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Lecture 1

A controllability result:

The Chow-Rashevsky Theorem
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Control of an inverted pendulum
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Control systems

A general control system has the form

ẋ = f (x , u)

where
x is the state in M
u is the control in U

Proposition

Under classical assumptions on the datas, for every x ∈ M and
every measurable control u : [0,T ]→ U the Cauchy problem{

ẋ(t) = f
(
x(t), u(t)

)
a.e. t ∈ [0,T ],

x(0) = x

admits a unique solution

x(·) = x(·; x , u) : [0,T ] −→ M .
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Controllability issues

Given two points x1, x2 in the state space M and T > 0, can
we find a control u such that the solution of{

ẋ(t) = f
(
x(t), u(t)

)
a.e. t ∈ [0,T ]

x(0) = x1

satisfies
x(T ) = x2 ?

b
x1

b
x2
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Controllability of linear control systems in Rn

An autonomous linear control system in Rn has the form

ξ̇ = A ξ + B u,

with ξ ∈ Rn, u ∈ Rm,A ∈ Mn(R),B ∈ Mn,m(R).

Theorem

The following assertions are equivalent:

(i) For any T > 0 and any ξ1, ξ2 ∈ Rn, there is
u ∈ L1([0,T ];Rm) such that

ξ
(
T ; ξ1, u

)
= ξ2.

(ii) The Kalman rank condition is satisfied:

rk
(
B ,AB ,A2B , · · · ,An−1B

)
= n.
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Proof of the theorem

Duhamel’s formula

ξ
(
T ; ξ, u

)
= eTA ξ + eTA

∫ T

0

e−tA B u(t)dt.

Then the controllability property (i) is equivalent to the
surjectivity of the mappings

FT : u ∈ L1([0,T ];Rm) 7−→
∫ T

0

e−tA B u(t)dt.
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Proof of (ii) ⇒ (i)

If FT is not onto (for some T > 0), there is p 6= 0n such that〈
p,

∫ T

0

e−tA B u(t)dt

〉
= 0 ∀u ∈ L1([0,T ];Rm).

Using the linearity of 〈·, ·〉 and taking u(t) = B∗e−tA
∗
p, we

infer that
p∗ e−tA B = 0 ∀t ∈ [0,T ].

Derivating n times at t = 0 yields

p∗ B = p∗ A B = p∗ A2 B = · · · = p∗ An−1 B = 0.

Which means that p is orthogonal to the image of the n ×mn
matrix (

B ,AB ,A2B , · · · ,An−1B
)
.

Contradiction !!!
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Proof of (i) ⇒ (ii)

If
rk
(
B ,AB ,A2B , · · · ,An−1B

)
< n,

there is a nonzero vector p such that

p∗ B = p∗ A B = p∗ A2 B = · · · = p∗ An−1 B = 0.

By the Cayley-Hamilton Theorem, we deduce that

p∗ Ak B = 0 ∀k ≥ 1,

and in turn
p∗e−tA B = 0 ∀t ≥ 0.

We infer that〈
p,

∫ T

0

e−tA B u(t)dt

〉
= 0 ∀u ∈ L1([0,T ];Rm), ∀T > 0.

Contradiction !!!
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Application to local controllability

Let ẋ = f (x , u) be a nonlinear control system with
x ∈ Rn, u ∈ Rm and f : Rn × Rm → Rn of class C 1.

Theorem

Assume that f (x0, 0) = 0 and that the pair

A =
∂f

∂x
(x0, 0), B =

∂f

∂u
(x0, 0),

satisfies the Kalman rank condition. Then for there is δ > 0
such that for any x1, x2 with |x1 − x0|, |x2 − x0| < δ, there is
u : [0, 1]→ Rm smooth satisfying

x
(
1; x1, u

)
= x2.
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Local controllability around x0

b
x0b

x1

b
x2
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Proof of the Theorem

Define G : Rn × L1([0, 1];Rm)→ Rn × Rn by

G
(
x , u
)

:=
(
x , x(1; x , u)

)
.

