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T point de N
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for all integer n, for all A1, . . . ,An disjoint measurable subsets
of X, NA1

, . . . ,NAn
are independent random variables.

for all measurable subset A of X, NA obeys a Poisson law with
parameter depending on A and denoted ℓ(A).

Usually dℓ = λ(t)dt, λ(t) is the intensity, if constant →
homogeneous
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Basic questions for Poisson processes

Is λ(t) constant ? ie is the process stationary ?
→ it highly depends on the experiment ! → Test of
homogeneity

Are the processes identically distributed ? → Two-sample
tests

Are they dependent ? → Independence tests

Can we detect it locally ? → multiple ”adaptive” testing
problems ...

Where are the poor or rich regions ? → Non parametric
estimation
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Synergy and Hawkes processes

Genomics Neuroscience

”events” on the DNA Of course
”work” together in synergy (TRE) ”neurons” work together.

If two motifs are part When recorded, a fixed
of a common biological process, delay between
the distance ≃ fixed spikes hints
→ favored or avoided distances for a functional/physical link.
(Gusto, Schbath (2005))
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Intensity

t → λ(t) where λ(t)dt represents the probability to have a point
at time t conditionnally to the past before t (s < t)

”Past” contains in particular the previous occurrences of points.
NB : for Genomics, R is the DNA strand. The ”past” may be
interpreted as what has already been read in a prescribed direction
(e.g. 5’-3’ or 3’-5’).
NB2 : (Nt −

∫ t

0 λ(s)ds)t is a martingale.
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The Hawkes process interaction with itself + an additional
interaction

λ(t) =

(
ν +

∑
T∈N h(t − T ) +

∑
X∈N2

h2(t − X )

)

+

Spontaneous Self-interaction Interaction with other type

If h is null and if N2 is fixed (no reciprocal interaction), then N is a
Poisson process given N2.
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The multivariate Hawkes process(2)

Link with graphical model of local independence (see Didelez
(2008))

Hence we need a sparse adaptive estimation (functions, support of
the functions) !
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(∆ = 1) .

best to have PH0
(∆ = 1) = α

Morever gives in practice access to meaningful p-values (value
of α, depending on the observed N where the test changes its
decision)

Also p-values involved in multiple testing procedures ...

To guarantee PH0
(∆ = 1) = α, best to have some statistics

whose law known under H0.

Here, conditionally to the total number of points is n, points
behave under H0 as a n uniform iid sample → easy access to
quantile

15/45



Practical examples and Definitions Test Estimation

Alternatives and choice of the test statistics

But here, the alternatives are

NOT : parametric, smooth, detectable by Kolmogorov
Smirnov

16/45



Practical examples and Definitions Test Estimation

Alternatives and choice of the test statistics

But here, the alternatives are

NOT : parametric, smooth, detectable by Kolmogorov
Smirnov

more likely to have spiky distributions with unknown support

16/45



Practical examples and Definitions Test Estimation

Alternatives and choice of the test statistics

But here, the alternatives are

NOT : parametric, smooth, detectable by Kolmogorov
Smirnov

more likely to have spiky distributions with unknown support

Best to project on a wavelet (Haar) basis and reject when, say,
one/few coefficients too high.

16/45



Practical examples and Definitions Test Estimation

Alternatives and choice of the test statistics

But here, the alternatives are

NOT : parametric, smooth, detectable by Kolmogorov
Smirnov

more likely to have spiky distributions with unknown support

Best to project on a wavelet (Haar) basis and reject when, say,
one/few coefficients too high.
”High” = quantile under H0.

16/45



Practical examples and Definitions Test Estimation

Alternatives and choice of the test statistics

But here, the alternatives are

NOT : parametric, smooth, detectable by Kolmogorov
Smirnov

more likely to have spiky distributions with unknown support

Best to project on a wavelet (Haar) basis and reject when, say,
one/few coefficients too high.
”High” = quantile under H0.
Problem = we don’t know which coefficients → aggregation of
tests.
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t
(n)
m,α the 1− α quantile of the conditional distribution.
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Let M be a family of subsets of indices.

Reject rule

there exists one m ∈ M such that Tm > t
(N)
m,αm ,

where under H0, P(∃m ∈ M, Tm > t
(N)
m,αm) ≤ α.

Basic choice : Bonferroni αm = α
|M| .

with weights : αm = αe−Wm such that
∑

e−Wm ≤ 1

refined .... for simulation (possible to guarantee equality in
the level)
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Need of concentration ?

For λ in H1, Error of 2nd kind =
Pλ(∀m ∈ M,Tm ≤ t

(N)
m,αm) ≤ Pλ(Tm ≤ t

(N)
m,αm) for all m in M.
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For λ in H1, Error of 2nd kind =
Pλ(∀m ∈ M,Tm ≤ t

(N)
m,αm) ≤ Pλ(Tm ≤ t

(N)
m,αm) for all m in M.

