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N= random countable set of points of R (here).

Na number of points of N in A, Ny = Nig 4,
dNe =31 point de nOT

Poisson processes

o for all integer n, for all Ay, ..., A, disjoint measurable subsets
of X, Na,,..., Na, are independent random variables.

o for all measurable subset A of X, N4 obeys a Poisson law with
parameter depending on A and denoted /(A).

Usually d¢ = A(t)dt, A(t) is the intensity, if constant —
homogeneous
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Basic questions for Poisson processes

@ Is A(t) constant ? ie is the process stationary ?
— it highly depends on the experiment ! — Test of
homogeneity

@ Are the processes identically distributed ? — Two-sample
tests

@ Are they dependent ? — Independence tests

@ Can we detect it locally 7 — multiple "adaptive” testing
problems ...

@ Where are the poor or rich regions 7 — Non parametric
estimation
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Genomics

Neuroscience

"events”’ on the DNA
"work” together in synergy (TRE)

Of course
"neurons” work together.

If two motifs are part

of a common biological process,
the distance ~ fixed

— favored or avoided distances
(Gusto, Schbath (2005))

When recorded, a fixed
delay between

spikes hints

for a functional/physical link.
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Usually R is thought as time

Intensity

t — A(t) where \(t)dt represents the probability to have a point
at time t conditionnally to the past before t (s < t)

"Past” contains in particular the previous occurrences of points.
NB : for Genomics, R is the DNA strand. The " past” may be
interpreted as what has already been read in a prescribed direction
(eg. 5 3 or3 5)

NB2 : fo s)ds); is a martingale.
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The Hawkes process interaction with itself + an additional
Interaction

A(t) =

<V + ZTeNh(t*T) + ZX6N2h2(t_X)>
i

Spontaneous Self-interaction Interaction with other type

If his null and if N, is fixed (no reciprocal interaction), then N is a
Poisson process given Nj.
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Link with graphical model of local independence (see Didelez
(2008))

o’ m»
-

Hence we need a sparse adaptive estimation (functions, support of
the functions) !
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The power is A € H; — Py(A = 1).

when X is almost constant, power >~ Py (A =1) .
best to have Py (A =1) =«

Morever gives in practice access to meaningful p-values (value
of «, depending on the observed N where the test changes its
decision)

Also p-values involved in multiple testing procedures ...

To guarantee Py (A = 1) = «, best to have some statistics
whose law known under Hj.

Here, conditionally to the total number of points is n, points
behave under Hy as a n uniform iid sample — easy access to
quantile
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Alternatives and choice of the test statistics

But here, the alternatives are

@ NOT : parametric, smooth, detectable by Kolmogorov

Smirnov

@ more likely to have spiky distributions with unknown support
Best to project on a wavelet (Haar) basis and reject when, say,
one/few coefficients too high.
"High” = quantile under Hp.
Problem = we don’t know which coefficients — aggregation of
tests.
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~ 1
Tk = GGx ~ 12 / i) AN = > b (X110 (Xrr)
I£1
where N is the set of points X|'s.
@ we reject when T, > t,(nly(f{”).

° t,(,f)a the 1 — a quantile of the conditional distribution.
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Aggregation

Let M be a family of subsets of indices.

Reject rule

there exists one m € M such that T, > t,(,,’\,l(lm,

where under Hy, P(3me M, T, > tr(n,\,lr)xm) < a.

@ Basic choice : Bonferroni o), = ﬁ

o with weights : oy, = ae™""m such that S e Wm <1
@ refined .... for simulation (possible to guarantee equality in
the level)
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Need of concentration 7

For A in Hy, Error of 2nd kind =

PA(Ym € M, T <t ) < PA(Tm <t ) for all m in M.
How t,(n’Y()ym = tr(nNﬁ deteriorates with respect | M| ?
M

— how t,(nNo)é depends on o 7

@ if there is exponential decay, possible to aggregate | M|
without losing much more than a logarithmic term

