Stabilization of finite-dimensional control systems: a survey

Ludovic Rifford

Université de Nice - Sophia Antipolis

Ludovic Rifford Stabilization of finite-dimensional control systems

Given a control system

$$\dot{x} = f(x, u)$$

with an equilibrium point

$$f(O,0)=0$$

which is globally asymptotically controllable, study the existence and regularity of stabilizing feedbacks.

Let

$$\dot{x} = f(x, u), \qquad x \in M, \quad u \in U,$$

be a control system.

Let

$$\dot{x} = f(x, u), \qquad x \in M, \quad u \in U,$$

be a control system.

It is said to be **Globally Asymptotically Controllable** at $O \in M$ if the two following properties are satisfied:

Let

$$\dot{x} = f(x, u), \qquad x \in M, \quad u \in U,$$

be a control system.

- It is said to be **Globally Asymptotically Controllable** at $O \in M$ if the two following properties are satisfied:
 - Attractivity: For each $x \in M$, there is a control $u(\cdot) : [0, \infty) \to U$ such that the corresponding trajectory $x_{x,u}(\cdot) : [0, \infty) \to M$ tends to O as $t \to \infty$.

Let

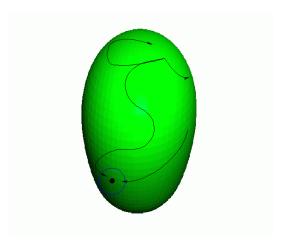
$$\dot{x} = f(x, u), \qquad x \in M, \quad u \in U,$$

be a control system.

- It is said to be **Globally Asymptotically Controllable** at $O \in M$ if the two following properties are satisfied:
 - Attractivity: For each $x \in M$, there is a control $u(\cdot) : [0, \infty) \to U$ such that the corresponding trajectory $x_{x,u}(\cdot) : [0, \infty) \to M$ tends to O as $t \to \infty$.
 - Lyapunov Stability: For each neighborhood V of O, there exists some neighborhood U of O such that if x ∈ U then the above control can be chosen such that x_{x,u}(t) ∈ V, ∀t ≥ 0.

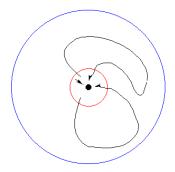
GAC control systems

Attractivity



GAC control systems

Lyapunov Stability



• If a linear control system

$$\dot{x} = Ax + Bu, \qquad x \in \mathbb{R}^n, \quad u \in \mathbb{R}^m,$$

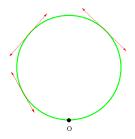
is controllable, then it is GAC at the origin.

• If a linear control system

$$\dot{x} = Ax + Bu, \qquad x \in \mathbb{R}^n, \quad u \in \mathbb{R}^m,$$

is controllable, then it is GAC at the origin.

• On the circle \mathbb{S}^1

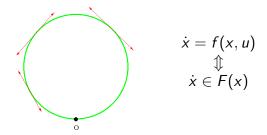


• If a linear control system

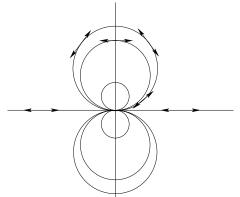
$$\dot{x} = Ax + Bu, \qquad x \in \mathbb{R}^n, \quad u \in \mathbb{R}^m,$$

is controllable, then it is GAC at the origin.

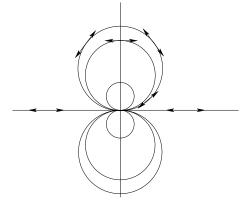
• On the circle \mathbb{S}^1



• Artstein's circles



• Artstein's circles



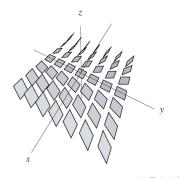
$$\begin{cases} \dot{x} = u(x^2 - y^2) \\ \dot{y} = u(2xy) \end{cases} \quad u \in [-1, 1]$$

• The nonholonomic integrator (shopping cart)

$$\begin{cases} \dot{x} = u_{1} \\ \dot{y} = u_{2} \\ \dot{z} = u_{2}x - u_{1}y \end{cases} \quad u = (u_{1}, u_{2}) \in \mathbb{R}^{2}$$

• The nonholonomic integrator (shopping cart)

$$\begin{cases} \dot{x} = u_{1} \\ \dot{y} = u_{2} \\ \dot{z} = u_{2}x - u_{1}y \end{cases} \quad u = (u_{1}, u_{2}) \in \mathbb{R}^{2}$$



• If *M* is a connected manifold and the control system has the form

$$\dot{x} = \sum_{i=1}^{m} u_i f_i(x)$$

where f_1, \ldots, f_m is a family of smooth vector fields satisfying the Hörmander bracket generating condition

$$\mathsf{Lie}\left\{f_{1},\ldots,f_{m}\right\}(x)=T_{x}M\qquad\forall x\in M,$$

then the Chow-Rashevski Theorem implies that the system is GAC at any $x \in M$.