The mapping G is a C 1 submersion at (0, 0). Thus there are n
controls u1, · · · , un in L1([0, 1];Rm) such that

G̃ : Rn × Rn −→ Rn × Rn

(x , λ) 7−→ G
(
x ,
∑n

i=k λkuk
)

is a C 1 diffeomorphism at (0, 0). Since the set of smooth
controls is dense in L1([0, 1];Rm), we can take u1, . . . , un to
be smooth. We apply the Inverse Function Theorem.
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Back to the inverted pendulum

The equations of motion are given by

(M + m) ẍ + m` θ̈ cos θ −m` θ̇2 sin θ = u

m`2 θ̈ −mg` sin θ + m` ẍ cos θ = 0.
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Back to the inverted pendulum

The linearized control system at x = ẋ = θ = θ̇ = 0 is given by

(M + m) ẍ + m` θ̈ = u

m`2 θ̈ −mg` θ + m` ẍ = 0.

It can be written as a control system

ξ̇ = A ξ + B u,

with ξ = (x , ẋ , θ, θ̇),

A =


0 1 0 0
0 0 −mg

M
0

0 0 0 1

0 0 (M+m)g
M`

0

 and B =


0
1
M

0
− 1

M`

 .
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Back to the inverted pendulum

The Kalman matrix (B ,AB ,A2,A3B) equals
0 1

M
0 mg

M2`
1
M

0 mg
M2`

0

0 − 1
M`

0 − (M+m)g
M2`2

− 1
M`

0 − (M+m)g
M2`2 0

 .

Its determinant equals

− g 2

M4`4
< 0

In conclusion, the inverted pendulum is locally controllable
around (0, 0, 0, 0)∗.
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Movie
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The Chow-Rashevsky Theorem

Theorem (Chow 1939, Rashevsky 1938)

Let M be a smooth manifold and X 1, · · · ,Xm be m smooth
vector fields on M. Assume that

Lie
{

X 1, . . . ,Xm
}

(x) = TxM ∀x ∈ M .

Then the control system

ẋ =
m∑
i=1

ui X i(x)

is locally controllable in any time at every point of M.
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Comment I

The local controllability in any time at every point means that
for every x0 ∈ M , every T > 0 and every neighborhood U of
x0, there is a neighborhood V ⊂ U of x0 such that for any
x1, x2 ∈ V , there is a control u ∈ L1([0,T ];Rm) such that the
trajectory x(·; x1, u) : [0,T ]→ M remains in U and steers x1

to x2, i.e. x(T ; x1, u) = x2.

b

x0

V

b

x1

b

x2

U

Local controllability in time T > 0

⇒ Local controllability in time T ′ > 0, ∀T ′ > 0
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Comment II

If M is connected then

Local controllability⇒ Global controllability

Let x ∈ M be fixed. Denote by A(x) the accessible set from
x , that is

A(x) :=
{

x
(
T ; x , u

)
|T ≥ 0, u ∈ L1

}
=

{
x
(
1; x , u

)
| u ∈ L1

}
.

By local controllability, A(x) is open.
Let y be in the closure of A(x). The set A(y) contains a
small ball centered at y and there are points of A(x) in
that ball. Then A(x) is closed.

By connectedness of M , we infer that A(x) = M for every
x ∈ M , and in turn that the control system is globally
controllable in any time.
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The Chow-Rashevsky Theorem

Theorem (Chow 1939, Rashevsky 1938)

Let M be a smooth manifold and X 1, · · · ,Xm be m smooth
vector fields on M. Assume that

Lie
{

X 1, . . . ,Xm
}

(x) = TxM ∀x ∈ M .

Then the control system ẋ =
∑m

i=1 ui X i(x) is locally
controllable in any time at every point of M.

The condition in red is called Hörmander’s condition or
bracket generating condition. Families of vector fields
satisfying that condition are called nonholonomic, completely
nonholonomic, or totally nonholonomic.
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Comment III

Definition

Given two smooth vector fields X ,Y on Rn, the Lie bracket
[X ,Y ] at x ∈ Rn is defined by

[X ,Y ](x) = DY (x)X (x)− DX (x)Y (x).

The Lie brackets of two smooth vector fields on M can be
defined in charts with the above formula.