How t
(N)
m,αm = t

(N)
m, α

|M|
deteriorates with respect |M| ?

→ how t
(N)
m,α depends on α ?

if there is exponential decay, possible to aggregate |M|
without losing much more than a logarithmic term

Hence methods powerful against ”ugly” alternatives (such as
weak Besov spaces) and usually minimax if well done ...
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Practical examples and Definitions Test Estimation

Concentration of U-statistics
Tm is a degenerate U-statistics of order 2 under H0 conditionnally
to Ntot = n, ie it’s a

Un =
∑

i 6=j

g(Xi ,Xj),

with g symmetric E(g(Xi ,Xj )|Xj) = 0.

Theorem

If ||g ||∞ ≤ A then for all u, ε > 0

P(Un ≥ 2(1 + ε)3/2C
√
u +�εDu +�εBu

3/2 +�εAu
2) ≤ �e−u

with C 2 =
∑

i 6=j E(g(Xi ,Xj)
2) and B and D other functions of g.
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Un =
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with g symmetric E(g(Xi ,Xj )|Xj) = 0.

Theorem

If ||g ||∞ ≤ A then for all u, ε > 0

P(Un ≥ 2(1 + ε)3/2C
√
u +�εDu +�εBu

3/2 +�εAu
2) ≤ �e−u

with C 2 =
∑

i 6=j E(g(Xi ,Xj)
2) and B and D other functions of g.

without constants Giné, Latala, Zinn (2000)
with constant Houdré, RB (2003) - also Poisson processes
higher order Adamczak (2006)
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Practical examples and Definitions Test Estimation

Conclusions for testing

Concentration inequalities are a tool to evaluate the
dependency in α of the 1− α quantile

In the upper bound, no need for precise constants or
observable quantities

But dependency of for instance, A,B ,C ,D in m crucial...
Best if dimension free or dependency in m as small as possible
→ choice of the test statistics and the M’s.
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Practical examples and Definitions Test Estimation

Poisson case
Here again λ(t) = Ls(t) with L known (→ ∞), s unknown.

Least square contrast

γ(f ) = −2

L

∫
f (t)dNt +

∫
f 2(t)dt
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f = s.

Let Sm be any finite vectorial subspace with ONB
(ϕλ, λ ∈ Λm).
ŝm = argminf ∈Smγ(f )
E(||s − ŝm||2) = ||s − sm||2 + 1

L

∑
λ∈Λm

∫
ϕ2
λ(t)s(t)dt ≤

||s − sm||2 + |m|
L
||s||∞. → penalisation

Penalized model selection

m̂ = argminm∈M {γ(ŝm) + pen(m)}
22/45



Practical examples and Definitions Test Estimation

An easy calculus (1)

γ(f ) = −2

L

∫
f (t)(dNt − s(t)dt) + ||f − s||2 − ||s||2.

Let δ(f ) = 1
L

∫
f (t)(dNt − Ls(t)dt) (zero mean)
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γ(f ) = −2δ(f ) + ||f − s||2 − ||s||2.

Moreover for all m ∈ M

γ(ŝm̂) + pen(m̂) ≤ γ(ŝm) + pen(m) ≤ γ(sm) + pen(m).

||ŝm̂ − s||2 ≤ ||s − sm||2 + pen(m)− 2δ(sm) + 2δ(ŝm̂)− pen(m̂)
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Practical examples and Definitions Test Estimation

An easy calculus (2)

Starting point

||ŝm̂−s||2 ≤ ||s−sm||2+pen(m)−2δ(sm−sm̂)+2δ(ŝm̂−sm̂)−pen(m̂)

δ(sm) → negligeable (also δ(sm̂))
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λ∈Λm

∫
ϕ2
λ(t)s(t)dt ie variance

Hence if pen(m) ≃ 2× variance → oracle inequality

But χ2(m̂) → control of all the χ2(m)

Exponential inequality
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Talagrand type inequality for Poisson processes

χ(m) = 1
L
sup||f ||=1,f∈Sm

∫
f (t)(dNt − Ls(t)dt).
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L
sup||f ||=1,f∈Sm

∫
f (t)(dNt − Ls(t)dt).