@ Hence methods powerful against "ugly” alternatives (such as
weak Besov spaces) and usually minimax if well done ...
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Concentration of U-statistics
T is a degenerate U-statistics of order 2 under Hy conditionnally
to Nior = n, ieit's a
Un=>_&(Xi, X)),

i#j
with g symmetric E(g(X, X;)|X;) = 0.
Theorem
If|g|eo < A then for all u,e >0

P(U, > 2(1 4 ¢)*2C/u+ O.Du + 0O.Bu®? + 0. Av?) < Oe™ ¥

with C? = Do E(g(Xi, X;)?) and B and D other functions of g.
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Concentration of U-statistics
T is a degenerate U-statistics of order 2 under Hy conditionnally
to Nior = n, ieit's a
Un=>_&(Xi, X)),

i#j
with g symmetric E(g(X, X;)|X;) = 0.
Theorem
If|g|eo < A then for all u,e >0

P(U, > 2(1 +¢)*2Cv/u+ O.Du + 0. Bu®/? + 0. Au?) < Qe
with C? = Do E(g(Xi, X;)?) and B and D other functions of g.

@ without constants Giné, Latala, Zinn (2000)
@ with constant Houdré, RB (2003) - also Poisson processes
@ higher order Adamczak (2006)
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Conclusions for testing

@ Concentration inequalities are a tool to evaluate the
dependency in « of the 1 — a quantile

@ In the upper bound, no need for precise constants or
observable quantities

@ But dependency of for instance, A, B, C, D in m crucial...
Best if dimension free or dependency in m as small as possible
— choice of the test statistics and the M's.
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Poisson case
Here again A(t) = Ls(t) with L known (— o0), s unknown.

Least square contrast

o) =7 [ fedne+ [ (o
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Poisson case
Here again A(t) = Ls(t) with L known (— o0), s unknown.

Least square contrast
2

E(y(f)) = -2 < f,s > +|f|> = |f — s|? — |s|*> minimal when
f=s.
@ Let S, be any finite vectorial subspace with ONB

(gp)\, A€ /\m)
® 5, = argminfesm’y(f)
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Here again A(t) = Ls(t) with L known (— o0), s unknown.

Least square contrast
2

E(y(f)) = -2 < f,s > +|f|> = |f — s|? — |s|*> minimal when
f=s.
@ Let S, be any finite vectorial subspace with ONB
(px, A € Ap).
® 8y = argmingcs, ¥(f)
© E(|s — 3nl*) = Is = sml® + 1 Xren, J 3 (1)s(t)dt <
Is — sm|? + ‘—T‘||s||oo — penalisation
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Poisson case
Here again A(t) = Ls(t) with L known (— o0), s unknown.

Least square contrast
2

E(y(f)) = -2 < f,s > +|f|> = |f — s|? — |s|*> minimal when
f=s.
@ Let S, be any finite vectorial subspace with ONB
(px, A € Ap).
® 8y = argmingcs, ¥(f)
© E(|s — 3nl*) = Is = sml® + 1 Xren, J 3 (1)s(t)dt <
Is — sm|? + ‘—T‘||s||oo — penalisation

Penalized model selection

M = argmin e vq {7(4m) + pen(m)} 22/45
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An easy calculus (1)

A =7 [ F(e)(aMe = s(e)a) + 1F = sI? ]2

Let 6(f) = 1 [ f(t)(dN; — Ls(t)dt) (zero mean)
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An easy calculus (1)

A =7 [ F(e)(aMe = s(e)a) + 1F = sI? ]2

% [ f(t)(dN¢ — Ls(t)dt) (zero mean)
V(F) =

—26(F) + |f — s|* — [s]>.
Moreover for all m € M

v(5m) + pen() < v(8m) + pen(m) < y(sm) + pen(m)

Estimation
O@0000
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An easy calculus (1)

A =7 [ F(e)(aMe = s(e)a) + 1F = sI? ]2

Let 6(f) = 1 [ f(t)(dN; — Ls(t)dt) (zero mean)
Y(F) = =26(f) + |f — s|* — |s[.
Moreover for all m e M

v(5m) + pen(rm) < v(8m) + pen(m) < y(sm) + pen(m).