Given a family F of smooth vector fields on M , we denote by
Lie{F} the Lie algebra generated by F . It is the smallest
vector subspace S of smooth vector fields containing F that
also satisfies

[X ,Y ] ∈ S ∀X ∈ F ,∀Y ∈ S .
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Comment III

Exercise

We have

[X ,Y ](x) = lim
t↓0

(
e−tY ◦ e−tX ◦ etY ◦ etX

)
(x)− x

t2
.

b
x

b

b

b

b
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Comment III

Given a family F of smooth vector fields on M , we set
Lie1(F) := Span(F), and define recursively Liek(F)
(k = 2, 3, . . .) by

Liek+1(F) := Span
(

Liek(F)∪
{

[X ,Y ] |X ∈ F ,Y ∈ Liek(F)
})
.

We have
Lie{F} =

⋃
k≥1

Liek(F).

For example, the Lie algebra Lie
{

X 1, . . . ,Xm
}

is the vector
subspace of smooth vector fields which is spanned by all the
brackets (made from X 1, . . . ,Xm) of length 1, 2, 3, . . ..
Since M has finite dimension, for every x ∈ M , there is
r = r(x) ≥ 1 (called degree of nonholonomy at x) such that

TxM ⊃ Lie
{

X 1, . . . ,Xm
}

(x) = Lier
{

X 1, . . . ,Xm
}

(x).
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Comment IV

We can prove the Chow-Rashevsky Theorem in the contact
case in R3 as follows:

Exercise

Let X 1,X 2 be two smooth vector fields in R3 such that

Span
{

X 1(0),X 2(0), [X 1,X 2](0)
}

= R3.

Then the mapping ϕλ : R3 → R3 defined by

ϕλ(t1, t2, t3) = eλX
1 ◦ et3X 2 ◦ e−λX

1 ◦ et2X 2 ◦ et1X 1

(0)

is a local diffeomorphism at the origin for λ > 0 small.

 Ball-Box Theorem
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The End-Point mapping

Given a control system of the form

ẋ =
m∑
i=1

ui X i(x) (x ∈ M , u ∈ Rm),

we define the End-Point mapping from x in time T > 0 as

E x ,T : L2
(
[0,T ];Rm

)
−→ M

u 7−→ x
(
T ; x , u

)

Proposition

The mapping E x ,T is of class C 1 (on its domain) and

DuE x ,T (v) = ξ(T ), where

ξ̇ =

(
m∑
i=1

uiDxuX i

)
· ξ +

m∑
i=1

vi X i(xu), ξ(0) = 0.
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Linearized control system

Remark

Setting for every t ∈ [0,T ], Au(t) :=
∑m

i=1 ui(t)Dxu(t)X
i , we

have

DuE x ,T (v) = Su(T )

∫ T

0

Su(t)−1
m∑
i=1

vi(t)X i(xu(t)) dt

with Su solution of Ṡu = AuSu a.e. t ∈ [0,T ], Su(0) = In.

Proposition

For every u ∈ L2([0,T ];Rm) and any i = 1, . . . ,m, we have

X i
(

E x ,T (u)
)
∈ DuE x ,T

(
L2
(
[0,T ];Rm

))
.
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Regular controls vs. Singular controls

Definition

A control u ∈ L2
(
[0,T ];Rm) is called regular with respect to

E x ,T if E x ,T is a submersion at u. If not, u is called singular.

Exercise

The concatenations u1 ∗ u2 and u2 ∗ u1 of a regular control u1

with another control u2 are regular.

b

b

bu1 u2
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Rank of a control

Definition

The rank of a control u ∈ L2
(
[0,T ];Rm) (with respect to

E x ,T ) is defined as the dimension of the image of the linear
mapping DuE x ,T . We denote it by rankx ,T (u).

Exercise

The following properties hold:

rankx ,T1+T2(u1 ∗ u2) ≥ max{rankx ,T1(u1), ranky ,T2(u2)}.
ranky ,T1(ǔ1) = rankx ,T1(u1).

y
x
b

b

bu1 u2
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b

b
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Openness: Statement

The Chow-Rashevsky will follow from the following result:

Proposition

Let M be a smooth manifold and X 1, · · · ,Xm be m smooth
vector fields on M. Assume that

Lie
{

X 1, . . . ,Xm
}

(x) = TxM ∀x ∈ M .

Then, for every x ∈ M and every T > 0, the End-Point
mapping

E x ,T : L2
(
[0,T ];Rm

)
−→ M

u 7−→ x
(
T ; x , u

)
is open (on its domain).
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Openness: Sketch of proof

Let x ∈ M and T > 0 be fixed. Set for every ε > 0,

d(ε) = max
{

rankx ,ε(u) | ‖u‖L2 < ε
}
.

