3.3, we get for every
t ∈ [0, 1],

δ1
x(t) = S(t)

∫ t

0

S(s)−1B(s)v(s) ds (2.34)
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and

δ2
x(t) = S(t)

∫ t

0

S(s)−1 [C(s) +D(s)] ds (2.35)

where

C(t) =
m∑
i=1

vi(t)Dγu(t)X
i · δ1

x(t) (2.36)

and

D(t) =
1
2

m∑
i=1

ui(t)D2
γu(t)X

i ·
(
δ1
x(t), δ1

x(t)
)
. (2.37)

Proceeding as in the proof of Proposition 1.2.4 (that is using Gronwall-type
estimates), we have the following expansion:

γu+εv(1) = γu(1) + δ1
x(1) + δ2

x(1) + o
(
ε2
)
.

Then we have

D2
uE

x,1
F · (v, v) = 2

∫ 1

0

S(1)S(t)−1 [C(t) +D(t)] dt ∀v ∈ L2
(
[0, 1]; Rm

)
and Ex,1F is C2 on Ux,1F .
Let us now fix ū ∈ Ux,1F ∩ L∞

(
[0, 1]; Rm

)
and p̄ ∈ (Rn)∗ \ {0} such that (2.30)

and (2.31) are satisfied and prove that (2.44) holds. Note that we have for
every v ∈ L2 ([0, 1]; Rm) ,

D2
ūE

x,1
F · (v, v) = 2

∫ 1

0

S̄(1)S̄(t)−1
[
C̄(t) + D̄(t)

]
dt, (2.38)

where C̄, D̄ are obtained by replacing u by ū in (2.34)-(2.37) and the definitions
of S̄, Ā, B̄ (see (2.27)-(2.29)).

Lemma 2.4.3. There is K > 0 such that for any t̄, δ > 0 with [t̄, t̄+δ] ⊂ [0, 1],
there holds for every v ∈ Ker

(
DūE

x,1
F

)
with Supp(v) ∈ [t̄, t̄+ δ],∣∣∣D2

ūE
x,1
F · (v, v)− Q̄t̄,δ(v)

∣∣∣ ≤ K ‖v‖2L2 δ2, (2.39)

where Q̄t̄,δ : L2 ([0, 1]; Rm)→ Rn is defined by

Q̄t̄,δ(v) :=
∫ t̄+δ

t̄

p̄
(
t̄
)
·
m∑
i=1

vi(t)Dγ̄(t̄)X
i

∫ t

t̄

m∑
j=1

vj(s)Xj
(
γ̄(t̄)

)
ds

 dt, (2.40)

for every v ∈ L2 ([0, 1]; Rm).

Proof of Lemma 2.4.3. Let t̄, δ > 0 with [t̄, t̄+δ] ⊂ [0, 1] and v ∈ Ker
(
DūE

x,1
F

)
with Supp(v) ∈ [t̄, t̄+ δ] be fixed. By Remark 1.2.5, we have

S̄(1)
∫ 1

0

S̄(t)−1B̄(t)v(t) dt = 0.
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Then (2.38) yields

p̄ ·
(
D2
ūE

x,1
F

)
|Ker(dūE

x,1
F )

(v) = 2
∫ 1

0

p̄(t) ·
[
C̄(t) + D̄(t)

]
dt.

Setting

δ̄1
x(t) := S̄(t)

∫ t

0

S̄(s)−1B̄(s)v(s) ds ∀t ∈ [0, 1],

we have δ̄1
x(t) = 0 for every t ∈

[
0, t̄
]
∪
[
t̄ + δ, 1

]
and by Cauchy-Schwarz’s

inequality, we have for every t ∈
[
t̄, t̄+ δ

]
,

∣∣δ̄1
x(t)

∣∣ =
∣∣∣∣∫ t

t̄

S̄(t)S̄(s)−1B̄(s)v(s) ds
∣∣∣∣

≤ sup
s∈[0,1]

{∥∥S̄(t)S̄(s)−1B̄(s)
∥∥} √t− t̄ ‖v‖L2

≤ K1

√
δ ‖v‖L2 ,

where K1 is a constant depending only upon the sizes of S̄, S̄−1, B̄ in a neigh-
borhood of the curve γū ([0, 1]). Then we have

D̄(t) = 0 ∀t ∈ t ∈
[
0, t̄
]
∪
[
t̄+ δ, 1

]
,

and ∣∣D̄(t)
∣∣ ≤ K3 δ ‖v‖2L2

∥∥ū∥∥
L∞

∀t ∈
[
t̄, t̄+ δ

]
,

which gives ∣∣∣∣∫ 1

0

p̄(t) · D̄(t) dt
∣∣∣∣ ≤ K4 ‖v‖2L2 δ2,

where K3,K4 are some constants depending on K1, on the size of the D2Xj ’s,
p̄ and ‖u‖L∞ . Note that since we can write (γ̄ = γū)

δ̄1
x(t)−

∫ t

t̄

m∑
j=1

vj(s)Xj
(
γ̄(t̄)

)
ds

= δ̄1
x(t)−

∫ t

t̄

m∑
j=1

vj(s)Xj
(
γ̄(s)

)
ds

+
∫ t

t̄

m∑
j=1

vj(s)
[
Xj
(
γ̄(s)

)
−Xj

(
γ̄(t̄)

)]
ds

=
∫ t

0

S̄(t)S̄(s)−1B̄(s)v(s)− B̄(s)v(s) ds

+
∫ t

t̄

m∑
j=1

vj(s)
[
Xj
(
γ̄(s)

)
−Xj

(
γ̄(t̄)

)]
ds

=
∫ t

t̄

(
S̄(t)− S̄(s)

)
S̄(s)−1B̄(s)v(s) ds

+
∫ t

t̄

m∑
j=1

vj(s)
[
Xj
(
γ̄(s)

)
−Xj

(
γ̄(t̄)

)]
ds,
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we have (since ū belongs to L∞
(
[0, 1]; Rm

)
, S̄ and γ̄ are both Lipschitz)∣∣∣∣∣∣δ̄1

x(t)−
∫ t

t̄

m∑
j=1

vj(s)Xj
(
γ̄(t̄)

)
ds

∣∣∣∣∣∣
≤ K2 ‖v‖L2 δ

3
2 , ∀t ∈ t ∈

[
t̄, t̄+ δ

]
, (2.41)

where K1 is a constant depending only upon the sizes of S̄, S̄−1, B̄ and the
Lipschitz constants of the Xj ’s in a neighborhood of the curve γū ([0, 1]). By
(2.40), we have∫ 1

0

p̄(t) · C̄(t) dt− Q̄t̄,δ(v) =
∫ t̄+δ

t̄

p̄(t) · C̄(t) dt− Q̄t̄,δ(v)

=
∫ t̄+δ

t̄

p̄(t) ·
(

m∑
i=1

vi(t)Dγ̄(t)X
i · δ̄1

x(t)

−
m∑
i=1

vi(t)Dγ̄(t̄)X
i ·

∫ t

t̄

m∑
j=1

vj(s)Xj
(
γ̄(t̄)

)
ds

 dt

=
∫ t̄+δ

t̄

p̄(t) ·
(

m∑
i=1

vi(t)Dγ̄(t)X
i

)
·

δ̄1
x(t)−

∫ t

t̄

m∑
j=1

vj(s)Xj
(
γ̄(t̄)

)
ds

 dt.
By (2.41), we infer that∣∣∣∣∣

∫ t̄+δ

t̄

p̄(t) · C̄(t) dt− Q̄t̄,δ(v)

∣∣∣∣∣ ≤ K5 ‖v‖2L2δ2,

for some constant K5 depending on the datas. All in all, we get∣∣∣∣∫ 1

0

p̄(t) ·
[
C̄(t) + D̄(t)

]
dt− Q̄t̄,δ(v)

∣∣∣∣ ≤ K6 ‖v‖2L2δ2,

for some constant K6 depending on the datas. We conclude easily.

Returning to the proof of Theorem 2.4.2, we argue by contradiction and
assume that (2.44) does not hold. Hence we assume that there are t̄ ∈ (0, 1)
and ī 6= j̄ ∈ {1, · · · ,m} such that

Nī,j̄(t̄) := p̄
(
t̄
)
·
[
X ī, X j̄

] (
γ̄(t̄)

)
> 0

= p̄
(
t̄
)
·
(
Dγ̄(t̄)X

j̄ ·X ī
(
γ̄(t̄)

)
−Dγ̄(t̄)X

ī ·X j̄
(
γ̄(t̄)

))
. (2.42)

Let δ > 0 such that [t̄, t̄+ δ] ⊂ [0, 1] and Q̄t̄,δ : L2([0, 1]→ Rn be the mapping
defined by (2.40). We observe that there holds for every v ∈ L2

(
[0, 1]; Rm

)
,

Q̄t̄,δ(v) =
∫ t̄+δ

t̄

∫ t

t̄

 m∑
i,j=1

vi(t)vj(s)
(
p̄(t̄) ·Dγ̄(t̄)X

i ·Xj
(
γ̄(t̄)

)) ds dt
=

∫ t̄+δ

t̄

∫ t

t̄

〈v(s), M̄v(t)〉 ds dt

=
∫ t̄+δ

t̄

〈w(t), M̄v(t)〉 dt, (2.43)
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where M̄ is the m×m matrix defined by

M̄i,j = p̄(t̄) ·Dγ̄(t̄)X
i ·Xj

(
γ̄(t̄)

)
,

and

w(t) :=
∫ t

t̄

v(s) ds ∀t ∈ [0, 1].

Thanks to Lemma 2.4.3, in order to get a contradiction, we need to show that
for every integer N > 0, there are δ > 0 and a subspace Lδ ⊂ L2

(
[0, 1]; Rm

)
of dimension larger than N such that the restriction of Q̄t̄,δ to L \ {0} satisfies
the following property:

Q̄t̄,δ(v) < −K ‖v‖2L2 δ2 ∀v ∈ L \ {0}.

As a matter of fact, given N ∈ N strictly larger than n, if L is a vector subspace
of dimension N , then the linear operator(

DūE
x,1
F

)
|L

: L −→ Rn

has a kernel of dimension at least N − n, which means that

Ker
(
DūE

x,1
F

)
∩ L

has dimension at least N − n.
Let N an integer strictly larger than n be fixed and δ > 0 with

[
t̄, t̄+δ

]
⊂ [0, 1]

to be chosen later. Denote by L = Lt̄,δ,N the vector space in L2
(
[0, 1]; Rm

)
of

all the controls v such that there is a sequence {a1, . . . , aN} such that vī(t) =
∑N
k=1 ak cos

(
k (t−t̄)2π

δ

)
vj̄(t) =

∑N
k=1 ak sin

(
k (t−t̄)2π

δ

) ∀t ∈
[
t̄, t̄+ δ

]
,

vī(t) = vj̄(t) = 0 ∀t /∈
[
t̄, t̄+ δ

]
,

and
vi(t) = 0, ∀i 6= ī, j̄ ∀t ∈ [0, 1].

Let v ∈ L \ {0}, taking as before w(t) :=
∫ t
t̄
v(s)ds, we have wī(t) = δ

2π

∑N
k=1

ak
k sin

(
k (t−t̄)2π

δ

)
wj̄(t) = δ

2π

∑N
k=1

ak
k

(
1− cos

(
k (t−t̄)2π

δ

))
,

∀t ∈
[
t̄, t̄+ δ

]
,

wī(t) = wj̄(t) = 0 ∀t /∈
[
t̄, t̄+ δ

]
,

and
wi(t) = 0, ∀i 6= ī, j̄ ∀t ∈ [0, 1].

Then we have ∫ 1

0

wī(t)vj̄(t) dt =
+∞∑
k=1

δ2a2
k

4πk
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and ∫ 1

0

wj̄(t)vī(t) dt = −
+∞∑
k=1

δ2a2
k

4πk
.

We have for every t ∈ [0, 1]

〈w(t), M̄v(t)〉 = wī(t)M̄ī̄ivī(t) + wī(t)M̄īj̄vj̄(t)
+ wj̄(t)M̄j̄īvī(t) + wj̄(t)M̄j̄j̄vj̄(t).

But∫ 1

0

wī(t)M̄ī̄ivī(t) dt = M̄ī̄i

∫ 1

0

wī(t)ẇī(t) dt = 0 =
∫ 1

0

wj̄(t)M̄j̄j̄vj̄(t) dt.

In conclusion, we have

Q̄t̄,δ(v) =
∫ 1

0

〈w(t), M̄v(t)〉 dt = −Nī,j̄
(
t̄
) N∑
k=1

δ2a2
k

4πk
= −δ

2Nī,j̄
(
t̄
)

4π

N∑
k=1

a2
k

k
.

Since Nī,j̄
(
t̄
)
> 0, Q̄t̄,δ(v) is negative. Moreover, we observe that

‖v‖2L2 = δ

N∑
k=1

a2
k,

which yields ∣∣Q̄t̄,δ(v)
∣∣

‖v‖2L2δ2
=
Nī,j̄

(
t̄
)

4π

∑N
k=1

a2
k

k

δ
∑N
k=1 a

2
k

≥ 1
δ

(
Nī,j̄

(
t̄
)

4π

)
.

We conclude easily by taking δ > 0 small enough.

A minimizing geodesic is called strictly abnormal if it is singular and admits
no normal extremal lift. A control is called strictly abnormal if its associated
horizontal path is strictly abnormal.

Theorem 2.4.4. Let γ̄ : [0, 1] → M be a minimizing geodesic from x to
y (with x 6= y) which is strictly abnormal. Then there is an abnormal lift
ψ̄ =

(
γ̄, p̄
)

: [0, 1]→ T ∗M of γ̄ such that

p̄(t) ·
[
Xi, Xj

](
γ̄(t)

)
= 0 ∀t ∈ [0, 1], ∀i, j = 1, . . . ,m. (2.44)

The latter property is called the Goh condition.

Proof. According to the previous notations, we define the mapping F : Ux,1F →
Rn × R by

F (u) :=
(
Ex,1F (u), ‖u‖2L2

)
∀u ∈ Ux,1F .

This function, which is of class C2, cannot be open at ū. As a matter of fact,
if the image of a neighborhood of ū contains a neighborhood of F (ū) then it
contains a control u ∈ Ux,1F with

Ex,1F (u) = y and ‖u‖2L2 ≤
∥∥ū∥∥2

L2 ,
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which contradicts the minimality of ū from x to y. Therefore by Theorem 2.4.1
we infer that there is λ ∈

(
Im
(
DūF

))⊥ \ {0} such that

ind−
(
λ∗
(
D2
ūF
)
|Ker(dūF )

)
< r := n− rank(ū). (2.45)

Since the control ū is strictly abnormal, the last coordinates of λ is zero. Denote
by p̄ the dual of the first n coordinates of λ. Then we have

p̄ ·DūE
x,1
F (v) = 0 ∀v ∈ L2

(
[0, 1]; Rm

)
.

Since ū is minimizing, |u(t)| is constant and ū belongs to L∞
(
[0, 1]; Rm

)
. The-

orem 2.4.2 concludes the proof.

Example 2.4.5. A distribution ∆ is called medium-fat if, for every x ∈ M
and every section X of ∆ with X(x) 6= 0, there holds

TxM = ∆(x) + [∆,∆](x) +
[
X, [∆,∆]

]
(x), (2.46)

where [
∆,∆

]
(x) :=

{
[X,Y ](x) |X,Y sections of ∆

}
and

[
X, [∆,∆]

]
(x) :=

{[
X, [Y,Z]

]
(x) |Y,Z sections of ∆

}
.

Any two-generating distribution is medium-fat. An example of medium-fat dis-
tribution which is not two-generating is given by the rank-three distribution in
R4 with coordinates x = (x1, x2, x3, x4) defined by

∆(x) =
{
X1(x), X2(x), X3(x)

}
∀x ∈ R4,

with
X1 = ∂x1 , X2 = ∂x2 , X3 = ∂x3 + (x1 + x2 + x3)2∂x4 .

Medium-fat distribution do not admit non-trivial Goh paths. As a matter of
fact, if γ : [0, T ] → M is an horizontal path which admits an abnormal lift
ψ = (γ, p) : [0, T ]→ T ∗M satisfying the Goh condition, then we have

p(t) ·
[
Xi, Xj

](
γ(t)

)
= 0 ∀i, j = 1, . . . ,m, (2.47)

for every t in a small interval I ⊂ [0, T ] such that γ(t) is in a local chart of M
and ∆ is parametrized by a family {X1, . . . , Xm} of smooth vector fields. Then
if we denote by u the control which is associated to γ through F , derivating the
previous equality yields for any i, j = 1, . . . ,m,

p(t) ·
[
m∑
k=1

uk(t)Xk,
[
Xi, Xj

]] (
γ(t)

)
= 0 ∀t ∈ I. (2.48)

Since ψ = (γ, p) is an abnormal lift, we also have p ·Xi = 0 along γ, then by
(2.46), (2.47)-(2.48) we get a contradiction.
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2.5 Examples of SR geodesics

Geodesics in the Heisenberg group

The Heisenberg group H1 is the sub-Riemannian structure (∆, g) in R3 where
∆ is the totally nonholonomic rank 2 distribution (see Example 1.1.2) spanned
by the vector fields

X = ∂x −
y

2
∂z and Y = ∂y +

x

2
∂z,

and g is the metric making the family {X,Y } orthonormal, that is defined by

g = dx2 + dy2.

The above structure can be shown to be left-invariant under the group law

(x, y, z) ? (x′, y′, z′) =
(
x+ x′, y + y′, z + z′ +

1
2
(
xy′ − x′y

))
.

Thanks to Proposition 1.2.1, any horizontal path on [0, T ] has the form γu =
(x, y, z) : [0, T ]→ R3 where ẋ(t) = u1(t)

ẏ(t) = u2(t)
ż(t) = 1

2 (u2(t)x(t)− u1(t)y(t)) ,
(2.49)

for some u ∈ L2
(
[0, T ]; R2

)
. This means that

z(T )− z(0) =
∫ T

0

1
2

(x(t)ẏ(t)− y(t)ẋ(t)) dt =
∫
c

1
2

(xdy − ydx) ,

where α(t) = (x(t), y(t)) is the projection of the curve γ to the plane. According
to the Stockes Theorem, we have∫

α

1
2

(xdy − ydx) =
∫
D
dx ∧ dy +

∫
c

1
2

(xdy − ydx) ,

where D denotes the domain which is enclosed by the curve α and the segment

c :=
[
Q1, Q2

]
:=
[
(x(0, y(0)), (x(T ), y(T )

]
from Q1 to Q2.

x

y

Q1

Q2

b

b

α

c
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Therefore, given two points P1 = (x1, y1, z1), P2 = (x2, y2, z2) in R3, the
horizontal paths which minimizes the length from P1 to P2 are the curves
γ : [0, 1]→ R3 whose the signed aread of D satisfies∫

D
dx ∧ dy = (z2 − z1)−

∫
c

1
2

(xdy − ydx) ,

with minimal length. According to the isoperimetric inequality, the curves in
the plane sweeping the same area and which minimize the length are given by
circles. This fact can be easily recovered by Theorem 2.2.2 and Proposition
2.2.1 (we saw in Example 1.3.12 that ∆ admits no non-trivial singular horizon-
tal paths). Assume that γu = (x, y, z) : [0, 1] → R3 is a minimizing geodesic
from P1 := γu(0) to P2 := γu(1) 6= P1. Then according to Proposition 2.2.1,
there is a smooth arc p = (p1, p2, p3) : [0, 1] → (R3)∗ such that the following
system of differential equations holds ẋ = px − y

2pz
ẏ = py + x

2pz
ż = 1

2

((
py + x

2pz
)
x−

(
px − y

2pz
)
y
)
,

 ṗx = −
(
py + x

2pz
)
pz
2

ṗy =
(
px − y

2pz
)
pz
2

ṗz = 0.

Hence pz = p̄z for every t. Which implies that

ẍ = −p̄z ẏ and ÿ = p̄zẋ.

If p̄z = 0, then the geodesic from P1 to P2 is a segment with constant speed.
If p̄z 6= 0, we have or

...
x = −p̄2

zẋ and
...
y = −p̄2

z ẏ.

Which means that the curve t 7→ (x(t), y(t)) is a circle.

A singular minimizing geodesic

As we said above, minimizing geodesics do not necessarily satisfy the Hamil-
tonian geodesic equation. As an example, consider the Martinet distribution
(which already appeared in Examples 1.1.21 and 1.3.14) in R3 with coordinates
(x1, x2, x3) defined by

∆(x) = Span
{
X(x), Y (x)

}
∀x ∈ R3,

with

X = ∂x1 , Y = ∂x2 +
x2

1

2
∂x3 ,

and equipped with a smooth metric g. In Example 1.3.14, we saw that singular
curves are given by the horizontal paths which are contained in the Martinet
set

Σ∆ =
{
x = 0

}
,

that is of the form

x(t) =
(

0, x2(0) +
∫ t

0

u2(s)ds, 0, x3(0)
)
,

with u2 ∈ L2([0, T ]; R). Such curves are locally minimizing.
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Theorem 2.5.1. For any x̄ = (0, x̄2, x̄3) ∈ R3, there is ε̄ > 0 such that for
every ε ∈ (0, ε̄) the horizontal path given by

γ̄(t) =
(
0, x̄2 + t, x̄3

)
∀t ∈ [0, ε],

minimizes the length among all horizontal paths joining (0, x̄2, x̄3) to (0, x̄2 +
ε, x̄3).

b

0

b

x̄

γ̄(·)

Σ∆

Proof. Let x̄ = (0, x̄2, x̄3) ∈ R3 be fixed. It is more convenient to work with an
orthonormal frame that we now construct. In the sequel all the constructions
are performed in an open neighborhood of x̄ that we always denote by V. First,
there is a smooth function λ : V → (0,+∞) such that

|λ(x)Y (x)|gx = 1 ∀x ∈ V. (2.50)

Set Ỹ := λY and pick a smooth section X̃ of ∆ such that∣∣∣X̃(x)
∣∣∣g
x

= 1 and gx

(
X̃(x), Y (x)

)
= 0 ∀x ∈ V. (2.51)

Since for any x ∈ Σ∆ ∩ V the vector Y (x) is tangent to Σ∆ and ∆(x) is
transverse to Σ∆, the vector X̃(x) is necessarily transverse to Σ∆. Let us
perform a change of coordinates. For this, consider the diffeomorphism given
by (it is indeed defined in an open neighborhood of x̄)

Φ : R× Σ∆ −→ R3(
s, x2, x3

)
7−→ esX̃

(
0, x2, x3

)
,

and set
X̂ := Φ∗X̃ and Ŷ = Φ∗Ỹ

and ĝ the metric g in the new set of coordinates, that is

ĝx(v, w) = gΦ(x)

(
DxΦ(v), DxΦ(w)

)
.
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By construction (by (2.50)-(2.51)), {X̂, Ŷ } is a local orthonormal frame with
respect to g and there are smooth functions φ1, φ2, φ3 : V → R such that

X̂ = ∂x1 (2.52)

and Ŷ = x1φ1(x)∂x1 + (1 + x1φ2(x)) ∂x2 +
(
x2

1

2
+ x1φ3(x)

)
∂x3 .