157 — st <|s-— smH2 + pen(m) — 26(sm) + 20(55) — pen(r)
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An easy calculus (2)

Starting point

155 =% < Is—sm|*+pen(m)—20(sm—sm)+20(345 —sm) —pen(ri)

® 0(sm) — negligeable (also d(ss))
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An easy calculus (2)

Starting point

155 =% < Is—sm|*+pen(m)—20(sm—sm)+20(345 —sm) —pen(ri)

® d(sm) — negligeable (also 0(ss))
® (85 — 5n) = Then, (1 S r(t)(dNe — Ls(t)dt))”
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An easy calculus (2)

Starting point

155 =% < Is—sm|*+pen(m)—20(sm—sm)+20(345 —sm) —pen(ri)

® d(sm) — negligeable (also 0(ss))
® 8(5n — 5) = Then, (1] @r(D)(dN: — Ls(£)dt))” = x*(

2
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An easy calculus (2)

Starting point

155 =% < Is—sm|*+pen(m)—20(sm—sm)+20(345 —sm) —pen(ri)

® d(sm) — negligeable (also 0(ss))
© 6(5n — 5n) = Lhen, (1 fm( (dNe — Ls(£)dt))" = °(
o E(x*(m)) = Y sen, J ©3(t)s(t)dt ie variance

>

)
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An easy calculus (2)

Starting point

155 =% < Is—sm|*+pen(m)—20(sm—sm)+20(345 —sm) —pen(ri)

® d(sm) — negligeable (also 0(ss))
® 6(55 — 50) = Then, (1 fm( (dN: — Ls(£)dt))” = x*(

® E(Xz(m)) =1 Z)\e/\m fgo)\ dt ie variance
@ Hence if pen(m) ~ 2 x variance — oracle inequality

>

)
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An easy calculus (2)

Starting point

155 =% < Is—sm|*+pen(m)—20(sm—sm)+20(345 —sm) —pen(ri)

® d(sm) — negligeable (also 0(ss))
® 6(55 — 50) = Then, (1 fm( (dN: — Ls(£)dt))” = x*(

® E(Xz(m)) =1 Z)\e/\m fgo)\ dt ie variance
@ Hence if pen(m) ~ 2 x variance — oracle inequality

@ But x%(r1) — control of all the x?(m)

>

)
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An easy calculus (2)

Starting point

155 =% < Is—sm|*+pen(m)—20(sm—sm)+20(345 —sm) —pen(ri)

d(sm) — negligeable (also d(ss))
55 — ) = Then, (1 fm( (dN: — Ls(£)dt))” = x*(

E(X (m)) =1 Z)\e/\m fgo)\ dt ie variance
Hence if pen(m) ~ 2 x variance — oracle inequality

But x2(r%1) — control of all the x?(m)

[ ]
>

)

Exponential inequality
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Talagrand type inequality for Poisson processes

xX(m) = { supjrj—1 res,, J F(£)(dN; — Ls(t)dt).
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Talagrand type inequality for Poisson processes

x(m) = %suprH:LfeSm J f(t)(dN; — Ls(t)dt).
Theorem (RB 2003)

Let {1,,a € A} a countable family of functions with values in
[—b; b].
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Talagrand type inequality for Poisson processes

xX(m) = { supjrj—1 res,, J F(£)(dN; — Ls(t)dt).

Theorem (RB 2003)

Let {1,,a € A} a countable family of functions with values in
[—b; b].
If Z = sup,cp [5 a(x)(dNx — diy),
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Talagrand type inequality for Poisson processes

xX(m) = { supjrj—1 res,, J F(£)(dN; — Ls(t)dt).

Theorem (RB 2003)

Let {1,,a € A} a countable family of functions with values in
[—b; b].
If Z = sup,cp Js a(x)(dNx — dly), then for all u,e > 0,

P(Z > (14¢e)E(Z) + 2vkvu + k(e)bu) < e,

with v = sup,ca [y ¥2(x)dlx
and k = 6, r(e) = 1.25 + 3271,
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Talagrand type inequality for Poisson processes

xX(m) = { supjrj—1 res,, J F(£)(dN; — Ls(t)dt).