Claim: d(ε) = n ∀ε > 0.

If not, we have d(ε) = d0 ∈ {1, . . . , n − 1} for some ε > 0.
Given uε s.t. rankx ,ε(uε) = d0, there are d0 controls
v 1, . . . , vd0 such that the mapping

E : λ = (λ1, . . . , λd0) ∈ Rd0 7→ E x ,ε

(
uε +

d0∑
j=1

λjv j

)
is an immersion near 0. Thus, its local image N is a d0

dimensional submanifold of M of class C 1 such that

X i
(
E(λ)

)
∈ Im

(
DλE

)
= TyN .

Contradiction!!!
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Openness: Sketch of proof (the return method)

To conclude, we pick (for any ε > 0 small) a regular control uε

in L2([0, ε];Rm) and define ũ ∈ L2([0,T + 2ε];Rm) by

ũ := uε ∗ ǔε ∗ u.

b

x

xu

xǔ

xv

b Ex,T (ṽ)

Up to reparametrizing u into a control v on [0,T − 2ε], the
new control ṽ = uε ∗ ǔε ∗ v is regular, close to u in L2 provided
ε > 0 is small, and steers x to E x ,T (u).

The openness follows from the Inverse Function Theorem.
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Remarks

Proposition

Let M be a smooth manifold and X 1, · · · ,Xm be m smooth
vector fields on M. Assume that

Lie
{

X 1, . . . ,Xm
}

(x) = TxM ∀x ∈ M .

Then, for every x ∈ M and every T > 0, the set of controls
which are regular w.r.t. E x ,T is open and dense in L2.

The above result holds indeed in the smooth topology.

Proposition (Sontag)

Under the same assumptions, the set of controls which are
regular w.r.t. E x ,T is open and dense in C∞.
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Example: The baby stroller


ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ = u2

X =

 cos θ
sin θ

0

 , Y =

 0
0
1

 , [X ,Y ] =

 − sin θ
cos θ

0


Span

{
X (ξ),Y (ξ), [X ,Y ](ξ)

}
= R3 ∀ξ = (x , y , θ).
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Example: The baby stroller

b
x1

b
x2
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b
x1
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Thank you for your attention !!
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Lecture 2

Sub-Riemannian geodesics
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Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n ≥ 2.

Definition

A sub-Riemannian structure on M is a pair (∆, g) where:

∆ is a totally nonholonomic distribution of rank
m ∈ [2, n], that is it is defined locally as

∆(x) = Span
{

X 1(x), . . . ,Xm(x)
}
⊂ TxM ,

where X 1, . . . ,Xm are m linearly independent vector fields
satisfying the Hörmander condition.

gx is a scalar product on ∆(x).
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Sub-Riemannian structures
Remark

In general ∆ does not admit a global frame. However we
can always construct k = m · (n + 1) smooth vector fields
Y 1, . . . ,Y k such that

∆(x) = Span
{

Y 1(x), . . . ,Y k(x)
}

∀x ∈ M .

If (M , g) is a Riemannian manifold, then any totally
nonholomic distribution ∆ gives rise to a SR structure
(∆, g) on M.

Example (Heisenberg)

Take in R3, ∆ = Span{X 1,X 2} with

X 1 = ∂x −
y

2
∂z , X 2 = ∂y +

x

2
∂z and g = dx2 + dy 2.
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The Chow-Rashevsky Theorem

Definition

We call horizontal path any path γ ∈ W 1,2([0, 1]; M)
satisfying

γ̇(t) ∈ ∆(γ(t)) a.e. t ∈ [0, 1].

We observe that if ∆ = Span{Y 1, . . . ,Y k}, for any x ∈ M
and any control u ∈ L2([0, 1];Rk), the solution to

γ̇ =
k∑

i=1

ui Y i(γ), γ(0) = x

is an horizontal path joining x to γ(1).

Theorem (Chow-Rashevsky)

Let ∆ be a totally nonholonomic distribution on M then any
pair of points can be joined by an horizontal path.
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The sub-Riemannian distance

The length (w.r.t g) of an horizontal path γ is defined as

lengthg (γ) :=

∫ T

0

|γ̇(t)|gγ(t) dt

Definition

Given x , y ∈ M , the sub-Riemannian distance between x
and y is

dSR(x , y) := inf
{

lengthg (γ) | γ hor., γ(0) = x , γ(1) = y
}
.