The Martinet set Σ∆ is invariant under this change of coordinates and we check
that[

X̂, Ŷ
]

(x) =
(
φ1(x) + x1

∂φ1

∂x1
(x)
)
∂x1 +

(
φ2(x) + x1

∂φ2

∂x1
(x)
)
∂x2

+
(
x1 + φ3(x) + x1

∂φ3

∂x1
(x)
)
∂x3 .

Then φ3(x) vanishes on Σ∆ with a non-vanishing derivative. Morever the
derivative of det(X̂, Ŷ , [X̂, Ŷ ]) on Σ∆ with respect to the x1 variable is equal
to

det(X̂, Ŷ , [X̂, Ŷ ])
∂x1

(x) = 1 + 2
∂φ3

∂x1
(x) 6= 0.

This means that Ŷ has indeed the form

Ŷ = x1φ1(x)∂x1 + (1 + x1φ2(x)) ∂x2 + x2
1ϕ(x)∂x3 , (2.53)

with ϕ(0) 6= 0. Up to dilate, we may assume that ϕ(0) = 1. We need to show
that among all controls u = (u1, u2) : [0, τ ] → R2 with u2

1 + u2
2 ≤ 1 steering

x̄ =
(
0, x̄2, x̄3

)
to
(
0, x̄2 + ε, x̄3

)
, we have ε < τ . It is sufficient to prove the

result for x̄ = 0, we set P := (0, ε, 0). There is r > 0 such that B̄SR(0, r) is
included in V. If ε ∈ (0, r), then any minimizing geodesic joining 0 to (0, ε, 0) is
contained in B̄SR(0, r). As a matter of fact, we know that dSR(0, P ) ≤ ε < r.
Let C1, C2 > 0 be upper bounds for φ1, φ2 on B̄SR(0, r) and δ > 0 be such that

|ϕ(x)− 1| ≤ δ ∀x ∈ B̄SR(0, r). (2.54)

Let γu = x : [0, τ ] → R3 be a competitor for γ̄. Note that thanks to (2.52)-
(2.53), then end-point conditions give

x1(τ) =
∫ τ

0
u1(s) ds+

∫ τ
0
u2(s)x1(s)φ1

(
x(s)

)
ds = 0

x2(τ) =
∫ τ

0
u2(s)

(
1 + x1(s)φ2

(
x(s)

))
ds = ε

x3(τ) =
∫ τ

0
u2(s)x1(s)2ϕ

(
x(s)

)
ds = 0.

(2.55)

Set

β := max
{∣∣x1(s)

∣∣ | s ∈ [0, τ ]
}
. (2.56)

Note that if γu 6= γ̄, then β is necessarily positive. Taking r > 0 smaller if
necessary (and a fortiori ε > 0 smaller), we may assume that

β ≤ 1
2C2

, δ ≤ 1
2
,
√

1 + β2δ2 ≤ 2. (2.57)
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The last equation in (2.55) yields (by (2.54)-(2.56))∫ τ

0

x1(s)2 ds ≤
∫ τ

0

x1(s)2
(
1− u2(s)

)
ds+

∫ τ

0

x1(s)2u2(s) ds

≤ β2

(
τ −

∫ τ

0

u2(s) ds
)

+
∫ τ

0

x1(s)2
(
1− ϕ

(
x(s)

))
u2(s) ds

≤ β2

(
τ −

∫ τ

0

u2(s) ds
)

+ δ

∫ τ

0

x1(s)2 ds.

Therefore (by (2.57))∫ τ

0

x1(s)2 ds ≤ β2

1− δ

(
τ −

∫ τ

0

u2(s) ds
)
≤ 2β2

(
τ −

∫ τ

0

u2(s) ds
)
. (2.58)

Let s̄ ∈ [0, τ ] be such that |x1(s̄)| = β. Since∣∣ẋ1(s)
∣∣ ≤ |u1(s) + u2(s)x1(s)φ1(x(s))| ≤

√
1 + β2δ2 ≤ 2

for almost every s ∈ [0, τ ] and x1(0) = x1(τ) = 0, we have

s̄, τ − s̄ ≥ β√
1 + β2δ2

≥ β/2.

Which means that the interval [s̄− β/2, s̄+ β/2] is included in [0, τ ] and∣∣x1(s)
∣∣ ≥ β

2
∀s ∈

[
s̄− β/4, s̄+ β/4

]
.

Therefore we have∫ τ

0

∣∣x1(s)
∣∣2 ds ≥ ∫ s̄+β/4

s̄−β/4

∣∣x1(s)
∣∣2 ds ≥ β3

8
.

By (2.58), we deduce that

β3

8
≤ 2β2

(
τ −

∫ τ

0

u2(s) ds
)

which implies ∫ τ

0

u2(s) ds ≤ τ − β

16
. (2.59)

Then by the second line in (2.55) and the definitions of β and C2, we have

ε =
∫ τ

0

u2(s) ds+
∫ τ

0

u2(s)x1(s)φ2

(
x(s)

)
ds

≤
∫ τ

0

u2(s) ds+
∫ τ

0

∣∣u2(s)
∣∣ ∣∣x1(s)

∣∣ ∣∣φ2

(
x(s)

)∣∣ ds
≤

∫ τ

0

u2(s) ds+ βC2τ.

Consequently by (2.59), we get

ε ≤ τ + β

(
C2τ −

1
16

)
.

In conclusion, if β > 0 and τ < 1/(16C2) (that is ε̄ > 0 small enough), then τ
cannot be smaller than ε. This shows the result.
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Remark 2.5.2. Theorem 2.5.1 only asserts that γ̄ minimizes the length be-
tween its end-points. It is not necessarily a geodesic, or equivalently it has not
necessarily constant speed. This latter property depends upon the metric g.

From the proof of Theorem 2.5.1, we have local coordinates (x1, x2, x3) in
an open neighborhood of 0 ∈ R3 such that the Martinet distribution equipped
with a smooth metric g admits a local orthonormal frame of the form

∆(x) = Span
{
X̂(x), Ŷ (x)

}
∀x ∈ R3,

with

X̂ = ∂x1 , Ŷ = x1φ1(x)∂x1 + (1 + x1φ2(x)) ∂x2 + x2
1ϕ(x)∂x3 ,

and ϕ(0) = 1. According to Proposition 2.2.1, for every p̄ = (p̄1, p̄2, p̄3) ∈
(R3)∗, the normal extremal (with respect to g) on [0, 1] starting at (0, p) is the
trajectory (x, p) : [0, 1]→ R3 × (R3)∗ satisfying

ẋ1 = p1 +
(
p · Ŷ (x)

)
x1φ1(x)

ẋ2 =
(
p · Ŷ (x)

)
(1 + x1φ2(x))

ẋ3 =
(
p · Ŷ (x)

)
x2

1ϕ(x),

(2.60)



ṗ1 = −
(
p · Ŷ (x)

) [
p1

(
φ1(x) + x1

∂φ1
∂x1

(x)
)

. . . +p2

(
φ2(x) + x1

∂φ2
∂x1

(x)
)

+ p3

(
2x1ϕ(x) + x2

1
∂ϕ
∂x1

(x)
)]

ṗ2 = −
(
p · Ŷ (x)

) [
p1x1

∂φ1
∂x2

(x) + p2x1
∂φ2
∂x2

(x) + p3x
2
1
∂ϕ
∂x2

(x)
]

ṗ3 = −
(
p · Ŷ (x)

) [
p1x1

∂φ1
∂x3

(x) + p2x1
∂φ2
∂x3

(x) + p3x
2
1
∂ϕ
∂x3

(x)
]
,

(2.61)

with
p · Ŷ (x) = p1x1φ1(s) + p2

(
1 + x1φ2(x)

)
+ p3x

2
1ϕ(x)

and

x1(0) = x2(0) = x3(0) = 0, p1(0) = p̄1, p2(0) = p̄2, p3(0) = p̄3. (2.62)

Note that if φ1 ≡ φ2 ≡ 0 and ϕ ≡ 1, that is whenever g = dx2
1 + dx2

2, then the
horizontal path given by

γ̄(t) =
(
0, t, 0

)
∀t ∈ [0, ε], (2.63)

is the projection of the normal extremal starting at (0, p̄) with p̄ = (0, 1, 0).
Then whenever φ1 ≡ φ2 ≡ 0 and ϕ ≡ 1 and for ε > 0 small enough, a
reparametrization of γ̄ is a singular normal minimizing geodesic between its
end-points (see Example 1.3.14 and Theorem 2.2.2). Different choices of metrics
can provide examples of strictly abnormal minimizing geodesics.

Proposition 2.5.3. If φ2(0) 6= 0, then any reparametrization of γ̄ given by
(2.63) is not the projection of a normal extremal.
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Proof. We argue by contradiction and assume that there is p̄ = (p̄1, p̄2, p̄3) ∈
(R3)∗ and γ̂ : [0, 1] → R3 a reparametrization of γ̄ such that the systems dif-
ferential equations (2.60)-(2.61) are satisfied with x = γ̂ and initial conditions
(2.62). The system (2.60)-(2.61) is the Hamiltonian system which is associated
with the Hamiltonian given by

H(x, p) = p · X̂(x) + p · Ŷ .
Since H is constant along its extremals and x1(t) = x3(t) = 0 for any t ∈ [0, ε],
we have (see (2.7))(

p(t) · X̂
(
γ̄(t)

))2

+
(
p(t) · Ŷ

(
γ̄(t)

))2

= p1(t)2 + p2(t)2

= p̄2
1 + p̄2

2 ∀t ∈ [0, 1].

On the other hand, since x1(t) = 0 for every t ∈ [0, 1], the second and third
equations in (2.61) yield

ṗ2 = ṗ3 = 0 =⇒ p2(t) = p̄2 ∀t ∈ [0, 1].

Moreover, (2.60) also gives ẋ2 = p̄2 that is p̄2 6= 0 (γ̂ has constant speed). Since
p1 is smooth and both p2 and p2

1 + p2
2 are constant, p1 is necessarily constant.

The first equation in (2.60) and x1 = 0 give ẋ1 = p1. Hence p1 = p̄1 = 0.
Then, using that p1 = 0, p2 = p̄2 6= 0, the first equation in (2.61) gives

p̄2φ2

(
γ̂(t)

)
= 0 ∀t ∈ [0, 1].

By assumption on φ2(0), we deduce that p̄2 = 0. Since we know that γ̂ joins 0
to (0, ε, 0) with ε 6= 0, this contradicts the equality ẋ2 = p̄2.

2.6 Notes and comments

Theorem 2.2.2 may be seen as a weak form of the Pontryagin maximum princi-
ple which has been developed by the russian school of control in the 60s. In the
general context of optimal control theory, the strong form of the Pontryagin
maximum principle provides necessary conditions for a control to be optimal.
For further details on this topics, we refer the reader to the seminal book by
Pontryagin and its collaborators [PBGM] and to the more recent textbooks by
Agrachev and Sachkov [AS04], Clarke [Cla83], or Vinter [Vin00]. The material
presented in Sections 2.1 and 2.2 is by now classical. It can be found in the
Montgomery textbook [Mon02] which also provide many references.

Theorem 2.3.5 about the image of the sub-Riemannian exponential map has
been proven by Agrachev and the author, see [Agr09]. It extends a previous
density result, based on Lemma 2.3.6, which was obtained by Trélat and the
author in [RT05]. Given a complete sub-Riemannian structure (∆, g) on a
smooth manifold M and x ∈ M , we do not know if the image of expx has
full Lebesgue measure in M . This open problem is indeed ”contained” in the
sub-Riemannian Sard conjecture. Given x ∈M (which is equipped with a SR
structure), denote by Sx,1∆ the set of singular horizontal paths in Ωx,1∆ (that is
Sx,1∆ := Ωx,1∆ \ Rx,1∆ with the notations of Chapter 1). The SR Sard conjecture
states that the image of Sx,1∆ by the End-Point mapping

Ex,T∆ : Ωx,1∆ −→ M
γ 7−→ γ(1),
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has Lebesgue measure zero in M . We even do not know if Ex,T∆ can have a non-
empty interior in M . We refer the reader to Montgomery’s book [Mon02] for
further details on the SR Sard Conjecture and to the paper [RT05] for various
sub-Riemannian Sard-like conjectures.

The theory of second variation for singular geodesics in sub-Riemannian
geometry has been developed by Agrachev and Sarychev [AS96]. The results
and proofs that we present in Section 2.4 are taken from Agrachev-Sarychev’s
paper [AS99]. Example 2.4.5 (medium-fat distributions) is taken from [AS99]
as well.

For decades the prevailing wisdom was that every sub-Riemannian mini-
mizing geodesic is normal, meaning that it admits a normal extremal lift. In
1991, Montgomery [Mon94] found the first counter-example to this assertion.
We refer the reader to Montgomery’s book [Mon02] for an historical account on
the existence of strictly abnormal minimizing geodesics. The second example
which is presented in Section 2.5 is the Montgomery counter-example. The
proof of local minimality of characteristic lines in the Martinet surface (Theo-
rem 2.5.1) is taken from the monograph by Liu and Sussmann [LS95]. Note that
the Montgomery counter-example as well as all other known counter-examples
exhibit smooth singular minimizing curves. The existence of non-smooth sub-
Riemannian geodesics is open.

In the first example of Section 2.5, we briefly explained that the sub-
Riemannian structure under study was indeed left-invariant under some group
law. This additional structure makes H1 a Carnot group. We refer the reader
to the Montgomery textbook [Mon02] or to the Jean monograph [Jea12] in the
present volume for further details on Carnot groups.





Chapter 3

Introduction to optimal
transport

Throughout all the chapter, M denotes a smooth connected manifold without
boundary of dimension n ≥ 2.

3.1 The Monge and Kantorovitch problems

The Monge problem

Let
c : M ×M → [0,+∞)

be a cost function and µ, ν be two probability measures on M . We recall that
a probability measure on M is a Borel measure with total mass 1. The Monge
optimal transport problem from µ to ν with respect to the cost c consists in
minimizing the transportation cost∫

M

c
(
x, T (x)

)
dµ(x), (3.1)

among all the measurable maps T : M →M pushing forward µ to ν (we denote
it by T]µ = ν) that is satisfying

µ
(
T−1(B)

)
= ν(B) ∀B measurable set in M. (3.2)

Such maps are called transport maps from µ to ν.

µ ν

T

83
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We set

CM(µ, ν) := inf
{∫

M

c
(
x, T (x)

)
dµ |T]µ = ν

}
, (3.3)

where T]µ = ν means implicitely that T is a measurable map from M to itself
which pushes forward µ to ν.

Remark 3.1.1. The property (3.2) is equivalent to∫
M

ϕ(T (x)) dµ(x) =
∫
M

ϕ(y) dν(y),

for all ν-integrable function ϕ. If M = Rn and µ and ν are absolutely contin-
uous with respect to the Lebesgue measure respectively with densities f and g
in L1(Rn; [0,+∞)), the latter property can be written as∫

M

ϕ(T (x))f(x) dx =
∫
M

ϕ(y)g(y) dy,

for any ϕ ∈ L∞(Rn; R). Therefore, if T is a diffeomorphism, then the change
of variable y = T (x) yields the Monge-Ampère equation∣∣det

(
DxT

)∣∣ =
f(x)

g(T (x))
µ− a.e. x ∈ Rn. (3.4)

Example 3.1.2. Transport maps may not exist. For example, consider in Rn
the probability measures µ, ν given by

µ = δx and ν =
1
2
δy1 +

1
2
δy2 ,

where x, y1, y2 ∈ Rn, y1 6= y2 and δa denotes the Dirac mass at some point
a ∈ Rn. There are no transport maps from µ to ν. If such a map T exists,
then

1
2

= ν
(
{y1}

)
= µ

(
T−1

(
{y1}

))
= 0 or 1,

which is impossible.

Example 3.1.3. Minimizers of Monge’s problem may not be unique. On the
real line R, consider the probability measures µ and ν given by

µ = 1[0,1] L1 and ν = 1[1,2] L1,

where L1 denotes the Lebesgue measure in R. In other terms, µ and ν are
respectively the restriction of the Lebesgue measure on the intervals [0, 1] and
[1, 2]. The two maps T1, T2 : R→ R given by

T1(x) = x+ 1 and T2(x) = 2− x ∀x ∈ R,

push forward µ to ν. This is a straightforward consequence of the fact that
both T1 and T2 are affine maps which are bijective from [0, 1] to [1, 2] with
determinant 1 together with a change of variable (see Remark 3.1.1). Consider
the Monge cost c : R× R→ [0,+∞) given by

c(x, y) := |y − x| ∀x, y ∈ R.
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We check easily that the transportation cost for T1 and T2 are given by∫
R
c
(
x, Ti(x)

)
dµ(x) =

∫ 1

0

|Ti(x)− x| dx = 1 i = 1, 2.

Furthermore, we also check that if T is a map which pushes forward µ to ν,
then ∫

R
c
(
x, T (x)

)
dµ(x) =

∫ 1

0

|T (x)− x| dx

=
∫ 1

0

[T (x)− x] dx =
∫ 1

0

T (x) dx−
∫ 1

0

x dx

=
∫ 2

1

y dy −
∫ 1

0

x dx = 1.

This shows that the infimum in the definition of CM(µ, ν) is attained by all
transport maps from µ to ν. So, it is not unique.

The constraint T]µ = ν being highly non-linear, the Monge optimal trans-
port problem is quite difficult from the viewpoint of optimization. That is why
we will study a notion of weak solution for this problem.

The Kantorovitch relaxation

Given two probability measures µ, ν on M , we denote by Π(µ, ν) the set of
probability measures α in the product M ×M with first and second marginals
µ and ν, that is such that

π1
]α = µ and π2

]α = ν, (3.5)

where πi : M ×M → M denotes respectively the projection on the first and
second variable in M ×M . The Kantorovitch optimal transport problem with
respect to the cost c : M ×M → [0,+∞) consists in minimizing the quantity

C(α) :=
∫
M×M

c(x, y) dα(x, y), (3.6)

among all the α ∈ Π(µ, ν). Any measure in α ∈ Π(µ, ν) is called a transport
plan between µ and ν. We set

CK(µ, ν) := inf
{
C(α) |α ∈ Γ(µ, ν)

}
. (3.7)

Remark 3.1.4. The property (3.5) is equivalent to

µ(B) = α
(
B ×M

)
and ν(B) = α

(
M ×B

)
,

for any measurable set B in M , which is also equivalent to∫
M×M

[ϕ1(x) + ϕ2(y)] dα(x, y) =
∫
M

ϕ1(x) dµ(x) +
∫
M

ϕ2(y) dν(y),

for all µ-integrable function ϕ1 and ν-integrable function ϕ2. In particular, the
set Π(µ, ν) is a convex set which always contains the product measure µ× ν.
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Remark 3.1.5. If T : M → M is a transport map from µ to ν then the
measure α on M ×M given by

α := (Id× T )] µ,

is a transport plan between µ and ν. This means that the Kantorovitch opti-
mization problem is more general than the Monge optimization problem, or

CK(µ, ν) ≤ CM(µ, ν),

for all probability measures µ, ν on M .

Example 3.1.6. Returning to Example 3.1.2, we note that the product measure

α =
1
2
δ(x,y1) +

1
2
δ(x,y2),

is a transport plan between µ and ν. In contrary to Monge’s transport maps,
Kantorovitch’s transport plans allow splitting of mass.

The Kantorovitch optimal transport problem is an infinite-dimensional op-
timization problem which involves a functional C which is linear in α and a set
of constraints Π(µ, ν) which is convex and weakly compact. The existence of
optimal transport plans becomes easy.

3.2 Optimal plans and Kantorovitch potentials

Optimal plans

Throughout this section, we fix a cost c : M ×M → [0,+∞). We recall that
the support spt(µ) of a measure µ refers to the smallest closed set F ⊂ M of
full mass µ(F ) = µ(M) = 1.

Theorem 3.2.1. Let µ, ν be two probability measures on M . Assume that c is
continuous and that Supp(µ) and Supp(ν) are compact. Then the Kantorovitch
optimal transport problem admits at least one solution, that is there is ᾱ ∈
Π(µ, ν) such that

C(ᾱ) = CK(µ, ν) := inf
{
C(α) |α ∈ Γ(µ, ν)

}
. (3.8)

Proof. We first note that CK(µ, ν) is finite. As a matter of fact, since the
product measure µ × ν belongs to Π(µ, ν) and c is bounded on Supp(µ) ×
Supp(ν) (by assumption c is continuous and Supp(µ),Supp(ν) are compact),
we have CK(µ, ν) ≤ C(µ × ν) < +∞. In fact, the supports of all transport
plans between µ and ν are contained in the set Supp(µ)× Supp(ν) ⊂M ×M
which is compact by assumption on Supp(µ) and Supp(ν). Then we can assume
without loss of generality that M is compact. Denote by P(M ×M) the set of
probability measures on M ×M and define F : P(M ×M)→ R by

F (α) :=
∫
M×M

c(x, y) dα(x, y) ∀α ∈ P(M ×M).
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The functional F is continuous on P(M ×M) equipped with the topology of
weak convergence, that is for any sequence {αk}k and any α in P(M ×M)
satisfying ∫

M×M
ϕ(x, y) dαk(x, y) −→k→+∞

∫
M×M

ϕ(x, y) dα(x, y),

for any measurable function ϕ : M → R which is bounded, we have

lim
k→+∞

F (αk) = F (α).

This fact is a straigthforward consequence of the continuity of c together with
the compactness of M ×M . By Prokhorov’s Theorem, the set of probability
measures on M×M is compact with respect to weak convergence. We conclude
easily. Let {αk}k be a sequence in Π(µ, ν) such that

CK(µ, ν) = lim
k→+∞

C(αk).

By Prokhorov’s Theorem, up to taking a subsequence, we may assume that
{αk} converges to some probability measure ᾱ. By Remark 3.1.4, ᾱ belongs to
Π(µ, ν). Moreover it satisfies C(ᾱ) = CK(µ, ν) by continuity of F .

The supports of optimal transport plans have specific properties. Let us
introduce the notion of c-cyclically monotone sets.