Theorem (RB 2003)

Let {1,,a € A} a countable family of functions with values in
[—b; b].
If Z = sup,cp Js a(x)(dNx — dly), then for all u,e > 0,

P(Z > (14¢e)E(Z) + 2vkvu + k(e)bu) < e,

with v = sup,ca [y ¥2(x)dlx
and k = 6, r(e) = 1.25 + 3271,
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Application to x(m)

Corollary (RB 2003)
Let

Mp = sup /fz(x)s(x)dx et Bn= sup |f]eo-
FESm|fl=1/X FESm,|Fl=1

then for all u,e > 0,

P <X(m) >(1+ 6)\/% Sox f ©3(x)s(x)dx + \/2”‘—’\[”"“ + n(g)%)

<e Y
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Oracle inequality for Poisson processes
simplified in the case of piecewise constant models on a fine grid TI.
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Oracle inequality for Poisson processes
simplified in the case of piecewise constant models on a fine grid TI.

Proposition (RB 2003)
Let {Lym,me M} tq 3, v et < X with [T| < L(In L)~2.
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Oracle inequality for Poisson processes
simplified in the case of piecewise constant models on a fine grid TI.

Proposition (RB 2003)

Let {Lym,me M} tq 3, v et < X with [T| < L(In L)~2.
For all ¢ > 1, if

pen(m) = %(1 + V2kLy)? avec M = sup;r

N;
w(l)?
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Oracle inequality for Poisson processes
simplified in the case of piecewise constant models on a fine grid TI.

Proposition (RB 2003)

Let {Lym,me M} tq 3, v et < X with [T| < L(In L)~2.
For all ¢ > 1, if

pen(m) = %'m‘(l + V2kLy)? avec M = sup;r %,
then

M|m|

1
(1+Lm)| +0cxm

E(ls — §al?) < O inf |Is — snl? + 7
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Oracle inequality for Poisson processes
simplified in the case of piecewise constant models on a fine grid TI.
Proposition (RB 2003)

Let {Lym,me M} tq 3, v et < X with [T| < L(In L)~2.
For all c > 1, if

pen(m) = %'m‘(l + V2kLy)? avec M = sup;r %,
then

A . M|m 1
B(ls — 3l < Oc inf (s = snl? + 2701 4 £)| + Ocx g,

J; s(x)dx ‘

where M = supjcr =y
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Oracle inequality for Poisson processes
simplified in the case of piecewise constant models on a fine grid TI.
Proposition (RB 2003)

Let {Lym,me M} tq 3, v et < X with [T| < L(In L)~2.
For all c > 1, if

pen(m) = %'m‘(l + V2kLy)? avec M = sup;r %,

then

A . M|m 1
B(ls — 3l < Oc inf (s = snl? + 2701 4 £)| + Ocx g,

J; s(x)dx ‘

where M = sup;cr o)

Here constants in the concentration inequalities are crucial —
penalty.

27/45
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Counting processes with linear intensities
A(t) = Ws(t)

where W (.) known predictable linear transformation. Functional
parameter s unknown.
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Counting processes with linear intensities

A(t) = Vs(t)

where W (.) known predictable linear transformation. Functional
parameter s unknown.

@ Poisson process on R : W,(.) = Ls(.) with unknown function
s.

@ Processus de Hawkes :
V() = AO(t) = v, + Z / WO (¢ — u)an .

with s = (v, i),
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Counting processes with linear intensities

A(t) = Vs(t)

where W (.) known predictable linear transformation. Functional
parameter s unknown.

@ Poisson process on R : W,(.) = Ls(.) with unknown function
s.

@ Processus de Hawkes :
V() = AO(t) = v, + Z / WO (¢ — u)an .

with s = (v, i),
Observation on [0, T].
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Least square contrast

T T
7(f):—é/o wf(t)d/vt+%/0 V().
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Least square contrast

T T
() == [ v+ 4 [ wioiar

@ taking the cory_pensator, .
V(F) = =2 [tV (t)dt + F [ We(t)2dt
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Least square contrast

T T
() == [ v+ 4 [ wioiar

@ taking the cory_pensator, .
V() = =2 [T W(t)Ws(t)dt + F [ We(t)2dt =
F I ems(0?dt — £ i (1)
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Least square contrast

T T
() == [ v+ 4 [ wioiar

@ taking the cor;w_pensator, .
V() = =2 [T W(t)Ws(t)dt + F [ We(t)2dt =
LT o(£)2dt — L[] wy(t)2dt.
minimal when W¢_¢(t) =0 as., ae. - f =s.
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Practical examples and Definitions Test

Least square contrast

T T
W) =7 [ vioan+ 3 [ viorar

@ taking the compensator,
(f) wa(t)w (t)dt+ LT we(t)2dt =

Tfo Wf s - Tfo s(t)%dt.
minimal when \IJf s(t)=0as., ae. — f=s.