Theorem (RB 2003)

Let {ψa, a ∈ A} a countable family of functions with values in
[−b; b].
If Z = supa∈A

∫
X
ψa(x)(dNx − dℓx), then for all u, ε > 0,

P(Z ≥ (1 + ε)E(Z ) + 2
√
κvu + κ(ε)bu) ≤ e−u ,

with v = supa∈A
∫
X
ψ2
a(x)dℓx

and κ = 6, κ(ε) = 1.25 + 32ε−1.
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Practical examples and Definitions Test Estimation

Application to χ(m)

Corollary (RB 2003)

Let

Mm = sup
f ∈Sm,||f ||=1

∫

X

f 2(x)s(x)dx et Bm = sup
f ∈Sm ,||f ||=1

||f ||∞.

then for all u, ε > 0,

P

(
χ(m) ≥ (1 + ε)

√
1
L

∑
λ

∫
ϕ2
λ(x)s(x)dx +

√
2κMmu

L
+ κ(ε)Bmu

L

)

≤ e−u.
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Oracle inequality for Poisson processes
simplified in the case of piecewise constant models on a fine grid Γ.
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L

(1 + Lm)

]
+�c,Σ,M

1

L
,

where M = supI∈Γ

∫
I
s(x)dx

µ(I ) .

Here constants in the concentration inequalities are crucial →
penalty.
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Counting processes with linear intensities

λ(t) = Ψs(t)

where Ψ.(.) known predictable linear transformation. Functional
parameter s unknown.
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(r) = λ(r)(t) = νr +
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ℓ=1

∫ t−

−∞
h
(r)
ℓ (t − u)dN

(ℓ)
u .

with s = (νr , h
(r)
ℓ )ℓ,r

Observation on [0,T ].
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Least square contrast

γ(f ) = − 2

T

∫ T

0
Ψf (t)dNt +

1

T

∫ T

0
Ψf (t)

2dt.
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2dt =

1
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∫ T

0 Ψf−s(t)
2dt − 1

T

∫ T

0 Ψs(t)
2dt.

minimal when Ψf−s(t) = 0 a.s., a.e. → f = s.

In general, 1
T

∫ T

0 Ψf (t)
2dt is random, true norm only with

high probability.
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Practical examples and Definitions Test Estimation

Model selection and χ
2

For each Sm, ŝm = argminf ∈Smγ(f )
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χ2(m) =
∑

λ∈Λm

(
1

T

∫ T

0
Ψϕλ

(t)(dNt −Ψs(t)dt)

)2

.

Once again

χ(m) = sup
||f ||=1,f∈Sm

1

T

∫
Ψf (t)(dNt −Ψs(t)dt).
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Practical examples and Definitions Test Estimation

”Talagrand” type inequality for general counting processes

Theorem (RB 2006)

Let λ(t) be a.s integrable on [0,T ].
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”Talagrand” type inequality for general counting processes
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Let {(Ha,t)t≥0, a ∈ A} be a countable family of predictable process

∀t ≥ 0, Zt = sup
a∈A

∫ t

0
Ha,s(dNs − λ(s)ds).

Then its compensator exists (At)t≥0, it is positive and non
decreasing and

∀0 ≤ t ≤ T , Zt − At =

∫ t

0
∆Z (s)(dNs − λ(s)ds),

for a predictable ∆Z (s) st ∆Z (s) ≤ supa∈AHa,s .
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Let λ(t) be a.s integrable on [0,T ].
Let {(Ha,t)t≥0, a ∈ A} be a countable family of predictable process

∀t ≥ 0, Zt = sup
a∈A

∫ t

0
Ha,s(dNs − λ(s)ds).

If the Ha have values in [−b, b] and if
∫ T

0 supa∈AH2
a,sλ(s)ds ≤ v

as, then for all u > 0,

P

(
sup
[0,T ]

(Zt − At) ≥
√
2vu +

bu

3

)
≤ e−u .
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And for the χ
2 ...

Let

C =
∑

λ

∫ T

0

Ψϕλ
(x)2

T 2
λ(x)dx ,

with C ≤ v et
∑

λ Ψϕλ
(x)2 ≤ b for all x ∈ [0,T ]. Then for all

u > 0,

P

(
χ(m) ≥

√
C + 3

√
2vu + bu

)
≤ 2e−u .
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≤ 2e−u .

v is of the order of Dm 6= Poisson case → a ”worse” oracle
inequality (family of models to be handle are smaller)

Improvement sometimes possible Baraud (2010) but need of
an upper bound on

√
C.

Still λ inside, which is in general difficult to estimate →
usually assume known upper bound.
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Concrete Problems due to the concentration...

No theoretical access to a fully data-driven penalty.

Even in the Poisson case, variance upper bounded and then
overestimation ... of the upper bound.

We would like to be closer to the true variance of ŝm and
estimate it without bias.