Proposition

The manifold M equipped with the distance dSR is a metric
space whose topology coincides with the topology of M (as a
manifold).
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Minimizing horizontal paths and geodesics

Definition

Given x , y ∈ M , we call minimizing horizontal path
between x and y any horizontal path γ : [0,T ]→ M
connecting x to y such that

dSR(x , y) = lengthg (γ).

The sub-Riemannian energy between x and y is defined as

eSR(x , y) := inf

{
energyg (γ) :=

∫ 1

0

(
|γ̇(t)|gγ(t)

)2

dt | γ . . .
}
.

Definition

We call minimizing geodesic between x and y any horizontal
path γ : [0, 1]→ M connecting x to y such that

eSR(x , y) = energyg (γ).

We have eSR = d2
SR , moreover minimizing geodesics are those

minimizing horizontal path on [0, 1] with constant speed.
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A SR Hopf-Rinow Theorem

Theorem

Let (∆, g) be a sub-Riemannian structure on M. Assume that
(M , dSR) is a complete metric space. Then the following
properties hold:

The closed balls B̄SR(x , r) are compact (for any r ≥ 0).

For every x , y ∈ M, there exists at least one minimizing
geodesic joining x to y .

Remark

Given a complete Riemannian manifold (M , g), for any totally
nonholonomic distribution ∆ on M, the SR structure (∆, g) is
complete.

As a matter of fact, since dg ≤ dSR any Cauchy
sequence w.r.t. dSR is Cauchy w.r.t. dg .
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The Hamiltonian geodesic equation

Let x , y ∈ M and a minimizing geodesic γ̄ joining x to y be
fixed. The SR structure admits an orthonormal frame along
γ̄, that is there is an open neighborhood V of γ̄([0, 1]) and an
orthonormal family of m vector fields X 1, . . . ,Xm such that

∆(z) = Span
{

X 1(z), . . . ,Xm(z)
}

∀z ∈ V .

b

x

b
y

γ̄ V
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The Hamiltonian geodesic equation

There is a control ū ∈ L2
(
[0, 1];Rm

)
such that

˙̄γ(t) =
m∑
i=1

ūi(t) X i
(
γ̄(t)

)
a.e. t ∈ [0, 1].

Moreover, on the one hand any control u ∈ U ⊂ L2
(
[0, 1];Rm

)
(u sufficiently close to ū) gives rise to a trajectory γu solution
of

γ̇u =
m∑
i=1

ui X i
(
γu
)

on [0,T ], γu(0) = x .

On the other hand, for any horizontal path γ : [0, 1]→ V
there is a (unique) control u ∈ L2

(
[0, 1];Rm

)
for which the

equation in red is satisfied.
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(
[0, 1];Rm

)
such that

˙̄γ(t) =
m∑
i=1
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The Hamiltonian geodesic equation

So, considering as previously the End-Point mapping

E x ,1 : L2
(
[0, 1];Rm

)
−→ M

defined by
E x ,1(u) := γu(1),

and setting C (u) = ‖u‖2
L2 , we observe that ū is solution to the

following optimization problem with constraints:

ū minimizes C (u) among all u ∈ U s.t. E x ,1(u) = y .

(Since the family X 1, . . . ,Xm is orthonormal, we have

energyg (γu) = C (u) ∀u ∈ U .)
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The Hamiltonian geodesic equation

Proposition (Lagrange Multipliers)

There are p ∈ T ∗y M ' (Rn)∗ and λ0 ∈ {0, 1} with
(λ0, p) 6= (0, 0) such that

p · DūE x ,1 = λ0DūC .

Proof.

The mapping Φ : U → R×M defined by

Φ(u) :=
(
C (u),E x ,1(u)

)
cannot be a submersion at ū. As a matter of fact, if DūΦ is
surjective, then it is open at ū, so it must contain elements of
the form (C (ū)− δ, y) for δ > 0 small.

 two cases: λ0 = 0 or λ0 = 1.
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surjective, then it is open at ū, so it must contain elements of
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The Hamiltonian geodesic equation

First case: λ0 = 0

Then we have

p · DūE x ,1 = 0 with p 6= 0.