@ In general, % fOT\IJf(t)2dt is random, true norm only with
high probability.
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@ For each S, §, = argmingcs 7(f)
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Model selection and 2

@ For each S, §, = argmingcs 7(f)
@ Family M + penalty and

m = argmin v {7(8m) + pen(m)}.
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@ For each S, §, = argmingcs 7(f)
@ Family M + penalty and

m = argmin v {7(8m) + pen(m)}.

@ The statistics to control is
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Model selection and 2

@ For each S, §, = argmingcs 7(f)
o Family M + penalty and

m = argmin v {7(8m) + pen(m)}.

@ The statistics to control is

em= Y (% [Mveoom - viom)

AENm

2

@ Once again

xm) = sup [ WA(e)(dNe V(o))
[fl=1,f€ESm
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"Talagrand” type inequality for general counting processes

Theorem (RB 2006)
Let \(t) be a.s integrable on [0, T].
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"Talagrand” type inequality for general counting processes

Theorem (RB 2006)

Let \(t) be a.s integrable on [0, T].
Let {(H,t)t>0,a € A} be a countable family of predictable process

t
Vt>0, Z;= sup/ H, s(dNs — A(s)ds).
acAJo
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"Talagrand” type inequality for general counting processes

Theorem (RB 2006)

Let \(t) be a.s integrable on [0, T].
Let {(H,t)t>0,a € A} be a countable family of predictable process

t
Vi >0, Zi= sup/ H, s(dNs — A(s)ds).
acAJo

Then its compensator exists (At)¢>o, it is positive and non
decreasing and

t
VO<t<T, Zi—A— / AZ(s)(dNs — A(s)ds),
0

for a predictable AZ(s) st AZ(s) < sup,eca Ha s
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"Talagrand” type inequality for general counting processes

Theorem (RB 2006)

Let A\(t) be a.s integrable on [0, T].
Let {(Ha.t)t>0,a € A} be a countable family of predictable process

t
Vt>0, Zi= sup/ H, s(dNs — A(s)ds).
acAJo

If the H, have values in [—b, b] and iffOT sup,ca H2 A(s)ds < v
as, then for all u > 0,

P (sup(Zt —At) > V2w + %) <e Y.

[0,7T]
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And for the y?

C= Z/ *"AX) A(x)dx,

with C < vet >, W, (x)? < b for all x € [0, T]. Then for all

u>0,
P (X(m) > V/C 4 3V2wu + bu) <2

Let
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with C < vet >, W, (x)? < b for all x € [0, T]. Then for all

u>0,
P (X(m) > V/C 4 3V2wu + bu) <2t

Let

@ v is of the order of D,, # Poisson case — a "worse" oracle
inequality (family of models to be handle are smaller)
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C= Z/ “”*X) A(x)dx,

with C < vet >, W, (x)? < b for all x € [0, T]. Then for all

u>0,
P (X(m) > V/C 4 3V2wu + bu) <2t

Let

@ v is of the order of D,, # Poisson case — a "worse" oracle
inequality (family of models to be handle are smaller)

@ Improvement sometimes possible Baraud (2010) but need of
an upper bound on v/C.
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And for the y?

C= Z/ “”*X) A(x)dx,

with C < vet >, W, (x)? < b for all x € [0, T]. Then for all

u>0,
P (X(m) > V/C 4 3V2wu + bu) <2t

Let

@ v is of the order of D,, # Poisson case — a "worse" oracle
inequality (family of models to be handle are smaller)
@ Improvement sometimes possible Baraud (2010) but need of

an upper bound on v/C.
@ Still X\ inside, which is in general difficult to estimate —

usually assume known upper bound.