Definition 3.2.2. A subset S ⊂M ×M is called c-cyclically monotone if for
any finite number of points (xj , yj) ∈ S, j = 1, . . . , J , and σ a permutation on
the set {1, . . . , J},

J∑
j=1

c(xj , yj) ≤
J∑
j=1

c
(
xσ(j), yj

)
.

Remark 3.2.3. The definition given above is equivalent to the following one:
for any finite number of points (xj , yj) ∈ S, j = 1, . . . , J ,

J∑
j=1

c(xj , yj) ≤
J∑
j=1

c (xj , yj+1) ,

with yJ+1 = y1. The equivalence is a straightforward consequence of the de-
composition of a permutation into disjoint commuting cycles.

Remark 3.2.4. If c is assumed to be continuous, the c-cyclical monotonocity
is stable under closure. The closure of a c-cyclically monotone set is c-cyclically
monotone.

Given two probability measures µ, ν on M , we call optimal transport plan
between µ and ν any α ∈ Π(µ, ν) satisfying CK(µ, ν) = C(α). Optimal trans-
port plans always have c-cyclically monotone supports.

Theorem 3.2.5. Let µ, ν be two probability measures on M . Assume that c
is continuous and that Supp(µ) and Supp(ν) are compact. Then there is a c-
cyclically monotone compact set S ⊂ Supp(µ)× Supp(ν) such that the support
of any optimal transport plan between µ and ν is contained in S.
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Proof. Let us first show that the supports of optimal transport plans are always
c-cyclically monotone. We argue by contradiction and assume that there is
an optimal transport plan α ∈ Π(µ, ν) whose the support is not c-cyclically
monotone. Then there is an integer J > 1, J points (x1, y1), . . . , (xJ , yJ) in
Supp(α) and a permutation σ on the set {1, . . . , J} such that

J∑
j=1

c(xj , yj) >
J∑
j=1

c
(
xσ(j), yj

)
.

By continuity of c, there are open sets Uj , Vj for j = 1, . . . , J which contain
respectively xj , yj such that

J∑
j=1

c(uj , vj) >
J∑
j=1

c
(
uσ(j), vj

)
∀
((
uj , vj

))
j=1,...,J

∈ ΠJ
j=1

(
Uj × Vj

)
. (3.9)

Each (xj , yj) belongs to the support of α, then we have α(Uj×Vj) > 0. Define
the probability measure P on ΠJ

j=1

(
Uj × Vj

)
by

P = ΠJ
j=1

[
1

α (Uj × Vj)
1Uj×Vjα

]
.

It is a product of probability measures, hence it is a probability measure as
well. Set

m̄ := min
{
α
(
Uj × Vj

)
| j = 1, . . . , J

}
,

denote by πUj (resp. πVj ) the projection from ΠJ
j=1

(
Uj × Vj

)
to Uj (resp. to

Vj) and define the measure α̃ on M ×M by

α̃ = α+
m̄

J

 J∑
j=1

((
πUσ(j) , πVj

)
]
P −

(
πUj , πVj

)
]
P
) .

We have

α̃ ≥ α− m̄

J

J∑
j=1

(
πUj , πVj

)
]
P

= α− 1
J

J∑
j=1

m̄

α (Uj × Vj)
1Uj×Vjα

≥ α− 1
J

J∑
j=1

1Uj×Vjα ≥ α− α = 0.

Moreover

π1
]

 J∑
j=1

(
πUj , πVj

)
]
P

 =
J∑
j=1

π
Uj
] P =

J∑
j=1

π
Uσ(j)

] P = π1
]

 J∑
j=1

(
πUσ(j) , πVj

)
]
P


and

π2
]

 J∑
j=1

(
πUj , πVj

)
]
P

 =
J∑
j=1

π
Vj
] P = π2

]

 J∑
j=1

(
πUσ(j) , πVj

)
]
P

 .
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Therefore α is a non-negative measure which belongs to Π(µ, ν). But by con-
struction, we have

∫
M×M

c(x, y) dα̃(x, y) =
∫
M×M

c(x, y) dα(x, y)+

m̄

J

∫ J∑
j=1

(
c
(
uσ(j), vj

)
− c
(
uj , vj

))
dP
((
u1, v1,

)
, . . . ,

(
uJ , vJ

))
,

and the last term is negative (by (3.9)). This means that α cannot be optimal
and gives a contradiction. Then we know that the supports of any optimal
transport plan between µ and ν is c-cyclically monotone. Denote by Πopt(µ, ν)
the set of optimal transport plans in Π(µ, ν) and set

S :=
⋃

α∈Πopt(µ,ν)

Supp(α).

By construction, S is a subset of Supp(µ)× Supp(ν) ⊂M ×M which contains
the supports of all optimal transport plans. It remains to show that S is c-
cyclically monotone. Let (x1, y1), . . . , (xJ , yJ) be J points in S and σ be a
permutation on the set {1, . . . , J}. For each j = 1, . . . , J the point (xj , yj)
belongs to the support of an optimal transport plan αj . Let ᾱ be the convex
combination of the αj ’s, that is

α :=
1
J

J∑
j=1

αj .

Since Π(µ, ν) is convex and the mapping α 7→ C(α) is linear, ᾱ belongs to
Πopt(µ, ν). Then its support is c-cyclically monotone and contains all the
(xj , yj)’s. We infer that

J∑
j=1

c(xj , yj) ≤
J∑
j=1

c
(
xσ(j), yj

)
.

We conclude by Remark 3.2.4.

Example 3.2.6. Returning to Example 3.1.3, we can show that the set provided
by Theorem 3.2.5 has to be S = [0, 1] × [1, 2] = Supp(µ) × Supp(ν). As a
matter of fact, for every (x, y) ∈ [0, 1] × [1, 2] there is a bijective function
T : [0, 1]→ [1, 2] which is lower semicontinuous, increasing and piecewise affine
with slope 1, and whose the graph contains (x, y). Thanks to the observation
we did in Example 3.1.3, such a function is a transport map from µ = 1[0,1] L1

to ν = 1[1,2] L1, hence it is optimal.
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Kantorovitch potentials

The aim of this section is to characterize c-cyclically monotone sets in a more
analytic way.

Definition 3.2.7. A function ψ : M → R ∪ {+∞}, not identically +∞, is
said to be c-convex if there is a non-empty set A ⊂M × R such that

ψ(x) := sup
{
λ− c(x, y) | (y, λ) ∈ A

}
∀x ∈M. (3.10)

The c-transform of ψ, denoted by ψc is the function ψc : M → R ∪ {−∞}
defined by

ψc(y) := inf
{
ψ(x) + c(x, y) |x ∈M

}
∀y ∈M. (3.11)

The pair (ψ,ψc) is called a c-pair of potentials.

The following result shows that the opposite of a c-convex function is the
c-transform of the opposite of its c-transform.

Proposition 3.2.8. Given a c-convex function ψ, the function −ψc is c-convex
and we have

ψ(x) = sup
{
ψc(y)− c(x, y) | y ∈M

}
∀x ∈M. (3.12)

Proof. By definition of ψc we have

ψc(y)− c(x, y) ≤ ψ(x) ∀x ∈M, ∀y ∈M.

Which implies that ψ(x) ≥ supy∈M{ψc(y)−c(x, y)} for any x ∈M . Let us show
that ψ(x) ≤ supy∈M{ψc(y) − c(x, y)} for any x ∈ M . Argue by contradiction
and assume that there is x̄ ∈M such that

ψ
(
x̄
)
> sup

{
ψc(y)− c

(
x̄, y
)
y ∈M

}
.
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Since ψ is c-convex, there are a set A ⊂M ×R, (ȳ, λ̄) ∈ A and δ > 0 such that

λ̄− c
(
x̄, ȳ
)

+ δ ≥ ψ
(
x̄
)
≥ sup

{
ψc(y)− c

(
x̄, y
)
| y ∈M

}
+ 3δ.

Then we get
ψc
(
ȳ
)
≤ λ̄− 2δ.

which by definition of ψc(ȳ) implies that there is x ∈M such that

ψ(x) + c
(
x, ȳ
)
≤ λ̄− δ.

This contradicts (3.10).

Example 3.2.9. If M = Rn and c is given by c(x, y) = |y − x|, then the
c-convex functions are exactly the functions which are 1-Lipschitz on Rn. As
a matter of fact, if f : Rn → R is 1-Lipschitz then for every x ∈ Rn,

f(x) ≥ f(y)− |y − x| ∀y ∈ Rn,

which yields
f(x) = sup

{
f(y)− c(x, y) | y ∈ Rn

}
.

Moreover, f is its own c-transform. Conversely, any c-convex function is a
supremum of 1-Lipschitz function which is not identically +∞. Then it is
finite everywhere and 1-Lipschitz.

Example 3.2.10. If M = Rn and c is given by c(x, y) = |y − x|2/2, then the
c-convex functions are the functions ψ : Rn → R∪{+∞} such that the function

x ∈ Rn 7−→ ψ(x) +
1
2
|x|2

is convex. As a matter of fact, any c-convex function can be written as

ψ(x) = sup
{
λ− |y|

2

2
− 〈x, y〉 | (y, λ) ∈ A

}
− |x|

2

2
∀x ∈ Rn.

which shows that ψ + | · |2/2 is convex as a supremum of affine functions.
Conversely, any convex function on Rn can be expressed as the supremum of
affine functions. That is given a convex function ϕ : Rn → R ∪ {+∞}, there
is a set B ⊂ Rn × R such that

ϕ(x) = sup
{
〈x, y〉+ β | (y, β) ∈ B

}
∀x ∈ Rn.

Then for every x ∈ Rn,

ϕ(x)− 1
2
|x|2 = sup

{(
β +
|y|2
2

)
− |y − x|

2

2
| (y, β) ∈ B

}
,

which shows that ψ := ϕ− | · |2/2 is c-convex.

The c-cyclically monotone sets are the sets which are contained in the c-
subdifferential of c-convex functions.
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Definition 3.2.11. Let ψ : M → R∪{+∞} be a c-convex function. For every
x ∈M , the c-subdifferential of ψ at x is defined by

∂cψ(x) :=
{
y ∈M |ψc(y) = ψ(x) + c(x, y)

}
.

We call contact set of the pair (ψ,ψc) the set defined by

∂cψ :=
{

(x, y) ∈M ×M | y ∈ ∂cψ(x)
}
.

Remark 3.2.12. By the above definitions, a pair (x, y) in M ×M belongs to
∂cψ if and only if

ψ(x) + c(x, y) ≤ ψ(z) + c(z, y) ∀z ∈M,

which is also equivalent to

ψc(y)− c(x, y) ≥ ψc(z)− c(x, z) ∀z ∈M.

In particular, both ψ(x) and ψc(y) are finite.

The following result is the cornerstone of the results of existence and unique-
ness of optimal transport maps that we will present in the next sections.

Theorem 3.2.13. For S ⊂M×M to be c-cyclically monotone, it is necessary
and sufficient that S ⊂ ∂cψ for some c-convex ψ : M → R ∪ {+∞}. In fact,
for every c-cyclically monotone set S ⊂M ×M , there is a c-pair of potentials
(ψ,ψc) with S ⊂ ∂cψ satisfying

ψ(x) = sup
{
ψc(y)− c(x, y) | y ∈ π2(S)

}
∀x ∈M, (3.13)

ψc(y) = inf
{
ψ(x) + c(x, y) |x ∈ π1(S)

}
∀y ∈M. (3.14)

If c is continuous and S is compact, then both ψ,ψc are valued in R and con-
tinuous, and the infimum and supremum in (3.13)-(3.14) are attained.

Proof. First, given a c convex function ψ : X → R ∪ {+∞} the contact set of
(ψ,ψc) is c-cyclically monotone. As a matter of fact, given (xj , yj) ∈ ∂cψ, j =
1, . . . , J , and σ a permutation on the set {1, . . . , J}, we have

ψc
(
yj
)

= ψ
(
xj
)

+ c
(
xj , yj

)
and ψc

(
yj
)
≤ ψ

(
xσ(j)

)
+ c
(
xσ(j), yj

)
,

for every j = 1, . . . , J . Hence

J∑
j=1

c
(
xj , yj

)
=

J∑
j=1

ψc
(
yj
)
−

J∑
j=1

ψ
(
xj
)

=
J∑
j=1

ψc
(
yj
)
−

J∑
j=1

ψ
(
xσ(j)

)
≤

J∑
j=1

c
(
xσ(j), yj

)
.
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Let us now show that a c-cyclically monotone set S ⊂ M ×M is necessarily
included in the contact set of some c-convex function. Fix (x̄, ȳ) in the c-
cyclically monotone set S ⊂M ×M and define ψ : M → R ∪ {+∞} by

ψ(x) := sup
{[
c
(
x̄, ȳ
)
− c
(
x1, ȳ

)]
+
J−1∑
j=1

[
c
(
xj , yj

)
− c
(
xj+1, yj

)]
+
[
c
(
xJ , yJ

)
− c
(
x, yJ

)]
| J ∈ N, J ≥ 2,

(
xj , yj

)
∈ S, ∀j = 1, . . . , J

}
,

for every x ∈ M . We claim that ψ is a c-convex function whose the contact
set contains S. First taking J = 2, x = x1 = x2 = x̄ and y1, y2 = ȳ, we check
easily that ψ(x̄) ≥ 0. Furthermore, by c-cyclical monotonicity of S, we have[

c
(
x̄, ȳ
)
− c
(
x1, ȳ

)]
+
J−1∑
j=1

[
c
(
xj , yj

)
− c
(
xj+1, yj

)]
+
[
c
(
xJ , yJ

)
− c
(
x̄, yJ

)]
≤ 0,

for any pairs (x1, y1), . . . , (xJ , yJ) belonging to S. Thus we have ψ(x̄) ≤ 0
and in turn ψ(x̄) = 0. This shows that ψ is not identically +∞. Define
φ : M → R ∪ {−∞} by

φ(y) := sup
{[
c
(
x̄, ȳ
)
− c
(
x1, ȳ

)]
+
J−1∑
j=1

[
c
(
xj , yj

)
− c
(
xj+1, yj

)]
+ c
(
xJ , y

)
| J ∈ N, J ≥ 2,

(
xj , yj

)
∈ S, ∀j = 1, . . . , J − 1, (xJ , y) ∈ S

}
∀y ∈M.

Note that if y ∈ M is such that there are no x ∈ M with (x, y) ∈ S, then
φ(y) = −∞. However, as above we check easily that φ(ȳ) = 0 which shows
that φ is not identically −∞. Therefore, by construction we have for every
x ∈M ,

ψ(x) = sup
{
φ(y)− c(x, y) | y ∈ π2(S)

}
= sup

{
φ(y)− c(x, y) | y ∈M

}
, (3.15)

which shows that ψ is c-convex. It remains to check that S ⊂ ∂cψ. Let
(x, y) ∈ S be fixed, we need to show that

ψ(x) + c(x, y) ≤ ψ(z) + c(z, y) ∀z ∈M.

By construction of ψ, we have for every z ∈M ,

ψ(z) ≥ sup
{[
c
(
x̄, ȳ
)
− c
(
x1, ȳ

)]
+
J−1∑
j=1

[
c
(
xj , yj

)
− c
(
xj+1, yj

)]
+ [c(x, y)− c(z, y)]

| J ∈ N, J ≥ 2,
(
xj , yj

)
∈ S, ∀j = 1, . . . , J − 1, xJ = x

}
= ψ(x) + c(x, y)− c(z, y).
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We get the necessary and sufficient condition for a set to be c-cyclically mono-
tone. Let us now turn to the second part of the result, that is let us prove that
for any c-cyclically monotone set S ⊂ M ×M , there is a c-pair of potentials
ψ,ψc with S ⊂ ∂cψ which in addition satisfies (3.13)-(3.14).
Let S be a c-cyclically monotone set. We already know that there is φ : M →
R ∪ {−∞} which is not identically −∞ such that the function ψ : M →
R ∪ {+∞} defined by

ψ(x) := sup
{
φ(y)− c(x, y) | y ∈ π2(S)

}
∀x ∈M, (3.16)

is c-convex with S ⊂ ∂cψ (remember (3.15)). Let φ1 = ψc : M → R ∪ {−∞}
be the c-transform of ψ, that is the function defined by

φ1(y) := inf
{
ψ(x) + c(x, y) |x ∈M

}
∀y ∈M. (3.17)

If y ∈ π2(S), then there is x ∈M with ψ(x) = φ(y)− c(x, y) and (x, y) ∈ S ⊂
∂cψ, that is

φ(y) = ψ(x) + c(x, y) ≤ ψ(z) + c(z, y) ∀z ∈M.

Then we get φ(y) ≤ φ1(y) for all y ∈ π2(S). On the other hand, by construction
of ψ, we have ψ(x) ≥ φ(y)−c(x, y) for any x ∈M and any y ∈ π2(S). Therefore

φ1(y) = φ(y) ∀y ∈ π2(S). (3.18)

By Proposition 3.2.8, we have

ψ(x) = sup
{
φ1(y)− c(x, y) | y ∈M

}
∀x ∈M,

and by (3.16) and (3.18), we also have

ψ(x) = sup
{
φ1(y)− c(x, y) | y ∈ π2(S)

}
∀x ∈M.

We claim that φ1 defined by (3.17) satisfies

φ1(y) = inf
{
ψ(x) + c(x, y) |x ∈ π1(S)

}
∀y ∈M.

If not, there are x̄, ȳ ∈M and δ > 0 such that

ψ(x̄) + c(x̄, ȳ) ≤ ψ(z) + c(z, ȳ)− δ ∀z ∈ π1(S).

Taking the infimum in the right-hand side we get

ψ(x̄) + c(x̄, ȳ) ≤ φ1(ȳ)− δ.

But by construction of φ1, we have φ1(ȳ) ≤ ψ(x̄) + c(x̄, ȳ). We get a contra-
diction. It remains to show that both ψ,ψc are finite valued and continuous
provided c is continuous and S is compact. We claim that under those assump-
tions, ψc is bounded from above on π2(S). Since ψ is not identically +∞, there
is x̄ ∈ M with ψ(x̄) < +∞. Since c is continuous and π2(S) is compact, the
function y 7→ c(x̄, y) is bounded on π2(S). Then we deduce that ψc is bounded
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on π2(y). By (3.13), we infer that ψ(x) is finite for any x ∈ M . Let x ∈ M
be fixed and {xk}k be a sequence converging to x. For every k > 0, there is
yk ∈ π2(S) such that

ψ(xk) ≤ ψc(yk)− c
(
xk, yk

)
+

1
k
.

Then we have for every k > 0,

ψ(x) ≥ ψc(yk)− c
(
x, yk

)
= ψc(yk)− c

(
xk, yk

)
+ c
(
xk, yk

)
− c
(
x, yk

)
≥ ψ(xk)− 1

k
+ c
(
xk, yk

)
− c
(
x, yk

)
. (3.19)

For every k > 0, there is zk ∈ π2(S) such that

ψ(x) ≤ ψc(zk)− c
(
x, zk

)
+

1
k
.

Then we also have for every k > 0,

ψ(xk) ≥ ψc(zk)− c
(
xk, zk

)
= ψc(zk)− c

(
x, zk

)
+ c
(
x, zk

)
− c
(
xk, zk

)
≥ ψ(x)− 1

k
+ c
(
x, zk

)
− c
(
xk, zk

)
. (3.20)

Let V be a compact neighborhood of x. The function c is continuous on the
compact set V × π2(S), hence it is uniformly continuous. We conclude easily
from (3.19)-(3.20) that ψ(xk) tends to ψ(x) as k tends to +∞. In the same
way, we can show that ψ is bounded on π1(S) and ψc if always valued in R
and continuous. The fact that the infimum and supremum in (3.13)-(3.14) are
attained is straigthforward from the continuity of ψ,ψc and the compactness
of S.

Corollary 3.2.14. Let µ, ν be two probability measures on M . Assume that
c is continuous and that Supp(µ) and Supp(ν) are compact. Then there is a
c-cyclically monotone compact set S ⊂ Supp(µ) × Supp(ν) such that for every
α ∈ Π(µ, ν) the following properties are equivalent:

(i) α is optimal,

(ii) Supp(α) ⊂ S.

Proof. By Theorem 3.2.5, there is a c-cyclically monotone compact set S ⊂
Supp(µ)× Supp(ν) such that the support of any optimal transport in Π(µ, ν)
is contained in S. Let us show that S satisfies the equivalence given in the
statement of the theorem. First, by construction we have (i) ⇒ (ii). By
Theorem 3.2.13, there is a c-pair of potentials with S ⊂ ∂cψ. Then we have

ψc(y)− ψ(x) = c(x, y) ∀(x, y) ∈ S. (3.21)

Furthermore we have

ψc(y)− ψ(x) ≤ c(x, y) c(x, y) ∀x, y ∈M. (3.22)
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Let us show that (ii) ⇒ (i). Let α ∈ Π(µ, ν) be such that Supp(α) ⊂ S. On
the one hand, by (3.21), we have∫

M

ψc(y) dν(y)−
∫
M

ψ(x) dµ(x) =
∫
M×M

(ψc(y)− ψ(x)) dα(x, y)

=
∫
M×M

c(x, y) dα(x, y) = C(α).

On the other hand, (3.22) yields for every α′ ∈ Π(µ, ν),∫
M

ψc(y) dν(y)−
∫
M

ψ(x) dµ(x) =
∫
M×M

(ψc(y)− ψ(x)) dα′(x, y)

≤
∫
M×M

c(x, y) dα(x, y) = C(α′).

This shows that α is optimal.

Remark 3.2.15. Let µ, ν be two compactly supported probability measures on
M and c : M ×M → [0,+∞) be a continuous cost. Actually, the proof of
Corollary 3.2.14 shows that if (ψ,ψc) is a c-pair of potentials and α is a trans-
port plan between µ and ν with Supp(α) ⊂ ∂cψ, then α is optimal, that is
CK(µ, ν) = C(α).

3.3 A generalized Brenier-McCann Theorem

Throughout this section, we fix a cost c : M ×M → [0,+∞) which is assumed
to be continuous. Given two compactly supported probability measures µ, ν on
M , we know by Theorems 3.2.5 and 3.2.13 that there is a c-cyclically monotone
compact set S ⊂ Supp(µ)×Supp(ν) which contains the supports of all optimal
plans between µ and ν and a c-pair of real-valued continuous potentials (ψ,ψc)
satisfying

ψ(x) = max
{
ψc(y)− c(x, y) | y ∈ π2(S)

}
∀x ∈M, (3.23)

ψc(y) = min
{
ψ(x) + c(x, y) |x ∈ π1(S)

}
∀y ∈M, (3.24)

and

S ⊂ ∂cψ. (3.25)

To prove the existence and uniqueness of an optimal transport map, we will
show that S is concentrated on a graph. More precisely, we will prove that for
every x outside a µ-negligible set N ⊂M , the set ∂cψ(x) is a singleton.