So ū is singular (w.r.t. x and T = 1).

Remark

If ∆ has rank n, that is ∆ = TM (Riemannian case), then
there are no singular control. So this case cannot occur.

If there are no nontrivial singular control, then this case
cannot occur.

If there are no nontrivial singular minimizing control, then
this case cannot occur.
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The Hamiltonian geodesic equation

Second case: λ0 = 1

Define the Hamiltonian H : V × (Rn)∗ → R by

H(x , p) :=
1

2

m∑
i=1

(
p · X i(x)

)2
.

Proposition

There is a smooth arc p : [0, 1]→ (Rn)∗ with p(1) = p/2 such
that{

˙̄γ = ∂H
∂p

(γ̄, p) =
∑m

i=1

[
p · X i(γ̄)

]
X i(γ̄)

ṗ = −∂H
∂x

(γ̄, p) = −∑m
i=1

[
p · X i(γ̄)

]
p · Dγ̄X i

for a.e. t ∈ [0, 1] and ūi(t) = p · X i(γ̄(t)) for a.e. t ∈ [0, 1]
and any i .

In particular, the path γ̄ is smooth on [0, 1].
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The Hamiltonian geodesic equation

Proof.

We have DūC (v) = 2〈ū, v〉L2 and we remember that

DūE x ,T (v) = S(1)

∫ 1

0

S(t)−1B(t)v(t) dt

with{
A(t) =

∑m
i=1 ui(t)Dγ̄(t)X

i ,
B(t) = (X 1(γ̄(t)), . . . ,Xm(γ̄(t)))

∀t ∈ [0, 1],

and S solution of

Ṡ(t) = A(t)S(t) for a.e. t ∈ [0, 1], S(0) = In.
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The Hamiltonian geodesic equation

Proof.

Then p · DūE x ,1 = λ0DūC yields∫ 1

0

[
p · S(1)S(t)−1B(t)− 2ū(t)∗

]
v(t) dt = 0 ∀v ∈ L2.

We infer that

ū(t) =
1

2

(
p · S(1)S(t)−1B(t)

)∗
a.e. t ∈ [0, 1],

and that the absolutely continuous arc p : [0, 1]→ (Rn)∗

defined by

p(t) :=
1

2
p · S(1)S(t)−1

satisfies the desired equations.
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The Hamiltonian geodesic equation

Define the Hamiltonian H : T ∗M → R by

H(x , p) =
1

2
max

{
p(v)2

gx(v , v)
| v ∈ ∆x \ {0}

}
.

We call normal extremal any curve ψ : [0,T ]→ T ∗M
satisfying

ψ̇(t) = ~H
(
ψ(t)

)
∀t ∈ [0,T ].

Theorem

Let γ : [0, 1]→ M be a minimizing geodesic. One of the two
following non-exclusive cases occur:

γ is singular.

γ admits a normal extremal lift.
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Examples

Example 1: The Riemannian case

Let ∆(x) = TxM for any x ∈ M so that ANY curve is
horizontal. There are no singular curve, so any minimizing
geodesic is the projection of a normal extremal.

Example 2: Heisenberg

Recall that in R3, ∆ = Span{X 1,X 2} with

X 1 = ∂x −
y

2
∂z , X 2 = ∂y +

x

2
∂z and g = dx2 + dy 2.
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Examples

Any horizontal path has the form γu = (x , y , z) : [0, 1]→ R3

with 
ẋ(t) = u1(t)
ẏ(t) = u2(t)
ż(t) = 1

2
(u2(t)x(t)− u1(t)y(t)) ,

for some u ∈ L2.

This means that

z(1)− z(0) =

∫
α

1

2
(xdy − ydx) ,

where α is the projection of γ to the plane z = 0. By Stokes’
Theorem, we get

z(1)− z(0) =

∫
D

dx ∧ dy +

∫
c

1

2
(xdy − ydx)

where D is the domain enclosed by α and the segment
c = [α(0), α(1)].  Projections of minimizing horizontal
paths must be circles.
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ẏ(t) = u2(t)
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ẏ(t) = u2(t)
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Examples

Let γu = (x , y , z) : [0, 1]→ R3 be a minimizing geodesic from
P1 := γu(0) to P2 := γu(1) 6= P1. Since u is necessarily
regular, there is a smooth arc p : [0, 1]→ (R3)∗ s.t.