32/45



Practical examples and Definitions Test Estimation

000000
O0000e

0000
00000000

Concrete Problems due to the concentration...

@ No theoretical access to a fully data-driven penalty.
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@ Even in the Poisson case, variance upper bounded and then
overestimation ... of the upper bound.
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@ No theoretical access to a fully data-driven penalty.

@ Even in the Poisson case, variance upper bounded and then
overestimation ... of the upper bound.

@ We would like to be closer to the true variance of 5, and
estimate it without bias.
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Concrete Problems due to the concentration...

@ No theoretical access to a fully data-driven penalty.

@ Even in the Poisson case, variance upper bounded and then
overestimation ... of the upper bound.

@ We would like to be closer to the true variance of 5, and
estimate it without bias.

@ Talagrand type inequalities lead us to estimate the supremum
of the variances (Poisson) or the variance of the supremum

33/45
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Poisson process and Thresholding
185 —5|? < |s—sm|>+pen(m) —26(sm —ss)+20(54 — 55) —pen( i)

@ Here there exists a large ONB (), A € A) and for m C A,
Sm = Span(px, A € m)
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Poisson process and Thresholding

135 —5[2 < |s—sm|*>+pen(m) —26(sm—5s)+20(54 —5s) —pen(r)

@ Here there exists a large ONB (), A € A) and for m C A,
Sm = Span(px, A € m)
o By = [pas, B = (1/L) [ padN
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Poisson process and Thresholding

||§,;,—s||2 < ||s—sm||2—|—pen(m)—25(sm—s,;,)+25(§m—s,f7)—pen(ﬁ1)

@ Here there exists a large ONB (), A € A) and for m C A,
Sm = Span(px, A € m)
o By = [pas, B = (1/L) [ padN

o 3(8m — sm) = X2(M) = Ysem (% [ oa(t)(dN; — s(t)dt))?
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Poisson process and Thresholding

185 —51? < |5 —sm|*+pen(m) —28(sm — ) +20(85 —s) —pen(h)
@ Here there exists a large ONB (), A € A) and for m C A,
Sm = Span(px, A € m)
o By = [pas, B = (1/L) [ padN

N A 2
8 8(8n — ) = () = Tacp (1 [ oa(B)(dNe — s(t)d))
o If i better understood, not forced to control all the x(m).
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@ Here there exists a large ONB (¢, A € A) and for m C A,
Sm = Span(px, A € m)
o B = [as, Br = (1/L) [ prdN
© 3(8n — ) = () = T (£ [ or(0)(dNe = s(t)a))”
o If i better understood, not forced to control all the x(m).
o If M ={mC T}, where finite subset of A and if

pen(m) = 3", 73 then
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Poisson process and Thresholding

18 —s1? < Is—sm|* +pen(m) —28(sm— ) +20(85 — $) — pen(h)
@ Here there exists a large ONB (¢, A € A) and for m C A,
Sm = Span(px, A € m)
o B = [as, Br = (1/L) [ prdN
© 3(8n — ) = () = T (£ [ or(0)(dNe = s(t)a))”
o If i better understood, not forced to control all the x(m).
o If M ={mC T}, where finite subset of A and if

pen(m) = 3", 73 then

m = argmin,,c v (7(8m) + pen(m)) .
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@ Here there exists a large ONB (), A € A) and for m C A,
Sm = Span(px, A € m)
o By = [pas, B = (1/L) [ padN

N A 2
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Poisson process and Thresholding

185 —51? < |5 —sm|*+pen(m) —28(sm — ) +20(85 —s) —pen(h)
@ Here there exists a large ONB (), A € A) and for m C A,

Sm = Span(px, A € m)

B = [pas, Bx = (1/L) [ padN

N . 2
(35 — sm) = X*(M) = Lem (1 [ @a(t)(dN; — s(t)dt))
If /i1 better understood, not forced to control all the x(m).
If M ={m C T}, where I finite subset of A and if

pen(m) = 3", 73 then

m={NeTl /B >m}

° Xz(’ﬁ) = err(ﬁk - /)))‘)21|B>\|>77>\'
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A general thresholding theorem
Theorem (RB Rivoirard 2010)