Theorem 3.3.1. Let µ, ν be two probability measures on M . Assume that c
is continuous and that Supp(µ) and Supp(ν) are compact. Let S and (ψ,ψc)
given by Theorems 3.2.5 and 3.2.13 as above. Moreover assume that for µ-a.e.
x ∈M , the set ∂cψ(x) is a singleton. Then there is a unique optimal transport
map from µ to ν. It satisfies

∂cψ(x) =
{
T (x)

}
µ− a.e. x ∈M. (3.26)
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Proof. By Theorem 3.2.1, there is an optimal transport plan α between µ and
ν. By assumption, there is a Borel set N such that µ(N) = 0 and for every
x /∈ N , ∂cψ(x) is a singleton {yx}. Then for every (x, y) ∈ Supp(α) \ (N ×M),
we have (x, y) ∈ ∂cψ, that is y = yx. Setting T (x) := yx for µ-a.e. x ∈ M , we
get (3.26) and in turn the uniqueness.

Remark 3.3.2. We maybe need to make clear what me mean by uniqueness
of an optimal transport map. We say that there is a unique optimal transport
map from µ to ν if there is uniqueness up to a set of µ-measure zero. That is
if T1 and T2 are two optimal transport maps from µ to ν, there is a set N with
µ(N) = 0 such that T1(x) = T2(x) for every x /∈ N .

We now introduce an assumption on the cost c. For this we need to define
the notion of sub-differential. Given an open set Ω ⊂ M and a function f :
Ω → R, we say that p ∈ T ∗xM is a sub-differential for f at x ∈ Ω if there is a
function ϕ : Ω→ R which is differentiable at x with Dxϕ = p such that

f(x) = ϕ(x) and f(y) ≥ ϕ(y) ∀y ∈ Ω.

f

ϕ

We denote by D−x f the set of sub-differentials of f at x. In the same way,
we say that p ∈ T ∗xM is a super-differential for f at x ∈ Ω if there is a function
ϕ : Ω→ R which is differentiable at x with Dxϕ = p such that

f(x) = ϕ(x) and f(y) ≤ ϕ(y) ∀y ∈ Ω.

We denote by D+
x f the set of super-differentials of f at x.

Remark 3.3.3. If f : Ω → R is differentiable at x ∈ Ω, then D−x f = D+
x f =

{Dxf}.

Remark 3.3.4. The sub-differential and/or the super-differential may not be
a singleton. It could be empty or contain several sub-differentials.
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For example, the sub-differential of the function x 7→ |x| at the origin is the
interval [−1, 1] while its super-differential is empty.

By (3.23), for every (x, y) ∈ ∂cψ there is a link between the super-differentials
of ψ at x and the sub-differentials of the cost c at (x, y). This lead us to the
following definition which will be satisfied by variational costs.

Definition 3.3.5. We say that the cost c satisfies the sub-TWIST condition if

D−x c
(
·, y1

)
∩D−x c

(
·, y2

)
= ∅ ∀y1 6= y2 ∈M, ∀x ∈M, (3.27)

where D−x (·, yi) denotes the sub-differential of the function x 7→ c(x, yi) at x.

The following result makes the sub-TWIST condition relevant.

Lemma 3.3.6. Assume that the cost c satisfies the sub-TWIST condition. Let
(ψ,ψc) be a c-pair of potentials and x ∈ M be such that ψ has a non-empty
super-differential at x. Then ∂cψ(x) is a singleton.

Proof. Argue by contradiction and assume that y1 6= y2 both belong to ∂cψ(x).
Then we have

ψc(yi) = ψ(x) + c(x, yi) ≤ ψ(z) + c(z, yi) ∀z ∈M.

Thus, for every i = 1, 2,

c(z, yi) ≥ −ψ(z) + ψ(x) + c(x, yi),

with equality at z = x. Since ψ is super-differentiable at x, we infer that both
functions z 7→ c(z, y1) and z 7→ c(z, y2) share a common sub-differentiable at
x. This contradicts the sub-TWIST condition.

By Theorem 3.3.1 and Lemma 3.3.6, in order to prove the existence and
uniqueness of optimal transport maps from a compactly supported probability
measure µ to another one ν, it is sufficient to show that the super-differential of
the potential ψ is non-empty for µ-almost every point in M . Such a property
can be obtained thanks to Rademacher’s Theorem. We recall that a function
defined on a smooth manifold is called Lipschitz in charts if it is Lipschitz in
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a set of local coordinates in a neighborhood of any point. The Rademacher
Theorem asserts that any function which is Lipschitz in charts on an open
subset Ω of M is differentiable almost everywhere in Ω.

Theorem 3.3.7. Let c : M × M → [0,+∞) be a cost which is Lipschitz
in charts and satisfies the sub-TWIST condition. Let µ, ν be two probability
measures with compact support on M . Assume that µ is absolutely continuous
with respect to the Lebesgue measure. Then there is existence and uniqueness
of an optimal transport map from µ to ν. In fact, there is a c-convex function
ψ : M → R which is Lipschitz in charts such that

∂cψ(x) =
{
T (x)

}
µ− a.e. x ∈M. (3.28)

Proof. By Theorems 3.2.5 and 3.2.13 there is a c-cyclically monotone compact
set S ⊂ Supp(µ) × Supp(ν) which contains the supports of all optimal plans
between µ and ν together with a c-pair of real-valued continuous potentials
(ψ,ψc) such that (3.23)-(3.25) are satisfied. In a neighborhood of each x ∈
M , the function ψ is the maximum of a family of functions x ∈ π2(S) 7→
ψc(y)− c(x, y) with y ∈ π2(S) which are uniformly Lipschitz (in charts) in the
x variable . Therefore, ψ is Lipschitz in charts on M . Since µ is assumed to
be absolutely continuous with respect to the Lebesgue measure, Rademacher’s
Theorem implies that ψ is differentiable and a fortiori super-differentiable µ-a.e.
We conclude easily by Theorem 3.3.1 and Lemma 3.3.6.

Example 3.3.8. Let M = Rn and c : Rn × Rn → [0,+∞) be the quadratic
Euclidean cost or Brenier cost defined by c(x, y) = |y − x|2/2 for any x, y ∈
Rn. Remembering Example 3.2.10, we know that c-convex functions are the
functions ψ : Rn → R ∪ {+∞} such that the function ψ + | · |2/2 is convex.
Furthermore, c satisfies the sub-TWIST condition. As a matter of fact, it is
smooth and its partial derivative with respect to the x variable is given by

∂c

∂x
(x, y) = x− y ∀x, y ∈ Rn.

Therefore y1 6= y2 ⇒ Dxc(·, y1) 6= Dxc(·, y2). By Theorem 3.3.7, given a
pair of compactly supported probability measures µ, ν in Rn with µ absolutely
continuous with respect to the Lebesgue measure, there is a unique optimal
transport map T : M → M from µ to ν satisfying (3.28) where ψ : Rn → R
is a locally Lipschitz c-convex function. Note that for every x ∈ Rn where ψ is
differentiable at x, we have

y ∈ ∂cψ(x) =⇒ ψ(x) + c(x, y) ≤ ψ(z) + c(z, y) ∀z ∈ Rn,

which means that the derivative of the function z 7→ ψ(z) + c(z, y) vanishes at
z = x, that is y = x +∇xψ. Setting ϕ(x) := ψ(x) + |x|2/2 for every x ∈ M ,
we obtain a convex function such that

T (x) = ∇xϕ µ− a.e x ∈ Rn.

In other terms, the unique optimal transport map from µ to ν is given by the
gradient of a convex function.
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Example 3.3.9. Let M = Rn, note that the Monge cost c : Rn×Rn → [0,+∞)
is Lipschitz but does not satisfy the sub-TWIST condition. As a matter of fact,
we have

∂c

∂x
(x, y) =

x− y
|x− y| ∀x 6= y ∈ Rn.

This means that Dxc(·, y1) = Dxc(·, y2) for any y1, y2 such that y1 − x and
y2 − x are positively colinear. Hence Theorem 3.3.8 do not apply. In fact, we
already saw through Example 3.1.3 that uniqueness of optimal transport maps
does not hold in this context.

Example 3.3.10. Let (M, g) be a complete Riemannian manifold. The geodesic
distance dg is Lipschitz in charts on M×M . Define the quadratic geodesic cost
or McCann’s cost c : M ×M → [0,+∞) by

c(x, y) :=
1
2
d2
g(x, y) ∀x, y ∈M.

Then c is Lipschitz in charts on M×M and satisfies the sub-TWIST condition.
As a matter of fact, given x ∈M and p ∈ T ∗xM in D−x c(·, y) for some y ∈M ,
there is a function ϕ : M → R which is differentiable at x with Dxϕ = p such
that

1
2
d2
g(x, y) = ϕ(x) and

1
2
d2
g(z, y) ≥ ϕ(z) ∀z ∈M.

Then we argue as in the proof of Lemma 2.3.6. If we denote by γ̄ : [0, 1]→M
a minimizing geodesic from y to x, then we obtain that for every curve γ :
[0, 1]→M with γ(0) = y,

1
2

energyg(γ)− ϕ
(
γ(1)

)
≥ 0,

with equality for γ = γ̄. As in Lemma 2.3.6, we infer that there is a unique
minimizing geodesic between x and y and that

y = expx
(
−Dxϕ

)
= expx(−p),

where expx : T ∗xM → M stands for the exponential map which was defined
in Section 2.3 (if we use the Riemannian exponential map, we have y =
expx

(
−∇gxϕ

)
). The point y is uniquely determined by p, then c satisfies the

sub-TWIST condition. Arguing as above, we deduce that for every pair of com-
pactly supported probability measures µ, ν on M with µ absolutely continuous
with respect to the Lebesgue measure, there is a unique optimal transport map
T from µ to ν satisfying (3.26) where ψ : M → R is a c-convex function which
is Lipschitz in charts. By the above discussion, we have

T (x) = expx
(
Dxψ

)
µ− a.e x ∈M (3.29)

and for µ-a.e. x ∈M there is a unique minimizing geodesic from x to T (x).

Let M be a smooth connected manifold equipped with a complete sub-
Riemannian structure (∆, g) and whose the sub-Riemannian distance is de-
noted by dSR. In the next section, our purpose is now to study the Monge prob-
lem for the sub-Riemannian quadratic cost, that is for the cost c : M ×M →
[0,+∞) defined by

c(x, y) :=
1
2
dSR(x, y)2 ∀x, y ∈M.
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As we saw before, in order to obtain existence and uniqueness results for opti-
mal transport maps, it is convenient to be able to show that super-differentials
of potentials are non-empty almost everywhere and that some sub-TWIST
condition is satisfied by the cost function. The sub-TWIST condition follows
immediately from Lemma 2.3.6. So we just have to deal with regularity issues
of c-convex functions. In the case of compactly supported probability measures,
regularity properties of Kantorovitch potentials can be obtained from the reg-
ularity of the cost. We develop this approach in the next section by showing
that under additional assumptions the sub-Riemannian distance is Lipschitz
and even locally semiconcave outside the diagonal.

Remark 3.3.11. As explained above, if M equipped with a SR structure for
which the cost c = d2

SR is Lipschitz on M×M , then for every pair of compactly
supported probability measures µ, ν on M with µ absolutely continuous with
respect to the Lebesgue measure, there is a unique optimal transport map T
from µ to ν which can be expressed as

T (x) = expx
(
Dxψ

)
µ− a.e x ∈M, (3.30)

where ψ : M → R is a c-convex function which is Lipschitz in charts.

3.4 Optimal transport on ideal and Lipschitz SR
structures

Ideal SR structures

Let (∆, g) be a sub-Riemannian structure of rank m ≤ n on M . We call it
ideal if it is complete and has no non-trivial minimizing singular curves. We
recall that this implies that for every x 6= y ∈ M , any minimizing geodesic
γ : [0, 1] → M joining x to y is regular. By the results of the previous chap-
ter, all minimizing geodesics are smooth and projections of normal extremals
of the Hamiltonian geodesic equation. We recall that D denotes the diagonal
of M ×M , that is, the set of all pairs of the form (x, x) with x ∈ M . Sub-
Riemannian distances of ideal SR structures are locally semiconcave outside
the diagonal.

A function f : Ω → R, defined on the open set Ω ⊂ M , is called locally
semiconcave on Ω if for every x ∈ Ω there exist a neighborhood Ωx of x and a
smooth diffeomorphism ϕx : Ωx → ϕx(Ωx) ⊂ Rn such that f ◦ ϕ−1

x is locally
semiconcave on the open subset Ω̃x = ϕx(Ωx) ⊂ Rn. By the way, we recall that
the function f̃ : Ω̃→ R, defined on the open set Ω̃ ⊂ Rn, is locally semiconcave
on Ω̃ if for every x̄ ∈ Ω̃ there exist C, δ > 0 such that

µf(y) + (1− µ)f(x)− f
(
µx+ (1− µ)y

)
≤ µ(1− µ)C|x− y|2 ∀µ ∈ [0, 1], ∀x, y ∈ B

(
x̄, δ
)
. (3.31)

This is equivalent to say that the function f̃ can be written locally as

f̃(x) =
(
f̃(x)− C|x|2

)
+ C|x|2 ∀x ∈ B

(
x̄, δ
)
,
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with f̃(x)−C|x|2 concave, that is as the sum of a concave function and a smooth
function. Note that every locally semiconcave function is locally Lipschitz on
its domain, and thus, by Rademacher’s Theorem, it is differentiable almost
everywhere on its domain.

The following result is useful to prove the local semiconcavity of a given
function.

Lemma 3.4.1. Let f : Ω → R be a function defined on an open set Ω ⊂ Rn.
Assume that for every x̄ ∈ Ω there exist a neighborhood V ⊂ Ω of x̄ and a
positive real number σ such that, for every x ∈ V, there is px ∈ Rn such that

u(y) ≤ u(x) + 〈px, y − x〉+ σ|y − x|2 ∀y ∈ V. (3.32)

Then the function u is locally semiconcave on Ω.

Proof of Lemma 3.4.1. Let x̄ ∈ Ω be fixed and V be the neighborhood given
by assumption. Without loss of generality, we can assume that V is an open
ball B. Let x, y ∈ B and µ ∈ [0, 1]. The point x̂ := µx+ (1− µ)y belongs to B.
By assumption, there exists p̂ ∈ Rn such that

u(z) ≤ u(x̂) + 〈p̂, z − x̂〉+ σ|z − x̂|2 ∀z ∈ B.

Hence we easily get

µu(y) + (1− µ)u(x) ≤ u(x̂) + µσ|x− x̂|2 + (1− µ)σ|y − x̂|2

≤ u(x̂) +
(
µ(1− µ)2σ + (1− µ)µ2σ

)
|x− y|2

≤ u(x̂) + 2µ(1− µ)σ|x− y|2,

and the conclusion follows.

Remark 3.4.2. Thanks to Lemma 3.4.1, a way to prove that a given function
f : Ω→ R is locally semiconcave on Ω is to show that for every x ∈ Ω we can
put a C2 support function ϕ on the graph of u at x with a uniform control of
the C2 norm of ϕ.

Outside the diagonal, sub-Riemannian distances of ideal SR structures enjoy
the same kind of regularity as Riemannian distances.

Theorem 3.4.3. Let (∆, g) be an ideal sub-Riemannian structure on M . Then
the SR distance is continuous on M×M and locally semiconcave on M×M \D.
In particular, dSR is Lipschitz in charts on M ×M \D.
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Proof. The continuity of dSR follows from Proposition 1.5.2. To prove the local
semiconcavity, we proceed as explained in Remark 3.4.2. Let us fix (x, y) ∈
M ×M \ D and γ ∈ Ωx,1∆ be a minimizing geodesic joining x to y. There is
an open neighborhood V of γ([0, 1]) in M and an orthonormal family F (with
respect to the metric g) of m smooth vector fields X1, . . . , Xm such that

∆(z) = Span
{
X1(z), . . . , Xm(z)

}
∀z ∈ V.

Taking a change of coordinates if necessary, we may assume that V is an open
subset of Rn. Furthermore, there is a control uγ ∈ L2([0, 1]; Rm) such that

γ̇(t) =
m∑
i=1

uγi (t)Xi(γ(t))dt a.e. t ∈ [0, 1].

Since uγ is regular, there are v1, . . . vn in L2([0, 1]; Rm) such that the linear
operator

Rn −→ Rn
α 7−→ ∑m

i=1 αiDuγE
x,1
F
(
vi
)

is invertible. Define locally F : Rn → Rn by

F : Rn × Rn −→ Rn × Rn

(z, α) 7−→
(
z, Ez,1F

(
uγ +

∑m
i=1 αiv

i
))

This mapping is well-defined and C2 in a neighborhood of (x, 0). Moreover it
satisfies

F(x, 0) = (x, y),

and its differential at (x, 0) is invertible. Hence by the Inverse Function The-
orem, there are an open ball B centered at (x, y) in Rn × Rn and a function
G : B → Rn × Rn of class C2 such that

F ◦ G(z, w) = (z, w) ∀(z, w) ∈ B.
Denote by α−1 the second component of G. From the definition of the sub-
Riemannian energy between two points, we infer that for any (z, w) ∈ B we
have

eSR(z, w) ≤
∥∥∥∥∥uγ +

m∑
i=1

(
α−1(z, w)

)
i
vi

∥∥∥∥∥
2

L2

.

Set

φx,y(z, w) :=

∥∥∥∥∥uγ +
m∑
i=1

(
α−1(z, w)

)
i

∥∥∥∥∥
L2

∀(z, w) ∈ B.

We conclude that, there is a function φx,y of class C2 such that dSR(z, w) ≤
φx,y(z, w) for any (z, w) in a neighborhood of (x, y) in M×M , and dSR(x, y) =
φx,y(x, y). By compactness, the C2 norms of the functions φx,y are uniformly
bounded. As a matter of fact, from Remark 2.1.8 we know that the set of min-
imizing geodesics from x to y is compact with respect to the uniform topology;
any sequence of minimizing geodesics {γk}k from xk to yk converges uniformly
to a minimizing geodesic from x to y. We also know (see Remark 2.1.4) that if
we cover the set of minimizing curves from x to y by a finite number of open
tubes admitting orthonormal frames, then minimizing control converge in L2.
We conclude easily.
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Remark 3.4.4. The above arguments can be used to prove the following result.
Let (∆, g) be a sub-Riemannian structure of rank m < n on M . Assume that
it is complete and that there is an open set Ω ⊂ M ×M such that for every
(x, y) ∈ Ω with x 6= y, any minimizing geodesic between x and y is regular.
Then dSR is locally semiconcave on Ω \D.

Remark 3.4.5. Any SR structure of rank m = n, that is any Riemannian
structure on M is ideal, see Remarks 1.3.7, 2.2.3.

Lipschitz SR structures

Let (∆, g) be a sub-Riemannian structure of rank m < n on M . We call
it Lipschitz if it is complete and if the sub-Riemannian distance function is
Lipschitz in charts on M ×M outside the diagonal (or equivalently if the sub-
Riemannian energy is Lipschitz in charts on M ×M \D). A particular case of
Lipschitz SR structures is given by ideal SR structures. The aim of the present
section is to provide a weaker sufficient condition for a complete SR structure
to be Lipschitz. According to Theorem 2.44, a horizontal path γ : [0, 1] → M
will be called a Goh path if it admits an abnormal lift ψ : [0, 1] → ∆⊥ which
annihilates [∆,∆], that is, an abnormal lift ψ = (γ, p) : [0, 1]→ T ∗M (in local
coordinates, see Proposition 1.3.3 and the subsequent remarks) such that for
every every local parametrization of ∆ by smooth vector fields X1, . . . , Xm in
a neighborhood of γ([0, 1]), we have

p(t) ·
[
Xi, Xj

](
γ(t)

)
= 0 ∀t ∈ [0, 1], ∀i, j = 1, . . . ,m.

Of course, the above definition does not depend upon the parametrization.

Theorem 3.4.6. Let (∆, g) be a complete sub-Riemannian structure on M , as-
sume that any sub-Riemannian minimizing geodesic joining two distinct points
in M is not a Goh path. Then, the SR structure (∆, g) is Lipschitz.

Proof. Let us fix (x, y) ∈ M × M \ D and γ ∈ Ωx,1∆ a minimizing geodesic
joining x to y. As before, denote by F = {X1, . . . , Xm} an orthonormal family
of vector fields along γ([0, 1]) and by uγ the control associated with γ. Two
cases may appear:

First case: ū := uγ is not singular.
Then by the arguments given in the proofs of Lemma 2.3.9 and Theorem 3.4.3,
there are δ,K > 0 such that

eSR(x, z) ≤ eSR(x, y) +K|z − y| ∀z ∈ B(y, δ).

Since any control which is close enough to ū is regular, there is ε̄ > 0 such that
for every u ∈ L2

(
[0, 1]; Rm

)
satisfying∥∥u− ū∥∥

L2 < ε̄, eSR

(
x,Ex,1F (u)

)
= ‖u‖L2 ,

there holds

eSR(x, z) ≤ eSR
(
x,Ex,1F (u)

)
+ 2K

∣∣∣z − Ex,1F (u)
∣∣∣ , (3.33)
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for every z ∈ B
(
Ex,1F (u), δ/2

)
.

Second case: ū = uγ is singular.
By Theorem 2.4.2, we have necessarily

ind−

(
λ∗
(
D2
ūE

x,1
F

)
|Ker(DūE

x,1
F )

)
= +∞, (3.34)

for all λ ∈ Im
(
DūE

x,1
F

)⊥
\ {0}. Recall that C : L2([0, 1]; Rm) is defined by

C(u) := ‖u‖2L2 ∀u ∈ L2
(
[0, 1]; Rm

)
.

Let E0 ⊂ L2([0, 1]; Rm) be a vector space such that

E0 + Ker
(
DūE

x,1
F

)
= L2

(
[0, 1]; Rm

)
.

Set

E := E0 ⊕
(

Ker
(
DūE

x,1
F

)
∩Ker (DūC)

)
and F :=

(
Ex,1F

)
|{ū}+E

.