ẋ = px − y

2
pz

ẏ = py + x
2
pz

ż = 1
2

((
py + x

2
pz

)
x −

(
px − y

2
pz

)
y
)
,


ṗx = −

(
py + x

2
pz

)
pz
2

ṗy =
(
px − y

2
pz

)
pz
2

ṗz = 0.

Hence pz = p̄z for every t. Which implies that

ẍ = −p̄z ẏ and ÿ = p̄z ẋ .

If p̄z = 0, then the geodesic from P1 to P2 is a segment with
constant speed. If p̄z 6= 0, we have or

...
x = −p̄2

z ẋ and
...
y = −p̄2

z ẏ .

Which means that the curve t 7→ (x(t), y(t)) is a circle.
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Examples

Example 3: The Martinet distribution

In R3, let ∆ = Span{X 1,X 2} with X 1,X 2 fo the form

X 1 = ∂x1 and X 2 =
(
1 + x1φ(x)

)
∂x2 + x2

1∂x3 ,

where φ is a smooth function and g be a smooth metric on ∆.

Theorem

There is ε̄ > 0 such that for every ε ∈ (0, ε̄), the (singular)
horizontal path given by

γ(t) = (0, t, 0) ∀t ∈ [0, ε],

minimizes the length (w.r.t. g) among all horizontal paths
joining 0 to (0, ε, 0). Moreover if {X 1,X 2} is orthonormal
w.r.t. g and φ(0) 6= 0, then γ can not be the projection of a
normal extremal.
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The SR exponential mapping

Denote by ψx ,p : [0, 1]→ T ∗M the solution of

ψ̇(t) = ~H
(
ψ(t)

)
∀t ∈ [0, 1], ψ(0) = (x , p)

and let

Ex :=
{

p ∈ T ∗x M |ψx ,p defined on [0, 1]
}
.

Definition

The sub-Riemannian exponential map from x ∈ M is
defined by

expx : Ex ⊂ T ∗x M −→ M
p 7−→ π

(
ψx ,p(1)

)
.

Proposition

Assume that (M , dSR) is complete. Then for every x ∈ M,
Ex = T ∗x M.

Ludovic Rifford CMM Lectures



The SR exponential mapping

Denote by ψx ,p : [0, 1]→ T ∗M the solution of

ψ̇(t) = ~H
(
ψ(t)

)
∀t ∈ [0, 1], ψ(0) = (x , p)

and let

Ex :=
{

p ∈ T ∗x M |ψx ,p defined on [0, 1]
}
.

Definition

The sub-Riemannian exponential map from x ∈ M is
defined by

expx : Ex ⊂ T ∗x M −→ M
p 7−→ π

(
ψx ,p(1)

)
.

Proposition

Assume that (M , dSR) is complete. Then for every x ∈ M,
Ex = T ∗x M.

Ludovic Rifford CMM Lectures



On the image of the exponential mapping

Proposition (Agrachev-Trélat-LR)

Assume that (M , dSR) is complete. Then for every x ∈ M, the
set expx(T ∗x M) is open and dense.

Lemma

Let y 6= x in M be such that there is a function φ : M → R
differentiable at y such that

φ(y) = d2
SR(x , y) and d2

SR(x , z) ≥ φ(z) ∀z ∈ M .

Then there is a unique minimizing geodesic γ : [0, 1]→ M
between x and y. It is the projection of a normal extremal
ψ : [0, 1]→ T ∗M satisfying ψ(1) = (y , 1

2
Dyφ). In particular

x = expy (−1
2
Dyφ).
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On the image of the exponential mapping
Proof.

Let y 6= x in M satisfying the assumption and
γ̄ = γū : [0, 1]→ M be a minimizing geodesic from x to y .

We have for every u ∈ U ⊂ L2([0, 1];Rm) (close to ū),

‖u‖2
L2 = C (u) ≥ eSR

(
x ,E x ,1(u)

)

≥ φ
(
E x ,1(u)

)

,

with equality if u = ū. So ū is solution to the following
optimization problem:

ū minimizes C (u)− φ
(
E x ,1(u)

)
among all u ∈ U .