Let B = (Bx)xen st ||Blle, < co be unknown. Let us observe
(B))rer, where T C A\ and (n))aer-
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Let B = (Bx)xen st ||Blle, < co be unknown. Let us observe
(Bx)yer, where T C A and (nx)er-

Let B = (Ba1;5,|5,, Irerren-

Let € > 0 be fixed. If one finds (F))xer and k € [0,1], w € [0,1],
¢>0st

(A1) ForallXinT, P (|/§’A — Bl > m])\) <

(A2) There exists 1 < a,b < oo with 1+ 1 =1and G > 0 st

AerT,

o=

(E [|B)\ - ﬁA|2aD% < G max <F>\7 FA%G
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Theorem (RB Rivoirard 2010)

Let B = (Bx)xen st ||Blle, < co be unknown. Let us observe
(Bx)yer, where T C A and (nx)er-

Let B = (Ba1;5,|5,, Irerren-

Let € > 0 be fixed. If one finds (F))xer and k € [0,1], w € [0,1],
¢>0st

(A1) ForallXinT, P (|/§’A — Bl > m])\) <

(A2) There exists 1 < a,b < oo with 1+ 1 =1and G > 0 st
Ael,

o 1 1
<IE [|ﬁ>\ — ﬁ)\|2aD ° < G max <F,\, F)f'e}a> .
(A3) there exists T st for all A in T / F\ < Te,
P (WA,\ — Bl > &ma, [Bx] > 77)\> < Fx¢.
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A general thresholding theorem (2)

Theorem (RB Rivoirard 2010)
Then under (A1), (A2), (A3),

O.Einfmcr {me Br+ Yorem(Br — B2+ Ysem ni}
S£0 }::Aezr Fx

< OEinfmer(|s — sm|? + pen(m)]+ reminder term
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Bernstein and variance estimation
For all u > 0,

p <V3’A — Bl = V2uVs + —”w;”ﬁ”) < 2eY,
with Vi = 1 [ 3 (x)s(x)dx
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with Vi = 1 [ 3 (x)s(x)dx
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with
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where Vy = & [ ©2(x)dN.
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Bernstein and variance estimation

For all u > 0,
p <V3’A — By > V2uVh + —”“’;”f"”) <2
with Vi = 1 [ 3 (x)s(x)dx
and also
P (vA > V)\(u)) <e v
with

/ 2 2
o ~ A O\ O

where Vy = & [ ©2(x)dN.
Hence .
P([Bx = Bl > ma(u)) < 3e7"
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Reformulation of the least-square contrast:

v(f) = —%/OTWf(t)dNt"i‘%/Owa(t)zdt'
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Lasso for other counting processes
Reformulation of the least-square contrast:
2 [T 1 /7
y(f) = __/ We(t)dN; + —/ We(t)2dt.
T Jo T Jo

Let ® be a dictionary of H and if a € R®.
f, = Z ayp.

Then
~v(f) = —2b*a + a*Ga
where

@ G is a random observable matrix.
@ b is also a random observable vector.
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Lasso criterion

Lasso criterion

a = argmin,go{—2b"a + a*Ga + 2d*|a|}

@ The vector d* is not constant: it is random and depends on
the index, same role as the threshold 7
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Lasso criterion

a = argmin,go{—2b"a + a*Ga + 2d*|a|}

@ The vector d* is not constant: it is random and depends on
the index, same role as the threshold 7

@ — data-driven penalty (see also Bertin, Le Pennec, Rivoirard
(2011) in the density setting)

@ Oracle inequality with "high” probability possible....
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One of the main probabilistic ingredients
Bernstein type inequality for counting processes

Let (Hs)s>0 be a predictable process and
M, = [; Hs(dNs — X(s)ds).
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Let (Hs)s>0 be a predictable process and

M, = [, Hs(dNs — \(s)ds).Let b> 0 and v > w > 0.
For all x u > 0 such that p > ¢(u), let
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40/45



Estimation
000000
000000

Practical examples and Definitions Test

One of the main probabilistic ingredients

Bernstein type inequality for counting processes

Let (Hs)s>0 be a predictable process and

M, = [, Hs(dNs — \(s)ds).Let b> 0 and v > w > 0.