By construction, DūE
x,1
F and DūF have the same image in Rn and E0 has

finite dimension. Then by (3.34), we have

ind−
(
λ∗
(
D2
ūF
)
|Ker(DūF )

)
= +∞,

for all λ ∈ Im (DūF )⊥ \ {0}. We can apply Theorem B.2.2 to the function
F . Hence there are c > 0, ε̄ ∈ (0, 1) such that for every ε ∈ (0, ε̄) and every
z ∈ B

(
F
(
ū
)
, cε2

)
, there are w1, w2 ∈ L2([0, 1]; Rm) such that

z = F
(
ū+ w1 + w2

)
(3.35)

and

w1 ∈ Ker
(
DūF

)
,
∥∥w1

∥∥
L2 < ε,

∥∥w2

∥∥
L2 < ε2. (3.36)

Let z ∈ B(y, cε2) with |z − y| = cε2/2. Then there are w1, w2 ∈ L2
(
[0, 1]; Rm

)
such that (3.35)-(3.36) are satisfied. Set u := ū+ w1 + w2. Then we have

z = Ex,1F (u),

and (note that Ker(DūF ) ⊂ Ker(DūC)),

eSR(x, z) ≤ C(u) ≤ C
(
ū
)

+DūC ·
(
w1 + w2

)
+
∥∥w1 + w2

∥∥2

L2

= eSR(x, y) +DūC · w2 +
∥∥w1 + w2

∥∥2

L2

≤ eSR(x, y) + 2
∥∥ū∥∥

L2 ε
2 +

(
ε+ ε2

)2
≤ eSR(x, y) +

(
4
∥∥ū∥∥

L2 + 8
c

)
|z − y|.

Proceeding as in the proof of Theorem B.2.2, we can show that the above
estimate holds in a neighborhood of ū, that is (taking c > 0, ε̄ ∈ (0, 1) smaller
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if necessary) for every ε ∈ (0, ε̄), for every u ∈ L2
(
[0, 1]; Rm

)
, and every z ∈ Rn

with ∥∥u− ū∥∥
L2 < ε,

∣∣∣z − Ex,1F (u)
∣∣∣ < c ε2,

there are w1, w2 ∈ L2([0, 1]; Rm) such that

z = Ex,1F
(
u+ w1 + w2

)
and

w1 ∈ Ker
(
DuC

)
,
∥∥w1

∥∥
L2 < ε,

∥∥w2

∥∥
L2 < ε2.

This shows that for every u ∈ L2
(
[0, 1]; Rm

)
satisfying∥∥u− ū∥∥

L2 < ε̄, eSR

(
x,Ex,1F (u)

)
= ‖u‖L2 ,

there holds

eSR(x, z) ≤ eSR
(
x,Ex,1F (u)

)
+
(

4‖u‖L2 + 8
c

) ∣∣∣z − Ex,1F (u)
∣∣∣ , (3.37)

for every z ∈ B
(
Ex,1F (u), cε̄/4

)
.

Let us explain how to conclude by compactness. Let x ∈ M and B a
compact set in M such that {x} × B ∩D = ∅ be fixed. Denote by S the set of
all y ∈ B such that there is at least one singular minimizing geodesic between x
and y. The set S is a compact subset of B, and the set of singular minimizing
geodesic between x and a point in S is compact with respect to the uniform
topology. Then by the previous observation (second case) together with a
compactness argument (see Remarks 2.1.4, 2.1.8), we infer that an inequality
of the form (3.37) holds for any minimizing control u which is close enough
to a control corresponding to a singular minimizing geodesic joining x to a
point in S. Denote by S ′ the set of y in B corresponding to such controls. By
construction, any minimizing geodesic from x to a point in B \ S ′ is regular.
Actually, it is far from being singular. Then by the arguments given in the first
case together with compactness arguments, an inequality of the form (3.33)
holds for any y (= Ex,1F (u)) in B \ S ′. In that way, we prove that eSR(x, ·) (or
equivalently dSR(x, ·)) is locally Lipschitz in M \ {x}. The same proof shows
that eSR is indeed uniformly locally Lipschitz with respect to one variable. We
conclude easily.

Remark 3.4.7. The above arguments can be used to prove the following result.
Let (∆, g) be a sub-Riemannian structure of rank m < n on M . Assume that
it is complete and that there is an open set Ω ⊂ M ×M such that for every
(x, y) ∈ Ω with x 6= y, no minimizing geodesic between x and y is a Goh path.
Then dSR is Lipschitz in charts on Ω \D.

Remark 3.4.8. Note that if the path γ is constant on [0, 1], it is a Goh path
if and only if there is a differential form p ∈ T ∗γ(0)M satisfying

p ·Xi(γ(0)) = p ·
[
Xi, Xj

]
(γ(0)) = 0 ∀i, j = 1, . . . ,m,

where X1, . . . , Xm is as above a parametrization of ∆ in a neighborhood of
γ(0). The above proof shows that if ∆ is 2-generating then eSR is Lipschitz in
charts on M ×M .
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Remark 3.4.9. If a SR structure (∆, g) on M is Lipschitz, then for every
x ∈ M , the exponential mapping expx is onto. In fact, for every y there is a
minimizing geodesic joining x to y which is normal. This can be shown by the
arguments which were given at the end of the proof of Theorem 2.3.5.

A Brenier-McCann Theorem on Lipschitz SR structures

Before stating our existence and uniqueness result for Lipschitz SR structures,
we introduce a definition.

Definition 3.4.10. Given a c-convex function ψ : M → R, we call “moving”
set Mψ and “static” set Sψ respectively the sets defined as follows:

Mψ :=
{
x ∈M |x 6∈ ∂cψ(x)

}
,

Sψ := M \Mφ =
{
x ∈M |x ∈ ∂cψ(x)

}
.

As shown by the following result, under classical assumptions on the mea-
sures and Lipschitzness of the sub-Riemannian structure, static points do not
move while moving points obey a transportation law of the form (3.29)-(3.30).

Theorem 3.4.11. Let (∆, g) be a Lipschitz sub-Riemannian structure on M
and µ, ν be two compactly supported probability measures on M . Assume that
µ is absolutely continuous with respect to the Lebesgue measure. Then there is
existence and uniqueness of an optimal transport map from µ to ν for the SR
quadratic cost c : M ×M → [0,+∞) defined by

c(x, y) :=
1
2
d2
SR(x, y) ∀x, y ∈M.

In fact, there is a continuous c-convex function ψ : M → R such that the
following holds:

(i) Mψ is open, and ψ is Lipschitz in charts on Mψ. In particular ψ is
differentiable µ-a.e. in Mψ.

(ii) For µ-a.e, x ∈ Sψ, ∂cψ(x) = {x}.
In particular, there exists a unique optimal transport map defined µ-a.e. by

T (x) :=
{

expx (Dxψ) if x ∈Mψ,
x if x ∈ Sψ,

and for µ-a.e. x ∈M there exists a unique minimizing geodesic between x and
T (x).

Proof. Let S ⊂ Supp(µ)× Supp(ν) and (ψ,ψc) be respectively the c-cyclically
monotone set and the c-pair of potentials satisfying (3.23)-(3.25). Since the sets
Supp(µ),Supp(ν) are assumed to be compact, both ψ,ψc are indeed continuous
and the supremum and infimum in (3.23)-(3.24) are attained. We check easily
that x ∈ M belongs to Sψ if and only if ψ(x) = ψc(x). Then Mψ coincides
with the set {

x ∈M |ψ(x) 6= ψc(x)
}

=
{
x ∈M |ψ(x) > ψc(x)

}
,
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which is open by continuity of ψ and ψc. Let us now prove that ψ is Lipschitz
in charts in an open neighborhood of Mψ ∩ Supp(µ). Let x ∈ Mψ be fixed.
Since x 6∈ ∂cψ(x) and ψc(x) is closed in M (by continuity of ψ,ψc and com-
pactness of S), there is r > 0 such that dSR(x, y) > 2r for any y ∈ ∂cψ(x). In
addition, since the set ∂cψ is closed in M ×M (again by continuity of ψ,ψc
and compactness of S), there exists a neighborhood Vx of x which is included
in Mψ such that

dSR(z, w) ≥ r ∀z ∈ Vx, ∀w ∈ ∂cψ(z).

Let ψx,r : M → R be the function defined by

ψx,r(z) := sup
{
ψc(y)− 1

2
d2
SR(z, y) | y ∈ π2(S), dSR(z, y) ≥ r

}
.

By construction, ψ coincides with ψx,r on Vx. By assumption, dSR is Lipschitz
in charts outside the diagonal, then by compactness of S we deduce that ψx,r
is Lipschitz in charts. In conclusion Ψ is Lipschitz in charts on Mψ and (i) is
proved.

To prove (ii), we observe that it suffices to prove the result for x belonging to
an open set V ⊂M on which the horizontal distribution ∆(x) is parametrized
by a orthonormal family a smooth vector fields F = {X1, . . . , Xm}. In fact,
up to working in charts, we can assume that V is a convex subset of Rn where
the C2-norms of the Xi’s are bounded. Let us fix a compact ball B in V and
show that (ii) holds for µ-a.e. x ∈ B.

Recall that the Hamiltonian H : V × (Rn)∗ → R which is associated to our
sub-Riemannian structure is defined by (see Chapter 2)

H(x, p) :=
1
2

m∑
i=1

(
p ·Xi(x)

)2 ∀(x, p) ∈ V ×
(
Rn
)∗
.

For every p ∈ (Rn)∗ \ {0}, denote by Πp the linear hyperplane in Rn which is
orthogonal to p, that is

Πp :=
{
v ∈ Rn | p · v = 0

}
.

From Lemma 2.2.5 and its proof, for every x̄ ∈ V and every p̄ ∈ (Rn)∗ with
H (x̄, p̄) 6= 0, there is ρ > 0 such that the Dirichlet problem{

H(x,DxS(x)) = H
(
x̄, p̄
)
,

S|x̄+Πp̄ = 0, (3.38)

admits a solution of class C1 on the ball B(x̄, ρ). We leave the reader to check
that the radius ρ depends ”continuously” on x̄, H(x̄, p) and |p| (|p| denotes the
Euclidean norm of p). Then, by compactness of B there is a function

ρ : (0,+∞)× (0,+∞) −→ (0,∞)

which is decreasing in the first variable and increasing in the second variable
such that for every x̄ ∈ B and every p̄ ∈ (Rn)∗ with H (x̄, p̄) 6= 0, the solution to
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(3.38) is defined on the open ball B (x̄, ρ(H(x̄, p̄), |p̄|)). For any x̄, p̄ satisfying
the previous assumptions, we denote by

Sx̄,p̄ : B
(
x̄, ρ
(
H(x̄, p̄), |p̄|

))
−→ R

the solution to the Dirichlet problem (3.38), with ρx̄,p̄ := ρ(H(x̄, p̄), |p̄|). The
functions Sx̄,p̄ being constructed by the method of characteristics (see Proof
of Lemma 2.2.5), the following result holds (note that the parametrization of
characteristics that we use in the statement of Lemma 3.4.12 differs from the
one which is used to construct Sx̄,p̄, see last statement).

b

x̄ p̄

x̄ + Πp̄

b

zx̄,p̄(x) b

x

Lemma 3.4.12. There is a function

τ : (0,+∞)× (0,+∞) −→ (0,+∞)

which is increasing in the first variable and decreasing in the second variable
such that the following property holds:
For every x̄ ∈ B, for every p̄ ∈ (Rn)∗ with H (x̄, p̄) 6= 0, and every x ∈
B (x̄, ρx̄,p̄/2) there are

zx̄,p̄(x) ∈ (x̄+ Πp̄) ∩B (x̄, ρx̄,p̄)

and tx̄,p̄(x) ∈
(
−τ
(
H(x̄, p̄), |p̄|

)
, τ
(
H(x̄, p̄), |p̄|

))
such that

x = γx̄,p̄
(
tx̄,p̄(x); zx̄,p̄(x)

)
where (we set τx̄,p̄ := τ

(
H(x̄, p̄), |p̄|

)
)(

γx̄,p̄
(
·; zx̄,p̄(x)

)
, px̄,p̄

(
·; zx̄,p̄(x)

))
: (−τx̄,p̄, τx̄,p̄) −→ V ×

(
Rn
)∗

is the solution to the Hamiltonian system{
γ̇x̄,p̄

(
t; zx̄,p̄(x)

)
= ∂H

∂p

(
γx̄,p̄

(
t; zx̄,p̄(x)

)
, px̄,p̄

(
t; zx̄,p̄(x)

))
ṗx̄,p̄

(
t; zx̄,p̄(x)

)
= −∂H∂x

(
γx̄,p̄

(
t; zx̄,p̄(x)

)
, px̄,p̄

(
t; zx̄,p̄(x)

))
,
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with

γx̄,p̄
(
0; zx̄,p̄(x)

)
= zx̄,p̄(x) and px̄,p̄

(
0; zx̄,p̄(x)

)
= p̄.

In particular, γx̄,p̄ is an horizontal path joining zx̄,p̄(x) to x which satisfies

H
(
γx̄,p̄

(
t; zx̄,p̄(x)

)
, px̄,p̄

(
t; zx̄,p̄(x)

))
= H (zx̄,p̄(x), p̄) ∀t ∈ (−τx̄,p̄, τx̄,p̄) .

For every x ∈ V, we denote by ∆⊥(x) the set of p ∈ (Rn)∗ such that
H(x, p) 6= 0. Pick a sequence {(xk, pk)}k of B × (Rn)∗ which is a dense subset
of {

(x, p) ∈ B × (Rn)∗ | p ∈ ∆⊥(x)
}
.

and set for every k,

ρk := ρxk,pk , τk := τxk,pk , tk(·) := txk,pk(·),
zk(·) := zxk,pk(·), γk(·, ·) := γxk,pk(·, ·), pk(·, ·) := pxk,pk(·, ·).

The following result is a consequence of the Lipschitz regularity of the sub-
Riemannian distance along horizontal paths together with Rademacher’s the-
orem.

Lemma 3.4.13. There is a set N of Lebesgue measure zero in V such that for
every x ∈ B \N and any k, the following property holds:

x ∈ B
(
xk, ρk/2

)
and x = γk

(
t; zk(x)

)
=⇒ s 7→ ψ

(
γk
(
s; zk(x)

))
is differentiable at t.

Proof of Lemma 3.4.13. Let k be fixed. By construction, all the curves γk(·; z)
(with z ∈ (x̄+ Πpk)∩B (xk, ρk)) are horizontal with respect to the distribution
(we may assume without loss of generality that the curves γk(·; z) are defined
on (−τk, τk) for all z ∈ (x̄+ Πpk)∩B (xk, ρk)). The potential ψ is expressed as

ψ(x) = max
{
ψc(y)− 1

2
d2
SR(x, y) | y ∈ π2(S)

}
∀x ∈M,

with ψc continuous and π2(S) compact. Hence, given s̄ ∈ (−τk, τk), there is
ȳ ∈ π2(S) such that

ψ
(
γk
(
s̄; z
))

= ψc
(
ȳ
)
− 1

2
d2
SR

(
γk
(
s̄; z
)
, ȳ
)
.

Then we have for every s ∈ (−τk, τk),

ψ (γk(s; z)) ≥ ψc
(
ȳ
)
− 1

2
d2
SR (γk(s; z), ȳ)

≥ ψc
(
ȳ
)
− d2

SR

(
γk(s; z), γk,l

(
s̄; z
))
− d2

SR

(
γk
(
s̄; z
)
, ȳ
)

≥ ψ
(
γk
(
s̄; z
))
− 2H

(
z, pk

)∣∣s− s̄∣∣2
≥ ψ

(
γk
(
s̄; z
))
− 4τkH

(
z, pk

)∣∣s− s̄∣∣.
This shows that each function s 7→ ψ (γk(s; z)) is locally Lipschitz on its do-
main. By Rademacher’s theorem, we infer that it is differentiable almost ev-
erywhere on (−τk, τk). Since the paths γk(·; z) with z ∈ (xk + Πpk)∩B (xk, ρk)
laminate a set bigger which is than the ball B(xk, ρk/2) in a continuous way, Fu-
bini’s theorem implies the existence of a negligeable set Nk,l such that the prop-
erty stated in the lemma holds for k. We conclude by setting N = ∪Nk.
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Before starting the proof of (ii), we need a last result giving an estimates
on the deviation of normal geodesics. For every (x, p), we set (γx,p, px,p) :=
(γx,p(·;x), px,p(·;x)), the solution of the Hamiltonian system starting at (x, p);
it is defined on (−τ(H(x, p), |p|), τ(H(x, p), |p|)).
Lemma 3.4.14. There is a function

C : (0,+∞)× (0,+∞) −→ (0,+∞)

which is decreasing in the first variable and increasing in the second variable
such that the following property holds:
For every h,R > 0, every k, and every (x, p) ∈ B × (Rn)∗ satisfying

H
(
xk, pk

)
, H(x, p) > h,

∣∣pk∣∣, |p| < R, x ∈ B
(
xk, ρk/2

)
, (3.39)

one has∣∣γk(tk(x) + s; zk(x)
)
− γx,p(s)

∣∣ ≤ C(h,R)
∣∣pk(tk(x); zk(x)

)
− p
∣∣ s, (3.40)

for every s ∈ (−τ(h,R), τ(h,R)) ∩ (−tk(x)− τ(h,R),−tk(x) + τ(h,R)).

Proof of Lemma 3.4.14. Since the C1-norms of the Xi’s are bounded on V,
there is an increasing function P : (0,+∞)→ (0,+∞) such that the solutions
to our Hamiltonian system starting from a pair (x, p) with x ∈ B, H(x, p) > h
and |p| < R remains in the set V×B(0, P (R)) on the interval (−τ(h,R), τ(h,R))
(note that since H is constant along the Hamiltonian trajectories, the solutions
remains in the set {H(x, p) > h}). Now, considering Lipschitz constants of the
Hamiltonian vector field on the ”cylinder” V × B(0, P (R)) (the C2-norms of
the Xi’s are bounded on V) and using Gronwall’s Lemma (see Appendix A),
we prove easily the existence of an increasing function C : [0,+∞)→ [0,+∞)
such that∣∣γk(tk(x) + s; zk(x)

)
− γx,p(s)

∣∣+
∣∣pk(tk(x) + s; zk(x)

)
− px,p(s)

∣∣
≤ C(R)

∣∣pk(tk(x); zk(x)
)
− p
∣∣ , (3.41)

for every h,R > 0, every k, and every (x, p) ∈ B × (Rn)∗ satisfying (3.39),
and every s ∈ (−τ(h,R), τ(h,R)) ∩ (−tk(x)− τ(h,R),−tk(x) + τ(h,R)). Let
us denote by I the latter interval and set

u(s) :=
∣∣γk(tk(x) + s; zk(x)

)
− γx,p(s)

∣∣ ∀s ∈ I.
Considering again the Lipschitz constants of the Hamiltonian vector field that
we always denote by K, we obtain formally for every s,

u(s) =
∣∣∣∣∫ s

0

∂H

∂p

(
γk
(
tk(x) + r; zk(x)

)
, pk
(
tk(x) + r; zk(x)

))
−∂H
∂p

(γx,p(r), px,p(r)) dr
∣∣∣∣

≤ K

∫ s

0

u(r) dr +K

∫ s

0

∣∣pk(tk(x) + r; zk(x)− px,p(r)
∣∣ dr,

which by (3.41) gives

u(s) ≤ K
∫ s

0

u(r) dr +K

∫ s

0

C(R)
∣∣pk(tk(x); zk(x)

)
− p
∣∣ dr.

Gronwall’s Lemma (see Lemma A.1.1) concludes the proof.
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We are now ready to prove that for every x ∈ B\N , we have ∂cψ(x) = {x}.
Fix x ∈ B \N and argue by contradiction, that is assume that there is ȳ 6= x
such that ȳ ∈ ∂cψ(x) \ {x}. Then we have (remembering Remark 3.2.12)

ψ(x) + c
(
x, ȳ
)
≤ ψ(z) + c

(
z, ȳ
)

∀z ∈M,

which can be written as

ψ(x)− ψ(z) ≤ 1
2
d2
SR

(
z, ȳ
)
− 1

2
d2
SR

(
x, ȳ
)

∀z ∈M. (3.42)

Since dSR is Lipschitz in charts outside the diagonal, there is a normal minimiz-
ing geodesic joining x to ȳ (see Remark 3.4.9), that is there is p ∈ T ∗xM such
that expx(p) = ȳ and dSR(x, y)2 = 2H(x, p) 6= 0. Note that since x belongs to
∂cψ(x), we have

ψ(x) = ψ(x) + c(x, x) ≤ ψ(z) + c(z, x) ∀z ∈ V.
Set h := H(x, p)/2, R := 2|p| and pick k such that

H (xk, pk) > h, |pk| , |p| < R, x ∈ B (xk, ρk/2) .

Applying the previous inequality with z = γk (tk(x) + s; zk(x)) and s small
yields

ψ
(
γk
(
tk(x); zk(x)

))
= ψ(x)

≤ ψ
(
γk
(
tk(x) + s; zk(x)

))
+

1
2
d2
SR

(
γk
(
tk(x) + s; zk(x)

)
, x
)

≤ ψ
(
γk
(
tk(x) + s; zk(x)

))
+H (zk(x), pk) s2,

because γk (·; zk(x)) is an horizontal path joining x = γk (tk(x); zk(x)) to
γk (tk(x) + s; zk(x)) of length s

√
2H (zk(x), pk). Since x does not belong to

N , the function
s 7−→ ψ

(
γk
(
tk(x) + s; zk(x)

))
is differentiable at s = 0. Then Lemma 3.4.13 together with the previous
inequality allows us to write

d

ds
ψ
(
γk
(
tk(x) + s; zk(x)

))
|s=0

= 0. (3.43)

Since dSR is Lipschitz outside the diagonal and ȳ 6= x, there are ρ,K > 0 such
that ∣∣d2

SR

(
z, ȳ
)
− d2

SR

(
z′, ȳ

)∣∣ ≤ K|z′ − z| ∀z, z′ ∈ B(x, ρ).

Then applying (3.42) with z = γk
(
tk(x)+s; zk(x)

)
and s small and using (3.40)

yields (as in Lemma 3.4.14, γx,p denotes the geodesic starting at x with initial
covector p, note that γx,p(s) belongs to V for small s)

ψ(x)− ψ
(
γk
(
tk(x) + s; zk(x)

))
≤ 1

2
d2
SR

(
γk
(
tk(x) + s; zk(x)

)
, ȳ
)
− 1

2
d2
SR (x, ȳ)

≤ K

2

∣∣γk(tk(x) + s; zk(x)
)
− γx,p(s)

∣∣+
1
2
d2
SR

(
γx,p(s), ȳ

)
− 1

2
d2
SR (x, ȳ)

≤ KC(h,R)
2

∣∣pk(tk(x); zk(x)
)
− p
∣∣ s+

1
2

(1− s)2d2
SR

(
x, ȳ
)
− 1

2
d2
SR

(
x, ȳ
)

=
(
KC(h,R)

2

∣∣pk(tk(x); zk(x)
)
− p
∣∣− d2

SR

(
x, ȳ
))

s+
d2
SR(x, y)

2
s2.
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The quantity
KC(h,R)

2

∣∣pk(tk(x); zk(x)
)
− p
∣∣

tends to 0 as (xk, pk) tends to (x, p). We infer that for (xk, pk) close enough
to (x, p), the derivative of the function s 7→ ψ

(
γk
(
tk(x) + s; zk(x)

))
cannot be

zero. This contradicts (3.43).