Given a GAC control system

$$\dot{x} = f(x, u), \qquad x \in M, \quad u \in U,$$

can one find a feedback

$$k: M \longmapsto U$$

which makes the closed-loops system

$$\dot{x} = f(x, k(x))$$

Globally Asymptotically Stable ?

Proposition

If a linear control system

$$\dot{x} = Ax + Bu, \qquad x \in \mathbb{R}^n, \quad u \in \mathbb{R}^m,$$

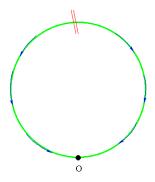
is GAC at the origin, then there is $K \in M_{m,n}(\mathbb{R})$ such that the closed-loop system

$$\dot{x} = (A + BK)x$$

is GAS at the origin.

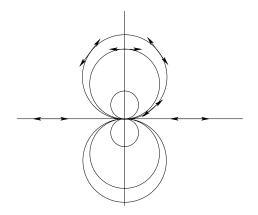
Back to examples

On the circle \mathbb{S}^1



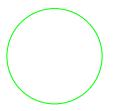
Back to examples

Artstein's circles

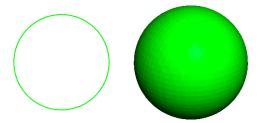


Proposition

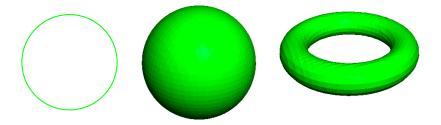
Proposition



Proposition



Proposition



A local obstruction : The Brockett condition

Theorem

Let X be a continuous vector field in a neighborhood of the origin in \mathbb{R}^n . If X is GAS at 0, then for $\epsilon > 0$ small enough, there exists $\delta > 0$ such that

 $\delta B \subset X(\epsilon B).$

A local obstruction : The Brockett condition

Theorem

Let X be a continuous vector field in a neighborhood of the origin in \mathbb{R}^n . If X is GAS at 0, then for $\epsilon > 0$ small enough, there exists $\delta > 0$ such that

 $\delta B \subset X(\epsilon B).$

Corollary

Let $\dot{x} = f(x, u)$ be a control system in a neighborhood of the origin with f(0, 0) = 0. If it admits a feedback $k : \mathbb{R}^n \to U$ which is continuous and such that X = f(x, k(x)) is GAS at 0, then for $\epsilon > 0$ small enough, there exists $\delta > 0$ such that

 $\delta B \subset f(\epsilon B, U).$

< 17 ▶

A 3 1

The nonholonomic integrator

$$\begin{cases} \dot{x} = u_{1} \\ \dot{y} = u_{2} \\ \dot{z} = u_{2}x - u_{1}y \end{cases} \quad u = (u_{1}, u_{2}) \in \mathbb{R}^{2}$$

Vertical vectors of the form

$$\left(\begin{array}{c} 0\\ 0\\ \delta \end{array}\right) \qquad \text{with} \quad \delta \neq 0$$

do not belong to $f(\mathbb{R}^3, \mathbb{R}^2)$!!

Let $\dot{x} = f(x, u)$ be a control system with $x \in \mathbb{R}^n$ and $u \in U$.

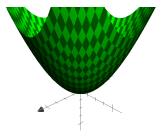
Definition

A function $V : \mathbb{R}^n \to \mathbb{R}$ is called a smooth control-Lyapunov function (CLF) for $\dot{x} = f(x, u)$ at the origin if it satisfies the following properties:

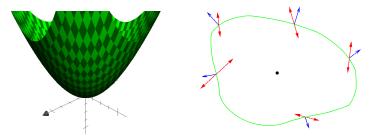
- V is smooth
- V is positive definite;
- V is proper;
- for every $x \in \mathbb{R}^n \setminus \{0\}$,

$$\inf_{u\in U}\Big\{\langle\nabla V(x),f(x,u)\rangle\Big\}<0.$$

Smooth CLF (Picture)



Smooth CLF (Picture)



The Artstein theorem

Theorem

If the control system

$$\dot{x} = \sum_{i=1}^m u_i f_i(x) \qquad x \in \mathbb{R}^n, \quad u \in \mathbb{R}^m,$$

admits a smooth CLF at the origin, then it admits a smooth stabilizing feedback, that is a smooth mapping $k : \mathbb{R}^n \to \mathbb{R}^m$ such that the closed loop system

$$\dot{x} = f(x, k(x))$$

is GAS at the origin.