For all x, u > 0 such that g > ¢(u), let

A T 2X

Vi = s Jo HidNs + #M), where ¢(u) = exp(u) — u — 1.
Then for every stopping time 7 and every € > 0

P <MT > 1/2(1 4 €)VFx + bx/3, w< V¥ <vand SUPseo,-] [Hs| < b)

log(v/w) ,—x
S2I2§(1+a)e g
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Bernstein type inequality for counting processes

Let (Hs)s>0 be a predictable process and

Me = [y Hs(dNs — A(s)ds).Let b> 0 and v > w > 0.
For all x u > 0 such that p > ¢(u), let

Vi = s Jo HZdNg + ‘”E y» where ¢(u) = exp(u) —u —1.
Then for every stopping tlme 7 and every € > 0

P <MT > 1/2(1 4 €)VFx + bx/3, w< V¥ <vand SUPseo,-] [Hs| < b)

log(v/w) . —x
2 Io§(1+e) R

We apply it to fo o(t)[dNy — \(t)dt]. Then d is given by the
right hand-side.
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One of the main probabilistic ingredients

Bernstein type inequality for counting processes

Let (Hs)s>0 be a predictable process and

Me = [y Hs(dNs — A(s)ds).Let b> 0 and v > w > 0.

For all x u > 0 such that p > ¢(u), let

Vi = s Jo HZdNg + ‘”E y» where ¢(u) = exp(u) —u —1.
Then for every stopping tlme 7 and every € > 0

P <MT > 1/2(1 4 €)VFx + bx/3, w< V¥ <vand SUPseo,-] [Hs| < b)

log(v/w) . —x
<2 Io§(1+e) R

We apply it to fo o(t)[dNy — \(t)dt]. Then d is given by the
right hand-side.
For more details about the Lasso procedure, see V. Rivoirard’s talk.
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Sketch of proof

oEt—expﬁfOHdN N)s fo (EHs)A(s)ds) is a
supermartingale.
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Sketch of proof
o Er = exp(¢ [y Hsd(N — A)s — [5 ¢(EHs)A(s)ds) is a
supermartingale.
@ Forall £ € (0 3),
P (MT > sie73) Jo HEA(s)ds + &7 x and sup,, [Hs| < 1)
<e X
"B (Mo 2 gy + € and ] HEA(S)ds < v and sup,c, 1K <1)
<e™™
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Sketch of proof (2)

Lemma
Let a, b and x be positive constants and let us consider on

(0,1/b), (&) = (=3 b§ *‘g Then minge(0,1/6) & g(&) = 2v/ax + bx

and the minimum is achieved in &(a, b, x) = beQ_V —
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Sketch of proof (2)

Lemma
Let a, b and x be positive constants and let us consider on
(0,1/b), g(&) = (=73] b§ + X z- Then mingc(o1/p) 8(§) = 2y/ax + bx

and the minimum is achieved in &(a, b, x) = beQ_V —

@ Then with £(v/2,1/3,x),
P (M; > V2vx + x/3 and [ HZ\(s)ds < v and sup,, |Hs| < 1)
<e™X

@ But also
P (MT > \/2(1 +¢) Jy H2X(s)dsx + x/3 and
vil+e) 1 < fOT H2)\(s)ds < v and sups<, |Hs| < 1) <e™™
@ Peeling + plug in ...
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Conclusion

o If the concentration inequalities for the test statistics or the
X2 statistics are "tight” (dimension free) enough, possibility
to aggregate / select in a large/complex family and hence be
able to adapt to "ugly” situations.
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Conclusion

o If the concentration inequalities for the test statistics or the
X2 statistics are "tight” (dimension free) enough, possibility
to aggregate / select in a large/complex family and hence be
able to adapt to "ugly” situations.

@ For estimation, also need of

@ known, sharp constants
@ observable quantities, eventually random ...
s eventually change of method (threshold, Lasso)...

o Future work : multiple testing, group Lasso 777
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