It remains to prove the formula for T (x) and the uniqueness of minimizing
geodesic between x and T (x) µ-almost everywhere. We need to show that

∂cψ(x) ∩ Supp(ν) = expx

(
1
2
Dxψ

)
for all x ∈ Mψ ∩ Supp(µ) where ψ is differentiable, which is the case for µ-
almost every x ∈ Mψ by assertion (i) and Rademacher’s theorem. This is a
consequence of Lemma 2.3.6 applied to the function z 7→ −ψ(z) + ψc(y) at
the point x with y ∈ ∂ψc(x). Moreover, again by Lemma 2.3.6, the geodesic
from x to T (x) is unique for µ-a.e. x ∈ Mψ ∩ Supp(µ). Since T (x) = x for
x ∈ Sψ ∩ Supp(µ), the geodesic is clearly unique also in this case.

Remark 3.4.15. If the sub-Riemannian structure is assumed to be ideal, then
the potential ψ can be shown to be locally semiconcave on the moving set.

Remark 3.4.16. The above arguments show that Theorem 3.4.11 remains true
under more general assumptions. Let (∆, g) be a complete sub-Riemannian
structure on M and µ, ν be two compactly supported probability measures in M
with µ is absolutely continuous with respect to the Lebesgue measure. Assume
that there are two open sets Ω1,Ω2 ⊂M with

µ (M \ Ω1) = 0 and Supp(ν) ⊂ Ω2

such that the sub-Riemannian distance is Lipschitz in charts on (Ω1 × Ω2)\D.
Then there is existence and uniqueness of an optimal transport map with respect
to the sub-Riemannian quadratic cost.

3.5 Other examples

We conclude the present chapter with a list of examples for which we have
existence and uniqueness of optimal transport maps for the SR quadratic cost,
that is the cost c : M ×M → [0,+∞) defined by

c(x, y) :=
1
2
d2
SR(x, y) ∀x, y ∈M.

Given a cost function, we shall say that the Monge problem is well-posed, if we
have existence and uniqueness of optimal transport maps from an absolutely
continuous compactly supported measure to a compactly supported measure.
All the examples that we review below have already been encoutenred within
the text.
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Fat distributions

Recall (see Example 1.3.13) that a distribution ∆ on M is called fat if, for
every x ∈M and every section X of ∆ with X(x) 6= 0, there holds

TxM = ∆(x) +
[
X,∆

]
(x), (3.44)

where [
X,∆

]
(x) :=

{
[X,Z](x) |Z section of ∆

}
.

We saw that fat distributions do not admit non-trivial singular horizontal paths.
This means that any complete sub-Riemannian structure associated with a fat
distribution is ideal. In conclusion, by Theorem 3.4.11, the Monge problem for
any sub-Riemannian structure associated with a fat distributions is well-posed.

Two-generating distributions

A distribution ∆ is called two-generating if

TxM = ∆(x) + [∆,∆](x) ∀x ∈M.

Two-generating distributions do not admit Goh paths (see Example 2.4.5).
By Theorem 3.4.11, the Monge problem for any sub-Riemannian structure
associated with a two-generating distributions is well-posed.

Totally nonholonomic distributions on three-dimensional
manifolds

Assume that M has dimension 3, that ∆ is a nonholonomic rank-two distribu-
tion on M , and define

Σ∆ :=
{
x ∈M | ∆(x) + [∆,∆](x) 6= R3

}
.

The set Σ∆ is called the singular set or the Martinet set of ∆.

Proposition 3.5.1. Let ∆ be a totally nonholonomic distribution on a three-
dimensional manifold. Then, the set Σ∆ is a closed subset of M which is
countably 2-rectifiable. Moreover, a non-trivial horizontal path γ : [0, 1] → M
is singular if and only if it is included in Σ∆.

Proof. The first part will follow from Proposition 3.5.2 while the second part
has already been proved in Example 1.3.15.

Proposition 3.5.1 implies that for any pair (x, y) ∈M×M (with x 6= y) such
that x or y does not belong to Σ∆, any sub-Riemannian minimizing geodesic
between x and y is nonsingular. Moreover Σ∆ has Lebesgue measure zero. As
a consequence, by Remarks 3.4.4 and 3.4.16, the Monge problem is well-posed.
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Medium-fat distributions

The distribution ∆ is called medium-fat if, for every x ∈ M and every vector
field X on M such that X(x) ∈ ∆(x) \ {0}, there holds

TxM = ∆(x) + [∆,∆](x) + [X, [∆,∆]](x).

As shown in Example 2.4.5, medium-fat distributions do not admit non-trivial
Goh paths. As a consequence, the Monge problem for sub-Riemannian struc-
tures involving medium-fat distributions is well-posed.

Codimension-one nonholonomic distributions

Let M have dimension n and ∆ be a nonholonomic distribution of rank n− 1.
As in the case of nonholonomic distributions on three-dimensional manifolds,
we can define the singular set associated to the distribution as

Σ∆ :=
{
x ∈M | ∆(x) + [∆,∆](x) 6= TxM

}
.

The following result holds.

Proposition 3.5.2. If ∆ is a nonholonomic distribution of rank n−1, then the
set Σ∆ is a closed subset of M which is countably (n−1)-rectifiable. Moreover,
any Goh path is contained in Σ∆.

Proof. The fact that Σ∆ is a closed subset of M is obvious. Let us prove that
it is countably (n − 1)-rectifiable. Since it suffices to prove the result locally,
we can assume that we have

∆(x) = Span
{
X1(x), . . . , Xn−1(x)

}
∀x ∈ V,

where V is an open neighborhood of the origin in Rn. Moreover, doing a
change of coordinates if necessary, we can also assume that (with coordinates
(x1, . . . , xn))

Xi = ∂xi + αi(x) ∂xn ∀i = 1, . . . , n− 1,

where each αi : V −→ R is a C∞ function satisfying αi(0) = 0. Hence, for any
i, j ∈ {1, . . . n− 1}, we have

[
Xi, Xj

]
=
[(

∂αj
∂xi
− ∂αi
∂xj

)
+
(
∂αj
∂xn

αi −
∂αi
∂xn

αj

)]
∂xn ,

and so

Σ∆ ={
x ∈ V |

(
∂αj
∂xi
− ∂αi
∂xj

)
+
(
∂αj
∂xn

αi −
∂αi
∂xn

αj

)
= 0 ∀i, j ∈ {1, . . . , n− 1}

}
.

For every tuple I = (i1, . . . , ik) ∈ {1, . . . , n− 1}k we denote by XI the smooth
vector field constructed by Lie brackets of X1, X2, . . . , Xn−1 as follows,

XI =
[
Xi1 ,

[
Xi2 , . . . ,

[
Xik−1 , Xik

]
. . .
]]
.
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We call k = length(I) the length of the Lie bracket XI . Since ∆ is totally
nonholonomic, there is some positive integer r such that

Rn = Span
{
XI(x) | length(I) ≤ r

}
∀x ∈ V.

It is easy to see that, for every I such that length(I) ≥ 2, there is a smooth
function gI : V → R such that

XI(x) = gI(x)∂xn ∀x ∈ V.

Defining the sets Ak as

Ak :=
{
x ∈ V | gI(x) = 0 ∀I such that length(I) ≤ k

}
,

we have

Σ∆ =
r⋃

k=2

(Ak \Ak+1) .

By the Implicit Function Theorem, it is easy to see that each set Ak \ Ak+1

can be covered by a countable union of smooth hypersurfaces. Indeed assume
that some given x belongs to Ak \ Ak+1. This implies that there is some
J = (j1, . . . , jk+1) of length k + 1 such that gJ(x) 6= 0. Set I = (j2, . . . , jk+1).
Since gI(x) = 0, we have

gJ(x) =
(
∂gI
∂xj1

(x) +
∂gI
∂xn

(x)αj1(x)
)
6= 0.

Hence, either ∂gI
∂xj1

(x) 6= 0 or ∂gI
∂xn

(x) 6= 0.
Consequently, we deduce that we have the following inclusion

Ak \Ak+1 ⊂
⋃

length(I)=k

{
x ∈ V | ∃ i ∈ {1, . . . , n} such that

∂gI
∂xi

(x) 6= 0
}
.

We conclude easily.
The fact that any Goh path is contained in Σ∆ is obvious.

As a consequence by Remarks 3.4.4 and 3.4.16, the Monge problem for sub-
Riemannian structures involving codimension one distributions is well-posed.

Rank-two distributions in dimension four

Let (M,∆, g) be a complete sub-Riemannian manifold of dimension four, and
let ∆ be a regular rank-two distribution, that is satisfying

TxM =

Span
{
X1(x), X2(x),

[
X1, X2

]
(x),

[
X1,

[
X1, X2

]]
(x),

[
X2,

[
X1, X2

]]
(x)
}

for any local parametrization F = {X1, X2} of the distribution. In Example
1.3.17, we saw that there is a smooth horizontal vector field X on M such
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that the singular horizontal paths γ parametrized by arc-length are exactly the
integral curves of X, i.e. the curves satisfying

γ̇(t) = X(γ(t)).

For every x ∈M , denote by O(x) the orbit of x by the flow of X and set

Ω :=
{

(x, y) ∈M ×M | y /∈ O(x)
}
.

According to Remark 3.4.4, the following result holds:

Proposition 3.5.3. Under the assumption above, the function dSR is locally
semiconcave in the interior of Ω.

The above result allow us to obtain existence and uniqueness of optimal
transport maps in certain cases. Let us consider the distribution given in
Example 1.3.16, that is the distribution ∆ in R4 spanned by the vector fields

X1 = ∂x1, X2 = ∂x2 + x1∂x3 + x3∂x4.

As shown in Example 1.3.16, an horizontal path γ : [0, 1] → R4 is singular if
and only if it satisfies, up to reparameterization by arc-length,

γ̇(t) = X1
(
γ(t)

)
∀t ∈ [0, 1].

By the above proposition, we deduce that, for any complete metric g on R4,
the sub-Riemannian distance function dSR is locally semiconcave on the set

Ω =
{

(x, y) ∈ R4 × R4 | (y − x) /∈ Span{e1}
}
,

where e1 denotes the first vector in the canonical basis of R4. Consequently,
for any pair of compactly supported probability measures µ, ν on M such that
µ is absolutely continuous with respect to the Lebesgue measure and

Supp
(
µ× ν

)
⊂ Ω,

the Monge problem is well-posed.

3.6 Notes and comments

In 1781, Monge’s original work [Mon81] was concerned with the moving of soil
that was modelized as an optimal transport problem consisting in minimizing
the transportation cost ∫

R3
|T (x)− x| dµ(x),

between continuous distributions of mass. The Monge problem was rediscov-
ered several decades later, in 1942, by Kantorovitch [Ka42] who proved a duality
theorem to study the relaxed form of the problem (which is by now refered as
Kantorovitch problem). We refer the reader to the textbooks [Vil03, Vil08] by
Villani for historial accounts on the optimal transport theory.

The Kantorovitch duality theorem which is not precisely stated in the
present monograph appears through Theorem 3.2.13 and Corollary 3.2.14. Ac-
tually, our presentation of the theory leading to existence and uniqueness of
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optimal transport maps closely follows the one of Gangbo and McCann in
[GM96]. For sake of simplicity, we restrict our attention to transportation
problems between compactly supported probability measures from a smooth
manifold into itself with continuous costs. Most of the results of Sections
3.1-3.2 remain true in the more general context of lower semicontinuous costs
on the product of two Polish spaces and non-compactly supported probabil-
ity measures. We refer the reader to Villani’s monograph [Vil08] for general
statements.

As seen through Example 3.1.2, transport maps may not exist. In fact,
Pratelli [Pra07] proved that transport maps do exist as soon as the initial mea-
sure is assumed to be non-atomic. The Prokhrorov Theorem which is used in
the proof of Theorem 3.2.1 can be found in Billingsley’s book [Bil99]. Theorem
3.2.13 extends a result by Rockafellar [Roc66] about the sub-differentials of con-
vex functions. The sub-TWIST condition introduced in Section 3.3 is a natural
extension of the classical TWIST condition (see [Vil08]). Thanks to Lemma
2.3.6, many costs obtained in a variational way do satisfy the sub-TWIST con-
dition. This is the case of the quadratic Euclidean cost appearing in Example
3.3.8, or of the quadratic geodesic cost appearing in Example 3.3.10. In fact,
Examples 3.3.8-3.3.10 refer respectively to theorems by Brenier [Bre91] and
McCann [McC01]. This type of result can be developped further by consid-
ering locally Lipschitz costs associated with problems of calculus of variations
involving Tonelli Lagrangians (see [BB07]) or even with some optimal control
problems (see [AL09]). As seen in Example 3.1.3, minimizers of the original
Monge problem with cost c(x, y) = |y− x| in Rn may not be unique. However,
existence of optimal transport maps can be proved, see [Vil08] and references
therein.

The study of Monge-type problems in sub-Riemannian geometry began with
a paper by Ambrosio and Rigot [AR04] about the transportation problem in the
Heisenberg group (see also [Rig05]). Then, Agrachev and Lee [AL09] extended
the well-posedness result of Ambrosio-Rigot to the case of sub-Riemannian
quadratic costs which are Lipschitz in charts on M ×M (see Remark 3.3.11).
Then, Figalli and the author [FR10] removed the assumption of Lipschitzness
on the diagonal; this is Theorem 3.4.11. We observe that our proof of assertion
(ii) differs from the original proof in [FR10] which was based on a Pansu-
Rademacher Theorem. All these results are concerned with SR quadratic costs
(that is c = d2

SR). As in the Euclidean case, the Monge problem for the non-
quadratic cost c = dSR does not enjoy uniqueness. Using techniques developped
by Champion and De Pascale [CDP11], De Pascale and Rigot [DPR11] obtained
an existence result for the classical Monge problem in the Heisenberg group.

The local semiconcavity of some SR distances outside the diagonal is demon-
strated in Theorem 3.4.3. Such regularity is fundamental and sometimes nec-
essary. First, it shows that distances of ideal sub-Riemannian structures share
the same type of properties as Riemannian distances, at least outside the diag-
onal. It can be useful to get Sard’s theorems and as a consequence regularity
properties of sub-Riemannian spheres, see [Rif04, Rif06]. Then, the semicon-
cavity of the cost allows to consider probability measures which do not charge
rectifiable sets and hence not necessarily continuous, see [Vil08]. Finally, semi-
concavity of the cost may be transfered to potentials (see Remark 3.4.15) and
then permit to get a Monge-Ampère-like equation (see Remark 3.1.1). This
latter consequence is due to a famous theorem by Alexandrov (see [EG92] )
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which states that locally semiconvace functions are two times differentiable al-
most everywhere. We refer the reader to our paper [FR10] for further details on
sub-Riemannian Monge-Ampère equations, to [CR05, RT07] for further details
on semiconcave SR distances, and to the Cannarsa-Sinestrari’s book [CS04] for
an detailed exposition on semiconcavity.

We do not know if the Monge problem (for the SR quadratic cost) is well-
posed for general sub-Riemannian structures. The method presented in this
chapter requires regularity properties for dSR. According to the Mitchell ball-
box theorem (see [Jea12, Mit85, Mon02]), the sub-Riemannian distance is al-
ways locally Hölder in charts. In Chapter 2, we saw that given a complete
sub-Riemannian structure and x ∈M the function

y ∈M 7−→ dSR(x, y)

is Lipschitz in charts on a dense subset of M . We do not know if this set
has necessarily full Lebesgue measure in M (note that the Sard Conjecture
that we mentioned in Section 2.6 would imply such a result). Anyway, such
a result would not be sufficient to prove the well-posedness of Monge problem
for general sub-Riemannian structures...





Appendix A

Ordinary differential equations

We recall here basic facts on ordinary differential equations. For further details,
we refer the reader to the textbook [HS74].

A.1 Preliminaries

Absolutely continuous curves

A function f : [a, b]→ Rn is said to be absolutely continuous, if for each ε > 0,
there exists δ > 0 such that for each family of disjoints intervals {]ai, bi[}i∈N
included in [a, b], and satisfying∑

i∈N
bi − ai < δ,

we have ∑
i∈N
|f(bi)− f(ai)| < ε.

Any absolutely continuous function is continuous. In fact, a function f :
[a, b] → Rn is absolutely continuous if and only if it is differentiable almost
everywhere on [a, b], its derivative ḟ(t) := d

dtf(t) is integrable with respect to
the Lebesgue measure on [a, b], and we have for each t ∈ [a, b],

f(t) = f(a) +
∫ t

a

d

dt
f(s)ds ∀t ∈ [a, b].

A function f : [a, b]→ Rn is called absolutely continuous with square integrable
derivative if it is absolutely continuous on [a, b] and satisfies

ḟ ∈ L2
(
[a, b]; Rn

)
.

Let M be a smooth manifold without boundary of dimension n ≥ 2. A function
f : [a, b]→M is called absolutely continuous (resp. absolutely continuous with
square integrable derivative) if it is absolutely continuous (resp. absolutely
continuous with square integrable derivative) in charts. Such a notion does not
depend on the atlas chosen to cover M .
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The Gronwall Lemma

The Gronwall lemma is a key tool to obtain estimates involving solutions of
differential equations.

Lemma A.1.1 (Gronwall’s Lemma). Let ε > 0, α : [0, ε] :→ R be a continuous
function, and β ∈ L1([0; ε],R). Assume that u : [0, ε] → R is a continuous
function satisfying

u(t) ≤ α(t) +
∫ t

0

β(s)u(s)ds ∀t ∈ [0, ε]. (A.1)

Then there holds

u(t) ≤ α(t) + e
R t
0 β(s)ds

∫ t

0

e−
R s
0 β(r)drβ(s)α(s) ds ∀t ∈ [0, ε]. (A.2)

If, in addition, α is nondecreasing, then

u(t) ≤ α(t)e
R t
0 β(s)ds ∀t ∈ [0, ε]. (A.3)

Proof. Let us first assume that α is of class C1 on [0, ε]. Define the function
µ : [0, ε]→ R by

µ(t) := α(t) +
∫ t

0

β(s)u(s) ds ∀t ∈ [0, ε].

The function µ is absolutely continuous on [0, ε], and

µ̇(t) = α̇(t) + β(t)u(t) a.e. t ∈ [0, ε].

By (A.1), we deduce that we have for almost every t ∈ [0, ε],

µ̇(t) ≤ α̇(t) + β(t)µ(t).

Which implies

µ̇(t)− β(t)µ(t) ≤ α̇(t)− β(t)α(t) + β(t)α(t) a.e. t ∈ [0, ε].

Multiplying both sides by e−
R t
0 β(s)ds, we obtain for almost every t ∈ [0, ε],

d

dt

{
µ(t)e−

R t
0 β(s)ds

}
≤ d

dt

{
α(t)e−

R t
0 β(s)ds

}
+ e−

R t
0 β(s)dsβ(t)α(t).

Integrating between 0 and t ∈ [0, ε], we obtain

µ(t)e−
R t
0 β(s)ds − µ(0) ≤ α(t)e−

R t
0 β(s)ds − α(0) +

∫ t

0

e−
R s
0 β(r)drβ(s)α(s)ds.

Using the fact that µ(0) = α(0) together with (A.1), we get (A.2). If α is merely
continuous, we can find for each positive integer k, a C1 function αk : [0, ε]→ R
satisfying

|α(t)− αk(t)| ≤ 1
k

∀t ∈ [0, ε].
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Moreover, by assumption, the function u satisfies

u(t) ≤
[
αk(t) +

1
k

]
+
∫ t

0

β(s)u(s) ds ∀t ∈ [0, ε].

Applying the result proved in the first part of the proof and passing to the
limit gives the result. If α is nondecreasing, the we have for every t ∈ [0, ε],

e
R t
0 β(s)ds

∫ t

0

e−
R s
0 β(r)drβ(s)α(s) ds ≤ α(t)e

R t
0 β(s)ds

∫ t

0

e−
R s
0 β(r)drβ(s) ds

= α(t)
(
e

R t
0 β(s)ds − 1

)
.

We conclude easily.

A.2 Existence and uniqueness results

The Cauchy-Peano Theorem

Let I ⊂ R be an open interval, Ω be an open subset of Rn, and f : I×Ω→ Rn
be a function satisfying the following property:

(HCP ) For every x ∈ Ω, there exist δ > 0, a locally integrable function c :
I → [0,+∞), and a nondecreasing function ω : [0,+∞) → [0,+∞) with
ω(h)→ 0 as h→ 0 such that

|f(t, y)− f(t, z)| ≤ c(t)ω(|y − z|) and |f(t, y)| ≤ c(t)

for almost all t ∈ I and all y, z ∈ B(x, δ).

Given (t0, x0) ∈ I×Ω, our aim is to solve locally the following Cauchy problem

ẋ(t) = f(t, x(t)), a.e. t, x (t0) = x0. (A.4)

Theorem A.2.1 (Cauchy-Peano’s Theorem). Assume that f : I × Ω → Rn
satisfies the property (HCP ). Then for every (t0, x0) ∈ I × Ω, there is ε > 0
such that the Cauchy problem (A.4) admits a solution on [t0 − ε, t0 + ε].

Proof. The proof consists in applying the classical Euler iterative scheme. By
assumption (HCP ), there are δ > 0 and c ∈ L1

loc (I, [0,+∞)) such that

|f(t, y)− f(t, z)| ≤ c(t)ω (|y − z|) and |f(t, y)| ≤ c(t) (A.5)

for almost every t ∈ I and all y, z ∈ B(x0, δ). Since c is locally integrable on
I, there is ε > 0 such that [t0 − ε, t0 + ε] ⊂ I and∫ t0+ε

t0−ε
M(t) dt < δ. (A.6)

We are going to prove that the Cauchy problem (A.4) admits a solution on
[t0, t0 + ε]. Let

π =
{
t0, t1, · · · , tN

}



124 APPENDIX A. ORDINARY DIFFERENTIAL EQUATIONS

be a partition of [t0, t0 + ε]; we recall that the diameter µ(π) of π is given by

µ(π) := max
{
ti+1 − ti | 0 ≤ i ≤ N − 1

}
.