Semiconcave CLF

Definition

A continuous function $V : M \to \mathbb{R}$ is called a semiconcave control-Lyapunov function (CLF) for $\dot{x} = f(x, u)$ at the origin if it satisfies the following properties:

- V is locally semiconcave on $M \setminus \{O\}$;
- V is positive definite;
- V is proper;
- *V* is a viscosity supersolution of the Hamilton-Jacobi equation

$$\sup_{u\in U}\left\{-\langle \nabla V(x), f(x, u)\rangle\right\} - V(x) \ge 0.$$

Locally semiconcave functions

A function $f : \Omega \to \mathbb{R}$ is semiconcave in a neighborhood of $x \in \Omega$ if it can be written locally as

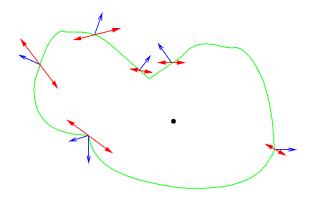
$$f = \mathbf{g} + \mathbf{h},$$

with g concave and h smooth.

The weak decreasing condition

V is a viscosity supersolution of the Hamilton-Jacobi equation

$$\sup_{u\in U}\left\{-\langle \nabla V(x), f(x,u)\rangle\right\} - V(x) \ge 0.$$



Picture of a semiconcave CLF

□ > < E > < E</p>

Proposition

Let $\dot{x} = f(x, u)$ be a control system with $x \in M$ and $u \in U$. Assume that it admits a semiconcave CLF at $O \in M$. Then it is GAC at O.

Proposition

Let $\dot{x} = f(x, u)$ be a control system with $x \in M$ and $u \in U$. Assume that it admits a semiconcave CLF at $O \in M$. Then it is GAC at O.

Theorem

If the control system $\dot{x} = f(x, u)$ is GAC at O, then it admits a semiconcave CLF at O.

Discontinuous stabilizing feedbacks

Let

$$\dot{x} = \sum_{i=1}^{m} u_i f_i(x) \qquad x \in M, \quad u \in \mathbb{R}^m,$$

be a control system and $O \in M$ be fixed.

Theorem

If $\dot{x} = f(x, u)$ is GAC at O, then there exists an open dense set of full measure in $M \setminus \{O\}$ and a feedback $k : M \to \mathbb{R}^m$ such that

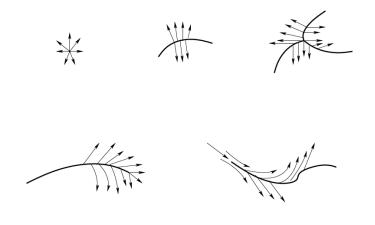
- k is smooth on \mathcal{D} ;
- the closed-loop system $\dot{x} = f(x, k(x))$ is GAS at O in the sense of Carathéodory, that is for the solutions of

$$\dot{x}(t) = f(x(t), k(x(t)))$$
 a.e. $t \geq 0$.

Stabilizing the skieur

∃ >

Singularities on surfaces



< 同 > < 回 > < 回 >

э

Almost stabilizing feedbacks

A smooth dynamical system is said to be *almost globally* asymptotically stable at $O \in M$ (AGAS) if:

A smooth dynamical system is said to be *almost globally* asymptotically stable at $O \in M$ (AGAS) if:

 Attractivity: For almost every x ∈ M, the solution of x = X(x) starting at x converges to O; A smooth dynamical system is said to be *almost globally* asymptotically stable at $O \in M$ (AGAS) if:

- Attractivity: For almost every x ∈ M, the solution of ẋ = X(x) starting at x converges to O;
- Lyapunov Stability: For each neighborhood V of O, there exists some neighborhood U of O such that if x ∈ U then the above trajectory remains in V, ∀t ≥ 0.

Theorem

If $\dot{x} = \sum_{i=1}^{m} u_i f_i(x)$ is GAC at O, then there is a smooth feedback $k : M \to \mathbb{R}^m$ such that $\dot{x} = f(x, k(x))$ is AGAS at O.

伺 ト イ ヨ ト イ ヨ ト

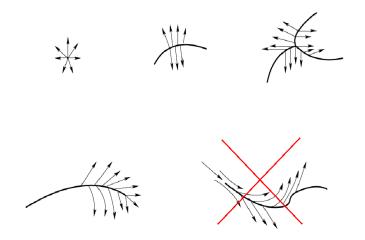
Almost stabilization of skieurs

< ≣ > <

The feedback $k : M \to \mathbb{R}^n$ is said to be a *smooth repulsive stabilizing* feedback at $O \in M$ (SRS) if the following properties are satisfied:

- there is a set S ⊂ M \ {O} which is closed in M \ {O} and of full measure;
- k is smooth outside O;
- the closed-loop system is GAS at O in the sense of Carathéodory;
- for all t > 0, the trajectories of the closed-loop system do not belong to S.

Repulsive singularities on surfaces



- ₹ 🖬 🕨

A D

э

SRS feedbacks on surfaces

Let M be a smooth surface and

$$\dot{x} = u_1 X(x) + u_2 Y(x)$$

be a control system with X, Y two smooth vector fields on M and $O \in M$ be fixed.

Theorem

Assume that

$$Lie \{X, Y\} (x) = T_x M \qquad \forall x \in M.$$

Then it admits a SRS feedback on M at O. Moreover the feedback can be taken to be continuous around the origin.

Thank you for your attention !!