We infer that there is p 6= 0 such that

p · DuE x ,1 = DuC with p = DE x,1(u)φ

and in turn get the result.
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γ̄ = γū : [0, 1]→ M be a minimizing geodesic from x to y .
We have for every u ∈ U ⊂ L2([0, 1];Rm) (close to ū),
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On the image of the exponential mapping

Remark

If (M , dSR) is complete and there are no singular minimizing
curves, then expx(T ∗x M) = M.

Examples:

Heisenberg.

Fat distributions.

For generic SR structures of rank ≥ 3.

Remark

If (M , dSR) is complete and there are no strictly singular
minimizing curves, then expx(T ∗x M) = M.

 Medium fat distributions.

Ludovic Rifford CMM Lectures



On the image of the exponential mapping

Remark

If (M , dSR) is complete and there are no singular minimizing
curves, then expx(T ∗x M) = M.

Examples:

Heisenberg.

Fat distributions.

For generic SR structures of rank ≥ 3.

Remark

If (M , dSR) is complete and there are no strictly singular
minimizing curves, then expx(T ∗x M) = M.

 Medium fat distributions.

Ludovic Rifford CMM Lectures



On the image of the exponential mapping

Remark

If (M , dSR) is complete and there are no singular minimizing
curves, then expx(T ∗x M) = M.

Examples:

Heisenberg.

Fat distributions.

For generic SR structures of rank ≥ 3.

Remark

If (M , dSR) is complete and there are no strictly singular
minimizing curves, then expx(T ∗x M) = M.

 Medium fat distributions.

Ludovic Rifford CMM Lectures



On the image of the exponential mapping

Remark

If (M , dSR) is complete and there are no singular minimizing
curves, then expx(T ∗x M) = M.

Examples:

Heisenberg.

Fat distributions.

For generic SR structures of rank ≥ 3.

Remark

If (M , dSR) is complete and there are no strictly singular
minimizing curves, then expx(T ∗x M) = M.

 Medium fat distributions.

Ludovic Rifford CMM Lectures



On the image of the exponential mapping

Remark

If (M , dSR) is complete and there are no singular minimizing
curves, then expx(T ∗x M) = M.

Examples:

Heisenberg.

Fat distributions.

For generic SR structures of rank ≥ 3.

Remark

If (M , dSR) is complete and there are no strictly singular
minimizing curves, then expx(T ∗x M) = M.

 Medium fat distributions.

Ludovic Rifford CMM Lectures



On the image of the exponential mapping

Remark

If (M , dSR) is complete and there are no singular minimizing
curves, then expx(T ∗x M) = M.

Examples:

Heisenberg.

Fat distributions.

For generic SR structures of rank ≥ 3.

Remark

If (M , dSR) is complete and there are no strictly singular
minimizing curves, then expx(T ∗x M) = M.

 Medium fat distributions.

Ludovic Rifford CMM Lectures



Open problems in SR geometry I: The Sard

conjecture

Let M be a smooth connected manifold of dimension n and
F = {X 1, . . . ,X k} be a family of smooth vector fields on M
satisfying the Hörmander condition. Given x ∈ M and T > 0,
the End-Point mapping E x ,T is defined as

E x ,T : L2
(
[0,T ];Rm

)
−→ M

u 7−→ x
(
T ; x , u

)
where x(·) = x(·; x , u) : [0,T ] −→ M is solution to the
Cauchy problem

ẋ =
m∑
i=1

ui X i(x), x(0) = x .

Proposition

The map E x ,T is smooth on its domain.
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The Sard Conjecture

Theorem (Morse 1939, Sard 1942)

Let f : Rd → Rp be a function of class C k , then

k ≥ max{1, d − p + 1} =⇒ Lp
(
f
(
Crit(f )

))
= 0,

where Crit(f ) is the set of critical points of f , i.e. the points
where Dx f is not onto.

Let
Singx ,T

F :=
{

u ∈ L2
(
[0,T ];Rm

)
| u singular

}
.

Conjecture

The set E x ,T
(

Singx ,T
F

)
⊂ M has Lebesgue measure zero.
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Open problems in SR geometry II: Regularity of

minimizing geodesics

Let (∆, g) be complete SR structure on a smooth manifold M .

Open Question

Do the minimizing geodesics enjoy some regularity ? Are they
at least of class C 1 ?

 Very partial results by Monti, Leonardi and later Monti.
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Thank you for your attention !!
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