We proceed by considering, on the interval [t0, t1], the Cauchy problem

ẋ(t) = f(t, x0), x(t0) = x0.

It has a unique solution x on [t0, t1] given by

x(t) = x0 +
∫ t

t0

f(s, x0) ds ∀t ∈ [t0, t1].

Note that by (A.6), one has

|x(t)− x0| ≤
∫ t

t0

|f(s, x0)| ds ≤
∫ t

t0

M(s) ds < δ,

for every t ∈ [t0, t1]; we set x1 := x(t1). Next we iterate, by considering on
[t1, t2] the Cauchy problem

ẋ(t) = f(t, x1), x(t1) = x1.

The next so-called node of the scheme is x2 := x(t2). We proceed in this
manner until an arc xπ has been defined no all of [t0, t0 + ε]. By construction,
we have

|xπ(t)− x0| ≤
∫ t0+ε

t0−ε
M(t) dt < δ ∀t ∈ [t0, t0 + ε].

Moreover, we have for any t, t′ ∈ [t0, t0 + ε] such that t < t′,

|xπ(t′)− xπ(t)| ≤
∫ t′

t

M(s) ds ≤ w(t′ − t),

where the function w : [0,+∞)→ [0,+∞) is defined by

w(h) := max

{∫ t′

t

M(s) ds | t, t′ ∈ [t0, t0 + ε] s.t. t < t′
}
,

for every h ≥ 0. On each interval [ti, ti+1], we have∫ ti+1

ti

|f(s, xi)− f(s, xπ(s))| ds ≤ ω
(
w
(
µ(π)

)) ∫ ti+1

ti

c(t) dt.

Thus we have for any t ∈ [t0, t0 + ε],∣∣∣∣xπ(t)− x0 −
∫ t

t0

f(s, xπ(s)) ds
∣∣∣∣ ≤ ω (w(µ(π)

)) ∫ t

t0

c(s) ds. (A.7)

Now let πj be a sequence of partitions such that πj → 0, that is such that
µ(πj) → 0 as j → ∞. Then the family {xπj}j is equicontinuous and uni-
formly bounded. Then by the Ascoli-Arzelà Theorem, some subsequence of it
converges uniformly to a continuous function x. By the Lebesgue dominating
convergence theorem, the function t 7→ f(t, xπj (t) converges to the function
t 7→ f(t, x(t)) in L1. Moreover, passing to the limit in (A.7) yields

x(t) = x0 + f(s, x(s)) ds ∀t ∈ [t0, t0 + ε].

We proceed in the same way on [t0 − ε, t0] backwards in time.
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Remark A.2.2. The Cauchy-Peano is only an existence result. In the au-
tonomous case, it says that if f : Ω→ Rn is continuous then for every x0 ∈ Ω,
the Cauchy problem

ẋ(t) = f(x(t)), x(0) = x0,

admits at least one solution locally. A counterexample to uniqueness is for
example given by f : R→ R defined by

f(x) :=
√
|x| ∀x ∈ R.

The Cauchy problem ẋ(t) = f(x(t)), x(0) = 0 admits two smooth solutions:

x(t) = 0 and x(t) =
t2

4
∀t ∈ R.

The Cauchy-Carathéodory Theorem

Let I ⊂ R be an open interval, Ω be an open subset of Rn, and f : I×Ω→ Rn
be a function satisfying the following property:

(HCC) For every x ∈ Ω, there exist δ > 0 and a locally integrable function
c : I → [0,+∞) such that

|f(t, y)− f(t, z)| ≤ c(t)|y − z| and |f(t, y)| ≤ c(t)

for almost every t ∈ I and all y, z ∈ B(x, δ).

The following result provides existence and uniqueness for the Cauchy problem
(A.4).

Theorem A.2.3 (Cauchy-Carathéodory’s Theorem). Assume that f : I×Ω→
Rn satisfies the property (HCC). Then for every (t0, x0) ∈ I×Ω, there is ε > 0
such that the Cauchy problem (A.4) admits a solution x : [t0 − ε, t0 + ε] → Ω.
If y : [t0, t0 + ε]→ Ω (or y : [t0− ε, t0]→ Ω) is an other solution of (A.4), then
x(t) = y(t) for all t ∈ [t0 − ε, t0 + ε].

Proof. The local existence is a consequence of Theorem A.2.1. Assume that
x, y are two solutions of the Cauchy problem (A.4) on [t0, t0 + ε]. Set u(t) :=
|x(t)− y(t)| for every t ∈ [t0, t0 + ε]. We have for every t ∈ [t0, t0 + ε],

u(t) =
∣∣∣∣∫ t

t0

f(s, x(s)) ds−
∫ t

t0

f(s, y(s)) ds
∣∣∣∣

≤
∫ t

t0

|f(s, x(s))− f(s, y(s))| ds

≤
∫ t

t0

c(s)u(s) ds.

By Gronwall’s Lemma, we obtain that u(t) = 0 for every t ∈ [t0, t0 + ε].

Remark A.2.4. In the autonomous case, the Cauchy-Carathéodory Theorem
says that if f : Ω→ Rn is locally Lipschitz then for every x0 ∈ Ω, the Cauchy
problem

ẋ(t) = f(x(t)), x(0) = x0,

admits a solution locally and this solution is unique.
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Global existence theorems

By the Cauchy-Carathéodory Theorem, under assumption (HCC), for every
(t0, x0) ∈ I × Ω, the unique solution to the Cauchy problem (A.4) can be
extended to a maximal interval of the form I = (α, β) with α < t0 < β
and α ∈ R ∪ {−∞}, β ∈ R ∪ {+∞}. Under additional assumptions, we can
sometimes insure that any solution can be extended to R.

Theorem A.2.5. Let f : R × Rm → Rn be a function satisfying the assump-
tions (HCC) (with Ω = Rn) and such that there exist two functions K,M in
L1
loc(R, [0,+∞)) such that

|f(t, x)| ≤ K(t)|x|+M(t) a.e. t ∈ R ∀x ∈ Rn. (A.8)

Then any solution of ẋ = f(x(t)) can be extended to R.

Proof. Let (t0, x0) ∈ R × Rn and x : [α, β] → Rn a maximal solution to the
Cauchy problem (A.4) be fixed. We argue by contradiction and assume that
β < +∞ (the case α > −∞ is left to the reader). Set for every t ∈ (α, β),
u(t) := |x(t)|. By (A.8), we have for every t ∈ [t0, β),

u(t) =
∣∣∣∣x0 +

∫ t

t0

f(s, x(s)) ds
∣∣∣∣

≤ |x0|+
∫ t

t0

K(s)u(s) +M(s) ds

≤
(
|x0|+

∫ t

t0

M(s) ds
)

+
∫ t

t0

K(s)u(s) ds.

By Gronwall’s Lemma, we infer that

|x(t)| ≤
(
|x0|+

∫ β

t0

M(s) ds

)
e

R β
t0
K(s)ds =: C < +∞ ∀t ∈ [t0, β).

Then for any t < t′ ∈ [t0, β), we have

|x(t′)− x(t)| =

∣∣∣∣∣
∫ t′

t

f(s, x(s)) ds

∣∣∣∣∣
≤ C

∫ t′

t

K(s) ds+
∫ t′

t

M(s) ds.

Since both K,L are in L1
loc(R, [0,+∞)), this shows that for each sequence {tk}k

converging to β from below, the sequence {x(tk)}k is a Cauchy sequence. Then
x(t) has a limit x(β) as t tends to β. By Theorem A.2.3, the Cauchy problem
ẏ = f(t, y(t)), y(β) = x(β) admits a local solution. This shows that x can be
extended beyond β and yields a contradiction.

Remark A.2.6. For sake of simplicity, we stated Theorem A.2.5 in the case
of a nonautonomous function defined on R × Rn. The same results holds for
a function defined on I × Rn where I is an open interval in R. Namely, any
solution to the Cauchy problem can be extended to I.
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A.3 Linear systems

Let I ⊂ R be an interval and A ∈ L1 (I;Mn(R)) be a function from I into the
set of n×n matrices denoted by Mn(R). By the above results, for every t0 ∈ I,
the Cauchy problem

Ṡ(t) = A(t)S(t), a.e. t ∈ I, S(t0) = In, (A.9)

has a unique solution which is defined on I. In the same way, the Cauchy
problem

Ẏ (t) = −Y (t)A(t), a.e. t ∈ I, Y (t0) = In,

admits a solution defined on I. Hence, the function Z : I →Mn(R) defined as
Z(t) := Y (t)S(t) for every t ∈ I, satisfies for almost every t ∈ I,

Ż(t) = Ẏ (t)S(t) + Y (t)Ṡ(t)
= −Y (t)A(t)S(t) + Y (t)A(t)S(t) = 0.

Since Z(t0) = In, we deduce by uniqueness, that Z(t) = In for every t ∈ I.
This shows that the matrix S(t) is invertible for every t ∈ I.

Proposition A.3.1. Let C ∈ L1
loc(I; Rn), t0 ∈ I, and ξ0 ∈ Rn. The solution

to the Cauchy problem

ξ̇(t) = A(t)ξ(t) + C(t), for a.e. t ∈ I, ξ(t0) = ξ0 (A.10)

is given by

ξ(t) = S(t)ξ0 + S(t)
∫ t

t0

S(s)−1C(s)ds, ∀t ∈ I. (A.11)

Proof. By uniqueness, it suffices to verify that the absolutely continuous func-
tion ξ : I → Rn given by (A.11) satisfies the Cauchy problem (A.10). We have
ξ(t0) = ξ0 and we verify that for almost every t ∈ I,

ξ̇(t) = Ṡ(t)ξ0 + Ṡ(t)
∫ t

y0

S(s)−1C(s)ds+ S(t)S(t)−1C(t)

= A(t)S(t)ξ0 +A(t)S(t)
∫ t

y0

S(s)−1C(s)ds+ C(t)

= A(t)ξ(t) + C(t).





Appendix B

Elements of differential calculus

We recall here basic facts of first order calculus in normed vector spaces and less
basic facts of second order calculus. We refer the reader to textbook [AMR83]
for further details on differential calculus in normed spaces. The results of
second order calculus are taken from the textbook [AS04].

B.1 First order calculus

Differentials

Given two normed vector spaces (X, ‖·‖X) and (Y, ‖·‖Y ), we denote by L(X,Y )
the space of continuous linear maps from X to Y . This space is equipped with
the operator norm (we denote alternatively by T · u or T (u) the image of u by
the operator T )

‖T‖ = sup
{
‖T (u)‖Y |u ∈ X, ‖u‖X = 1

}
.

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be two normed vector spaces, U be an open subset
of X and let F : U ⊂ X → Y be a given mapping. Let ū ∈ U . We say that F
is differentiable at ū provided there is a continuous linear map DūF : X → Y
such that for every ε > 0, there is δ > 0 such that

0 <
∥∥u− ū∥∥

X
< δ =⇒

∥∥F (u)− F
(
ū
)
−DūF ·

(
u− ū

)∥∥
Y∥∥u− ū∥∥

X

< ε.

This property can also be written as

lim
u→ū

∥∥F (u)− F
(
ū
)
−DūF ·

(
u− ū

)∥∥
Y∥∥u− ū∥∥

X

= 0,

or
F (u) = F (ū) +DūF ·

(
u− ū

)
+
∥∥u− ū∥∥

X
o(1).

The map F is said to be differentiable in U ⊂ X if it is differentiable at every
u ∈ U . The map

DF : U −→ L(X,Y )
u 7−→ DuF

129
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is called the derivative of F . If DF is a continuous map on U (where L(X,Y )
has the norm topology) we say that F is of class C1 on U . Finally we recall
that given a function F of class C1 on an open set U ⊂ X and a point u ∈ U ,
the derivative DuF is called singular if it is not surjective and in that case u
is called critical.

The Inverse Function Theorem

Here we provide the proof of the Inverse Function Theorem and of a quantita-
tive version of it which are used through Chapters 1 to 3. Our proof is taken
from Clarke’s monograph [Cla83].

Theorem B.1.1 (Inverse Function Theorem). Let U be an open set of Rn,
F : U → Rn be a function of class C1, and x ∈ U be such that DxF is not
singular. Then there exists neighborhoods U ⊂ U of x and V of F (x) such that
F|U : U → V is a C1 diffeomorphism.

Proof. Note that since DxF is linear from Rn to Rn and not singular, it is
indeed invertible. Let r > 0 be such that for every x′ ∈ B̄(x, r) ⊂ U , Dx′F is
nonsingular and

‖Dx′F −DxF‖ ≤
1

2
∥∥∥(DxF

)−1
∥∥∥ . (B.1)

Set
δ :=

1

2
∥∥∥(DxF

)−1
∥∥∥ .

Lemma B.1.2. We have for every x′, x′′ ∈ B̄(x, r),

|F (x′)− F (x′′)| ≥ δ |x′ − x′′| .

Proof of Lemma B.1.2. Let x′, x′′ ∈ B̄(x, r) be fixed, we may suppose x′ 6= x′′.
Set

v :=
x′′ − x′
|x′′ − x′| , w :=

DxF (v)
|DxF (v)| , and λ := |x′′ − x′|.

We note that since DxF is non-singular, w is well-defined. We have for every
t ∈ [0, λ],

〈w,Dx′+tvF (v)〉
= 〈w,DxF (v)〉+ 〈w, [Dx′+tvF −DxF ] (v)〉
= |DxF (v)|+ 〈w, [Dx′+tvF −DxF ] (v)〉 (by definition of w)
≥ |DxF (v)| − |[Dx′+tvF −DxF ] (v)| (by Cauchy-Schwarz)

≥
|DxF (v)|

∥∥∥(DxF
)−1
∥∥∥∥∥∥(DxF

)−1
∥∥∥ − ‖Dx′+tvF −DxF‖ (since |v| = 1)

≥ 1∥∥∥(DxF
)−1
∥∥∥ − 1

2
∥∥∥(DxF

)−1
∥∥∥ (by (B.1))

= δ.
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But since F is C1 on U , we have

F (x′ + λv)− F (x′) =
∫ λ

0

Dx′+tvF (v) dt,

which together with the above calculus gives

〈w,F (x′ + λv)− F (x′)〉 =
∫ λ

0

〈w,Dx′+tvF (v)〉 dt ≥ δλ.

By the Cauchy-Schwarz inequality, we get |F (x′)− F (x′′)| ≥ δ|x′ − x′′|.

Lemma B.1.3. The set B
(
F (x), rδ2

)
is included in F (B(x, r)).

Proof of Lemma B.1.3. Let y ∈ B
(
F (x), rδ2

)
be fixed, xe define χ : B̄(x, r)→

R by
∀x′ ∈ B̄(x, r), χ(x′) := |y − F (x)|2.

We need to show that there is x′ ∈ B(x, r) such that χ(x′) = 0. Since B̄(x, r)
is compact, χ attains its minimum on that set at some point x̄ ∈ B̄(x, r). We
claim first that x̄ belongs to B(x, r). Otherwise, by Lemma B.1.2 and the
triangle inequality, one has

rδ

2
> |y − F (x)| ≥ |F (x̄)− F (x)| − |y − F (x̄)|

≥ δ|x̄− x| − |y − F (x̄|
≥ δr − |y − F (x)| (by minimality of x̄)

≥ δr − δr

2
=
δr

2
,

which is a contradiction. Thus x̄ yields a local minimum for χ on B(x, r), and
consequently

Dx̄χ = 2(y − F (x̄)∗Dx̄F = 0.

Since Dx̄F is non-singular (by construction of r), we obtain y = F (x̄).

To prove the theorem, we now set V = B
(
F (x), rδ2

)
, and we define G on V

as follows: for every y ∈ V , G(y) is the unique x′ ∈ B(x, r) such that F (x′) = y.
We choose U as a neighborhood of x satisfying U ⊂ U and F (U) ⊂ V . By
construction, G ◦ F = Id on U and F ◦ G = Id on V . Moreover, by Lemma
B.1.2, the function G is 1

δ -Lipschitz. Let y ∈ V and h 6= 0 be such that
y + h ∈ V . There is x′ ∈ B(x, r) such that F (x′) = y, moreover we have

G(y + h) = G(F (x′) + h)

= G
(
F
(
x′ +

(
Dx′F

)−1(h)
))

+ o(h))

= G
(
F
(
x′ +

(
Dx′F

)−1(h)
))

+ o(h)

= x′ +
(
Dx′F

)−1(h) + o(h).

Then

lim
h→0

∣∣∣G(y + h)−G(y)−
(
Dx′F

)−1(h)
∣∣∣

|h| = 0.

Which proves that G is C1 on V .
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We now give a quantitative version of the Inverse Function Theorem which
is useful in Section 1.4.

Theorem B.1.4. Let ρ, L, µ,B > 0 and F : Ω := B(0, ρ)→ Rn be a function
of class C1 on Ω which satisfies the following properties:

• ‖Dx′F −DxF‖ ≤ L|x′ − x|, ∀x, x′ ∈ Ω,

• ‖D0F‖ ≤ B,

•
∣∣det

(
D0F

)∣∣ ≥ µ.

Then there is r := r(n, ρ, L, µ,B) > 0 and a C1 function G : B(F (0), r) → Ω
such that F ◦G = Id and G ◦ F = Id.

Proof. In the proof of Theorem B.1.1, we setted V := B
(
F (x), rδ2

)
with δ :=

1

2‖(D0F )−1‖ and r > 0 such that

‖Dx′F −DxF‖ ≤ δ, ∀x, x′ ∈ B̄(0, r),

and DxF non-singular for every x ∈ B̄(0, r).
There is a continuous and nondecreasing function ω : [0,+∞)→ [0,+∞) such
that we have for any non-singular matrix A,∥∥A−1

∥∥ ≤ ω(‖A‖)
|det(A)| .

For every B′ > 0, there is a constant K(B′) > 0 such that for any n × n
matrices A,A′ with ‖A‖, ‖A′‖ ≤ B′, we have

|det(A)− det(A′)| ≤ K(B′) ‖A−A′‖ .

We have

δ :=
1

2 ‖D0F−1‖ ≥
∣∣det

(
D0F

)∣∣
2ω(‖D0F‖)

≥ µ

2ω(B)
.

Thus we can take

r := min
{
ρ,

µ

2Lω(B)
,
µ

2

(
K(B + Lρ)L

)−1
}
.

The Lagrange Multiplier Theorem

The Lagrange Multiplier Theorem plays a major role in Chapter 2.

Theorem B.1.5 (Multipliers Lagrange Theorem). Let (X, ‖ ·‖X) be a normed
vector space, U be an open subset of X, and E : U → Rn and C : U → R two
mappings of class C1 on U . Assume that ū ∈ U satisfies the following property:

C
(
ū
)
≤ C(u) for every u ∈ U such that E(u) = E

(
ū
)
. (B.2)

Then there exist λ0 ∈ R and λ ∈ Rn with (λ0, λ) 6= (0, 0) such that

λ∗DūE = λ0DūC.
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Proof. Define the mapping Φ : U ⊂ X → R× Rn by

Φ(u) := (C(u), E(u)) , ∀u ∈ U .

The mapping Ψ is of class C1 on U . We claim that ū is necessarily a critical
point of Φ, that is DūΦ is singular. We argue by contradiction. If ū is not
a critical point, the continuous linear map DūΦ : X → R × Rn is surjective.
Then there exists a linear subspace Y of X of dimension n + 1 such that the
restriction of DūΦ to Y is an isomorphism. Let y1, . . . , yn+1 be a basis of Y
and B be an open neighborhood of 0 in Rn+1 such that

ū+
n+1∑
i=1

βi yi ∈ U ∀β =
(
β1, . . . , βn+1

)
∈ B.

The mapping

Φ̂ : B −→ Rn+1

β =
(
β1, . . . , βn+1

)
7−→ Φ

(
ū+

∑n+1
i=1 βi yi

)
is of class C1 on B with a derivative which is invertible at β = 0. Hence, by
the Inverse Function Theorem, the point Φ(ū) = (C(ū), E(ū)) belongs to the
interior of the image of Φ̂(B). Thus for ε > 0 small enough, there is y ∈ Y with
ū+ y ∈ U such that

Φ
(
ū+ y

)
=
(
C
(
ū
)
− ε, E

(
ū
))
,

which contradicts (B.2). In consequence, ū is a critical point of Φ. Hence, there
exists a non-zero n+ 1-tuple p = (−λ0, λ) (with λ0 ∈ R and λ ∈ Rn) which is
orthogonal to the image of DūΦ, that is such that

−λ0DūC + λ∗DūE = 0.

B.2 Second order study

Preliminaries

Let us denote by L2(X,Y ) the space of all continuous bilinear maps from X×X
to Y . We can equip it with the operator norm

‖T‖ = sup
{∥∥T (u1, u2)

∥∥
Y
|u1, u2 ∈ X, ‖u1‖X = ‖u2‖X = 1

}
.

Given an open set U ⊂ X and a mapping F : U ⊂ X → Y , we define

D2F := D
(
DF

)
: U ⊂ X −→ L2(X,Y )

if it exists (where we identify L(X,L(X,Y )) with L2(X,Y ). If D2F exists and
is continuous on U , we say that F is of class C2 on U . In this case, the second
derivative D2

uF is symmetric at any point, that is

D2
uF · (v, w) = D2

uF · (w, v) ∀v, w ∈ X, ∀u ∈ U .
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If F : U ⊂ X → Y is a function of class C2 then we have for every u ∈ U the
second order Taylor formula

F (u+ h) = F (u) +DuF (h) +
1
2
D2
uF · (h, h) + ‖h‖2X o(1),

which means that

lim
v→u

∥∥F (v)− F (u)−DuF · (v − u)− 1
2D

2
uF · (v − u, v − u)

∥∥
Y

‖v − u‖2X
= 0.

By the Inverse Function Theorem, any function of class C1 is locally open
around any point with an invertible derivative. We are going to provide a
second-order sufficient condition for local openness around critical points.

A second-order sufficient condition for local openness

Let (X, ‖ ·‖X) be a normed vector space, N be a positive integer, U be an open
subset of X and F : U → RN be a mapping of class C2 on U . Given a critical
point u ∈ U , we call corank of u, the quantity

corankF (u) := N − dim
(
Im
(
DuF

))
.

We also recall that if Q : X → R is a quadratic form (that is Q is defined by
Q(v) := B(v, v) with B : X ×X → R a symmetric bilinear form), we define its
negative index by

ind−(Q) := max
{

dim(L) | Q|L\{0} < 0
}
,

where Q|L\{0} < 0 means

Q(u) < 0 ∀u ∈ L \ {0}.

The following result provides a sufficient condition for local openness around a
critical point.

Theorem B.2.1. Let F : U → RN be a mapping of class C2 in an open set
U ⊂ X and ū ∈ U be a critical point of F of corank r. If

ind−
(
λ∗
(
D2
ūF
)
|Ker(DūF )

)
≥ r ∀λ ∈

(
Im
(
DūF

))⊥ \ {0}, (B.3)

then the mapping F is locally open at ū, that is the image of any neighborhood
of ū is an neighborhood of F (ū).

In the above statement,
(
D2
ūF
)
|Ker(DūF )

refers to the quadratic mapping
from Ker(DūF ) to RN defined by(

D2
ūF
)
|Ker(DūF )

(v) := D2
ūF · (v, v) ∀v ∈ Ker(DūF ).

The following result is a quantitative version of the previous theorem, it is
useful in Section 3.4. (We denote by BX(·, ·) the balls in X with respect to the
norm ‖ · ‖X .)
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Theorem B.2.2. Let F : U → RN be a mapping of class C2 in an open set
U ⊂ X and ū ∈ U be a critical point of F of corank r. If

ind−
(
λ∗
(
D2
ūF
)
|Ker(DūF )

)
≥ r ∀λ ∈

(
Im
(
DūF

))⊥ \ {0}, (B.4)

then there exist ε̄, c ∈ (0, 1) such that for every ε ∈ (0, ε̄) the following property
holds: For every u ∈ U , z ∈ RN with

‖u− ū‖X < ε, |z − F (u)| < c ε2, (B.5)

there are w1, w2 ∈ X such that u+ w1 + w2 ∈ U ,

z = F
(
u+ w1 + w2

)
, (B.6)

and

w1 ∈ Ker (DuF ) ,
∥∥w1

∥∥
X
< ε,

∥∥w2

∥∥
X
< ε2. (B.7)

The proof of Theorems B.2.1 and B.2.2 that we give in the next sections
are taken from the Agrachev-Sachkov textbook [AS04] and the Agrachev-Lee
article [AL09].

Proof of Theorem B.2.1

We need two preliminary lemmas.

Lemma B.2.3. Let G : Rk → Rl be a mapping of class C2 with G(0) = 0.
Assume that there is

v̄ ∈ Ker(D0G) with D2
0G ·

(
v̄, v̄
)
∈ Im

(
D0G

)
, (B.8)

such that the linear mapping

w ∈ Ker(D0G) 7−→ ProjK
[
D2

0G ·
(
v̄, w

)]
∈ K (B.9)

is surjective, where K := Im(D0G)⊥ and ProjK : Rl → K denotes the orthog-
onal projection onto K. Then there is a sequence {ui}i converging to 0 in Rk
such that G(ui) = 0 and DuiG is surjective for any i.

Proof. Let E a vector space in Rk such that Rk = E ⊕ Ker(D0G). Since
D2

0G ·
(
v̄, v̄
)

belongs to Im
(
D0G

)
there is v̂ ∈ E such that

D0G
(
v̂
)

= −1
2
D2

0G ·
(
v̄, v̄
)
.

Define the family of mappings {Φε}ε>0 : E ×Ker(D0G)→ Rl by

Φε(z, t) :=
1
ε5
G
(
ε2v̄ + ε3t+ ε4v̂ + ε5z

)
∀(z, t) ∈ E ×Ker(D0G), ∀ε > 0.

For every ε > 0, Φε is of class C2 on E ×Ker(D0G)→ Rl and its derivative at
(z, t) = (0, 0) is given by

D(0,0)Φε(Z, T ) = Dε2v̄+ε4v̂G(Z) +
1
ε2
Dε2v̄+ε4v̂G(T ),
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for any (Z, T ) ∈ E × Ker(D0G). For every (Z, T ) ∈ E × Ker(D0G), the first
term of the right-hand side Dε2v̄+ε4v̂G(Z) tends to D0G(Z) as ε tends to 0 and
since

1
ε2
Dε2v̄+ε4v̂G(T ) =

1
ε2

[
D0G(T ) +D2

0G ·
(
ε2v̄ + ε4v̂, T

)
+
∣∣ε2v̄ + ε4v̂

∣∣ o(1)
]

=
1
ε2

[
D2

0G ·
(
ε2v̄ + ε4v̂, T

)
+
∣∣ε2v̄ + ε4v̂

∣∣ o(1)
]
,

the second term tends to D2
0G(v̄, T ) as ε tends to 0. By (B.9), the linear

mapping

(Z, T ) ∈ E ×Ker(D0G) 7−→ D0G(Z) +D2
0G ·

(
v̄, T

)
∈ Rl

is surjective. Then there is ε̄ > 0 such that D0Φε is surjective for all ε ∈ (0, ε̄).
Therefore for every ε ∈ (0, ε̄) the set{

(z, t) ∈ E ×Ker(D0G) | Φ̂ε(z, t) = 0
}

is a submanifold of class C2 of dimension k − l > 0 which contains the ori-
gin. Then there is a sequence {(zi, ti)}i converging to the origin such that
Ψ1/i(zi, ti) = 0 and D(zi,ti)Ψ1/i is surjective for all i large enough. Thus set-
ting

ui :=
1
i2
v̄ +

1
i3
ti +

1
i4
v̂ +

i5

z i
∀i,

we get G(ui) = 0 and DuiG surjective for all i large enough. This proves the
lemma.

Lemma B.2.4. Let Q : Rk → Rm be a quadratic mapping such that

ind− (λ∗Q) ≥ m, ∀λ ∈ (Rm) \ {0}. (B.10)

Then the mapping Q has a regular zero, that is there is v ∈ Rk such that
Q(v) = 0 and DvQ is surjective.

Proof. Since Q is a quadratic mapping, there is a symmetric bilinear map
B : Rk × Rk → Rm such that

Q(v) = B(v, v) ∀v ∈ Rk.

The kernel of Q, denoted by Ker(Q) is the set of v ∈ Rk such that

B(v, w) = 0 ∀w ∈ Rk.

It is a vector subpace of Rk. Up to considering the restriction of Q to a vector
space E satisfying E ⊕ Ker(Q) = Rk, we may assume that Ker(Q) = 0. We
now prove the result by induction on m.
In the case m = 1, we need to prove that there is v ∈ Rk with Q(v) = 0 and
DvQ 6= 0. By (B.10), we know that ind− (Q) ≥ 1 and ind− (−Q) ≥ 1, which
means that there are two vector lines L+, L− in Rk such that Q|L+\{0} < 0
and Q|L−\{0} > 0. Then the restriction of Q to L+ ⊕ L− is a quadratic form
which is sign-indefinite. Such a form has regular zeros.
Let us now prove the statement of the lemma for a fixed m > 1 under the
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assumption that it has been proven for all values less than m. So we con-
sider a quadratic mapping Q : Rk → Rm satisfying (B.10) and such that
Ker(Q) = {0}. We distinguish two cases:

First case: Q−1(0) 6= {0}.
Take any v 6= 0 such that Q(v) = 0. If v is a regular point, then the statement
of the lemma follows. Thus we assume that v is a critical point of Q. Since
DvQ(w) = 2B(v, w) for all w ∈ Rk and Ker(Q) = {0}, the derivative DvQ :
Rk → Rm cannot be zero. Then its kernel E = Ker(DvQ) has dimension
k − r with r := rank(DvQ) ∈ [1,m − 1]. Set F := Im(DvQ)⊥ and define the
quadratic form

Q̃ : E ' Rk−r −→ F ' Rm−r

by
Q̃(w) := ProjF

(
Q(w)

)
∀w ∈ E,

where ProjF : Rm → F denotes the orthogonal projection to F . We have for
every λ ∈ F and every w ∈ E,

λ∗Q̃(w) = λ∗Q(w).

We claim that ind− (λ∗Q) ≥ m− r, for every λ ∈ F \ {0}. As a matter of fact,
by assumption, for every λ ∈ F \ {0} there is a vector space L of dimension
m such that (λ∗Q)|L\{0} < 0. The space L ∩ E has dimension at least m − k
as the intersection of L of dimension m and E of dimension k − r in Rk. By
induction, we infer that Q̃ has a regular zero w̃ ∈ E = Ker(DvQ), that is
Q(w̃) ∈ Im(DvQ) and

w ∈ E = Ker(DvQ) 7−→ ProjF
(
B(
(
w̃, w

))
∈ F

is surjective. Define F : Rk → Rm by

F (u) := Q
(
v + u

)
∀u ∈ Rk.

The function F is of class C2 verifies D0F = DvQ,D
2
0F = B and the assump-

tions of Lemma B.2.3 are satisfied with v̄ = w̃. We deduce that Q has a regular
zero as well.

Second case: Q−1(0) = {0}.
In fact, we are going to prove that this case cannot appear. First we claim that
Q is surjective. Since Q is homogeneous (Q(rv) = r2Q(v) for all v ∈ Rk and
r ∈ R), we have

Q(Rk) =
{
rQ(v) | r ≥ 0, v ∈ Sk−1

}
.

The set Q(Sk−1) is compact, hence Q(Rk) is closed. Assume that Q(Rk) 6= Rm
and take x = Q(v) on the boundary of Q(Rk). Then x is necessarily a critical
point for Q. Proceeding as in the first case, we infer that x = Q(w) for some
non-critical point. This gives a contradiction. Then we have Q(Rk) = Rm.
Consequently the mapping

Q := Q
|Q| : Sk−1 −→ Sm−1

v 7−→ Q(v)
|Q(v)|
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is surjective. By Sard’s Theorem (see [GG73]), it has a regular value x, that is
x ∈ Sm−1 such that DvQ is surjective for all v ∈ Sk−1 satisfying Q(v) = x for
all v ∈ Sk−1. Among the set of v ∈ Sk−1 such that Q(v) = x take v̄ for which
|Q(v)| is minimal, that is such that

Q(v̄) = āx

and
∀a > 0,∀v ∈ Sk−1, Q(v) = ax =⇒ a ≥ ā.

In other terms, if we define the smooth function Ψ : (0,+∞)× Sk−1 → Rm as,

Ψ(a, v) := Q(v)− ax, ∀a > 0, ∀v ∈ Sk−1,

then the pair (ā, v̄) satisfies

ā ≤ a for every (a, v) ∈ (0,+∞)× Sk−1 with Ψ(a, v) = 0.

By the Lagrange Multiplier Theorem (Theorem B.1.5), there is λ0 ∈ R and
λ ∈ Rm with (λ0, λ) 6= (0, 0) such that

λ∗Dv̄Q = 0 and − λ∗x = λ0.

Note that we have for every h ∈ Tv̄Sk−1 ⊂ Rk, we have

Dv̄Q(h) =
1∣∣Q(v̄)∣∣ Dv̄Q(h) + [Dv̄|Q|(h)] Q

(
v̄
)

=
1
ā
Dv̄Q(h) + ā [Dv̄|Q|(h)] x. (B.11)

Consequently, if λ0 = 0 (that is if (ā, v̄) is a critical point of ψ), then λ∗Dv̄Q = 0
which contradicts the fact Dv̄Q is surjective (because λ cannot be collinear
with x by 2-homogeneity of Q). In conclusion, we can assume without loss of
generality that λ0 = −1. Since (ā, v̄) is not a critical point of ψ, the set

C =
{

(a, v) ∈ (0,+∞)× Sk−1 |Ψ(a, v) = 0
}

is a smooth submanifold of (0,+∞)×Sk−1 of dimension k−m in a neighborhood
of
(
ā, v̄
)
. Then for every (ha, hv) ∈ Ker(Dā,v̄Ψ), which is equivalent to ha = 0

and Dv̄Q(hv) = 0 with hv ∈ Tv̄Sk−1, there is a smooth curve γ = (γa, γv) :
(−ε, ε) → C such that γ(0) = (ā, v̄) and γ̇(0) = (ha, hv). Then differentiating
two times the equality Ψ(γ(t)) = 0 and using that ∂2Ψ

∂a2 = 0 and λ∗ ∂Ψ
∂v (ā, v̄) =

λ∗Dv̄Q = 0, we get

λ∗
∂2Ψ
∂v2

(
ā, v̄
)

= λ∗γ̈(0)
∂Ψ
∂a

(
ā, v̄
)

= γ̈(0)λ∗x = γ̈(0).

Note that ∂2Ψ
∂v2 = Q. Furthermore, since (ā, v̄) is solution to our minimization

problem with constraine, we have γa(t) ≥ ā = γa(0) for all t ∈ (−ε, ε). Then
we have

λ∗Q(h) ≥ 0 ∀h ∈ Ker
(
Dv̄Q

)
∩ Tv̄Sk−1.

Since Q(v̄) = ā > 0 we have indeed

λ∗Q(h) ≥ 0 ∀h ∈
(
Ker

(
Dv̄Q

)
∩ Tv̄Sk−1

)
⊕ Rv̄ =: L. (B.12)
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Let us compute the dimension of the non-negative subspace L of the quadratic
form λ∗Q. Since Dv̄Q is surjective, we have

dim
(
Im
(
Dv̄Q

))
= m− 1.

Which means (remember (B.11)) that Im
(
Dv̄Q|Sk−1

)
has dimension m or m−1.

But λ∗Dv̄Q = 0 with λ 6= 0, thus we have necessarily

dim
(
Im
(
Dv̄Q|Sk−1

))
= m− 1

and

dim
(
Ker

(
Dv̄Q

)
∩ Tv̄Sk−1

)
= dim

(
Ker

(
Dv̄Q|Sk−1

))
= k − 1− (m− 1)

= k −m.

Consequently, dim(L) = k−m+ 1, thus ind− (λ∗Q) has to be ≤ m− 1, which
contradicts the hypothesis of the lemma. This shows that Q−1(0) = {0} is
impossible and concludes the proof of the lemma.

We are ready to prove Theorem B.2.1. Set

S :=
{
λ ∈

(
Im
(
DūF

))⊥ | |λ| = 1
}
⊂ RN .

By assumption (B.3), for every λ ∈ S, there is a subspace Eλ ⊂ Ker (DūF ) of
dimension r such that

λ∗
(
D2
ūF
)
|Eλ\{0} < 0.

By continuity of the mapping ν 7→ ν∗
(
D2
ūF
)
|Eλ , there is an open set Oλ ⊂ S

such that
ν∗
(
D2
ūF
)
|Eλ\{0} < 0 ∀ν ∈ Oλ.

Choose a finite covering

S =
I⋃
i=1

Oλi

and a finite dimensional space E ⊂ X such that

Im
(
DūF|E

)
= Im

(
DūF

)
.

Then the restriction F̃ of F to the finite dimensional subspace E+
∑I
i=1Eλi ⊂

X satisfies

ind−

(
λ∗
(
D2
ūF̃
)
|Ker(DūF̃ )

)
≥ r ∀λ ∈

(
Im
(
DūF̃

))⊥
\ {0},

with

r = corankF
(
ū
)

:= N − dim
(
Im
(
DūF

))
= N − dim

(
Im
(
DūF̃

))
.

Set K :=
(

Im
(
DūF̃

))⊥
and define the quadratic mapping Q : Ker(DūF̃ )→ K

by
Q(v) := ProjK

[(
D2
ūF̃
)
· (v, v)

]
∀v ∈ Ker

(
DūF̃

)
,
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where ProjK : RN → K denotes the orthogonal projection onto K. The as-
sumption (B.10) of Lemma B.2.4 is satisfied. Then by Lemmas B.2.4, Q has a
regular zero, that is v̄ ∈ Ker(DūF̃ ) such that

Q
(
v̄
)

= 0 ⇐⇒ D2
ūF̃ ·

(
v̄, v̄
)
∈ K = Im

(
DūF̃

)
and

Dv̄Q surjective

⇐⇒ w ∈ Ker
(
DūF̃

)
7→ ProjK

[
D2
ūF̃ ·

(
v̄, w

)]
∈ K surjective.

Setting G(v) := F̃ (ū+v)− F̃ (ū) and applying Lemma B.2.3, we get a sequence
{ui}i converging to ū such that F (ui) = F (ū) and Dui F̃ is surjective for any
i. By the Inverse Function Theorem, this implies that F is locally open at ū.

Proof of Theorem B.2.2

Proceeding as in the proof of Theorem B.2.1, we may assume that X is finite
dimensional. We may also assume that ū = 0 and F (ū) = 0. As before, set
K := (Im (DūF ))⊥ and define the quadratic mapping Q : Ker(D0F )→ K by

Q(v) := ProjK
[(
D2

0F
)
· (v, v)

]
∀v ∈ Ker (D0F ) ,

where ProjK : RN → K denotes the orthogonal projection onto K. By (B.4)
and Lemmas B.2.4, Q has a regular zero v̄ ∈ Ker(D0F ). Let E be a vector
space in Rk such that X = E ⊕ Ker(D0F ). Define G : E × Ker(D0F ) → RN
by

G(z, t) := D0F (z) +
1
2
(
D2

0F
)
· (t, t) ∀(z, t) ∈ E ×Ker(D0F ).

Then assumptions of Lemma B.2.3 are satisfied and there is a sequence {(zi, ti)}i
converging to 0 such that G(zi, ti) = 0 and D(zi,ti)G is surjective for all i.

Lemma B.2.5. There are µ, c > 0 such that the image of any continuous
mapping G̃ : B(0, 1)→ RN with

sup
{∣∣∣G̃(u)−G(u)

∣∣∣ |u = (z, t) ∈ BX(0, 1)
}
≤ µ (B.13)

contains the ball B̄(0, c).

Proof. This is a consequence of the Brouwer Theorem which asserts that any
continuous mapping from B̄(0, 1) ⊂ Rn into itself has a fixed point, see [Bre93].
Let i large enough such that ui := (ti, zi) belongs to B(0, 1/4). Since DuiG is
surjective, there is a affine space V of dimension N which contains ui and such
that DuiG|V is invertible. Then by the Inverse Function Theorem, there is a
open ball B = BX(ui, ρ) ∩ V of ui in V such that the mapping

G|V : B −→ G|V (B) ⊂ RN
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is a smooth diffeomophism. We denote by G : G|V (B)→ B its inverse. The set
G|V (B) contains some closed ball B̄(0, c). Taking c > 0 sufficiently small we
may assume that

G(y) ∈ BX
(
ui, ρ/4

)
∀y ∈ B̄(0, c).

There is µ > 0 such that any continuous mapping G̃ : BX(0, 1)→ RN verifying
(B.13) satisfies

G̃(u) ∈ G|V (B) ∀u ∈ BX(ui, ρ/2) ∩ V

and ∣∣∣(G ◦ G̃)(u)− u
∣∣∣ ≤ ρ

4
∀u ∈ BX(ui, ρ/2) ∩ V.

Let G̃ : BX(0, 1) → RN be a continuous mapping verifying (B.13) and y ∈
B̄(0, c) be fixed. By the above construction, the function

Ψ : BX(G(y), ρ/4) −→ BX(G(y), ρ/4)

defined by

Ψ(u) := u−
(
G ◦ G̃

)
(u) + G(y) ∀u ∈ BX(G(y), ρ/4),

is continuous from BX(G(y), ρ/4) into itself. Thus by Brouwer’s Theorem, it
has a fixed point, that is there is u ∈ BX(G(y), ρ/4) such that

Ψ(u) = u ⇐⇒ G̃(u) = y.

This concludes the proof of the lemma.

Define the family of mappings {Φε}ε>0 : E ×Ker(D0F )→ RN by

Φε(z, t) :=
1
ε2
F
(
ε2z + εt

)
∀(z, t) ∈ E ×Ker(D0F ), ∀ε > 0.

By Taylor’s formula at second order for F at 0, we have

Φε(z, t) = G(z, t) + o(1),

as ε tends to 0. Then there is ε̄ > 0 (with |(ε̄2, ε̄)| ≤ 1/2) such that for every
ε ∈ (0, ε̄),

|Φε(z, t)−G(z, t)| ≤ µ

2
∀(z, t) ∈

(
E ×Ker(D0F )

)
∩B(0, 1).

By Lemma B.2.5 applied to G̃ = Φε, we infer that B̄(0, c) is contained in
Φε
(
B(0, 1)

)
, which in turn implies that for every z ∈ RN such that |z| =

|z − F (ū)| < cε2, there are w1, w2 in X such that

z = w1 + w2, w1 ∈ Ker(DūF ), ‖w1‖X < ε, ‖w2‖X < ε2.

Let us now show that the above result holds uniformly for u close to ū = 0.
Since F is C1, the vector space Ker(DuF ) is transverse to E for u close to ū.
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Moreover, again by C1 regularity, for every δ > 0, there is ν > 0 such that for
every u ∈ BX(ū, ν),

Ker(DuF ) ∩B(0, 1) ⊂
{
y + z ∈ X | y ∈ Ker(DūF ) ∩B(0, 1), ‖z‖X < δ

}
.

Therefore, there is ν > 0, such that for every u ∈ BX(ū, ν), there is a vector
space Wu ⊂ X such that (Wu could be reduced to {0})

X = E ⊕Wu ⊕Ker
(
DuF

)
,

and there are linear mappings

π1 : Ker(D0F )→Wu, π2 : Ker(D0F )→ Ker
(
DuF

)
such that for every t ∈ Ker(D0F ), we have

t = π1(t) + π2(t),
∣∣π1(t)

∣∣
X
≤ K|t|,

∣∣π1(t)
∣∣
X
≤ K|t|,

for some constant K > 0 (which depends on Ker(D0F ), E, and ‖ · ‖X). Given
u ∈ BX(ū, ν) and ε ∈ (0, ε̄) we define G̃ :

(
E ×Ker(D0F )

)
∩B(0, 1)→ RN by

G̃(z, t) :=
1
ε2

(
F
(
u+ ε2z + ε2π1(t) + επ2(t)

)
− F (u)

)
,

for every (z, t) ∈
(
E × Ker(D0F )

)
∩ B(0, 1). Taking ν and ε̄ > 0 smaller

if necessary, by Taylor’s formula for F at u at second order, by the above
construction and by the fact that DuF and D2

u are respectively close to D0F
and D2

0F , we may assume that (B.13) is satisfied. We conclude easily.
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[BB07] Bernard, P., Buffoni B.: Optimal mass transportation and Mather
theory. J. Eur. Math. Soc., 9(1), 85–121 (2007)

[Bil99] Billingsley, P.: Convergence of probability measures. Second ed.
John Wiley & Sons Inc., New York (1999)

[Bis84] Bismut, J.-M.: Large deviations and the Malliavin calculus.
Progress in Mathematics 45, Birkhäuser (1984)
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[Rif06] Rifford, L: À propos des sphères sous-riemanniennes. Bull. Belg.
Math. Soc. Simon Stevin, 13(3):521–526 (2006)
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