Talagrand type inequalities lead us to estimate the supremum
of the variances (Poisson) or the variance of the supremum
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Poisson process and Thresholding

||ŝm̂−s||2 ≤ ||s−sm||2+pen(m)−2δ(sm−sm̂)+2δ(ŝm̂−sm̂)−pen(m̂)

Here there exists a large ONB (ϕλ, λ ∈ Λ) and for m ⊂ Λ,
Sm = Span(ϕλ, λ ∈ m)
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If m̂ better understood, not forced to control all the χ(m).
If M = {m ⊂ Γ}, where Γ finite subset of Λ and if
pen(m) =

∑
λ∈m η

2
λ then

m̂ = argminm∈M (γ(ŝm) + pen(m)) .
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If m̂ better understood, not forced to control all the χ(m).
If M = {m ⊂ Γ}, where Γ finite subset of Λ and if
pen(m) =

∑
λ∈m η

2
λ then

m̂ = {λ ∈ Γ / |β̂λ| > ηλ}.

χ2(m̂) =
∑

λ∈Γ(β̂λ − βλ)
21|β̂λ|>ηλ

.
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A general thresholding theorem

Theorem (RB Rivoirard 2010)

Let β = (βλ)λ∈Λ st ‖β‖ℓ2 <∞ be unknown. Let us observe
(β̂λ)λ∈Γ, where Γ ⊂ Λ and (ηλ)λ∈Γ.
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Let ǫ > 0 be fixed. If one finds (Fλ)λ∈Γ and κ ∈ [0, 1[, ω ∈ [0, 1],
ζ > 0 st

(A1) For all λ in Γ, P
(
|β̂λ − βλ| > κηλ

)
≤ ω.
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Let ǫ > 0 be fixed. If one finds (Fλ)λ∈Γ and κ ∈ [0, 1[, ω ∈ [0, 1],
ζ > 0 st

(A1) For all λ in Γ, P
(
|β̂λ − βλ| > κηλ

)
≤ ω.

(A2) There exists 1 < a, b <∞ with 1
a
+ 1

b
= 1 and G > 0 st

λ ∈ Γ,(
E

[
|β̂λ − βλ|2a

]) 1
a ≤ G max

(
Fλ, F

1
a

λ ǫ
1
b

)
.
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(A1) For all λ in Γ, P
(
|β̂λ − βλ| > κηλ

)
≤ ω.

(A2) There exists 1 < a, b <∞ with 1
a
+ 1

b
= 1 and G > 0 st

λ ∈ Γ,(
E

[
|β̂λ − βλ|2a

]) 1
a ≤ G max

(
Fλ, F

1
a

λ ǫ
1
b

)
.

(A3) there exists τ st for all λ in Γ / Fλ < τǫ,

P

(
|β̂λ − βλ| > κηλ, |β̂λ| > ηλ

)
≤ Fλζ.
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A general thresholding theorem (2)

Theorem (RB Rivoirard 2010)

Then under (A1), (A2), (A3),
E‖β̃ − β‖2ℓ2 ≤
�κE infm⊂Γ

{∑
λ6∈m β

2
λ +

∑
λ∈m(β̂λ − βλ)

2 +
∑

λ∈m η
2
λ

}

+�...
∑

λ∈Γ Fλ

≤ �E infm⊂Γ[||s − sm||2 + pen(m)]+ reminder term
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Bernstein and variance estimation
For all u > 0,

P

(
|β̂λ − βλ| ≥

√
2uVλ +

||ϕλ||∞u

3L

)
≤ 2e−u ,

with Vλ = 1
L

∫
ϕ2
λ(x)s(x)dx
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and also
P

(
Vλ ≥ V̆λ(u)

)
≤ e−u

with

V̆λ(u) = V̂λ +

√
2V̂λ

||ϕλ||2∞
L2

u + 3
||ϕλ||2∞
n2

u,

where V̂λ = 1
L2

∫
ϕ2
λ(x)dNx .

Hence
P(|β̂λ − βλ| > ηλ(u)) ≤ 3e−u

with ηλ(u) =

√
2uV̆λ(u) +

||ϕλ||∞u
3L .
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Lasso for other counting processes
Reformulation of the least-square contrast:

γ(f ) = − 2

T

∫ T

0
Ψf (t)dNt +

1

T

∫ T

0
Ψf (t)

2dt.
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Lasso for other counting processes
Reformulation of the least-square contrast:

γ(f ) = − 2

T

∫ T

0
Ψf (t)dNt +

1

T

∫ T

0
Ψf (t)

2dt.

Let Φ be a dictionary of H and if a ∈ R
Φ,

fa =
∑

ϕ∈Φ
aϕϕ.

Then
γ(f ) = −2b∗a+ a

∗
Ga

where

G is a random observable matrix.

b is also a random observable vector.
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Lasso criterion

Lasso criterion

â = argmina∈RΦ{−2b∗a+ a
∗
Ga+ 2d∗|a|}

The vector d∗ is not constant: it is random and depends on
the index, same role as the threshold η
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39/45



Practical examples and Definitions Test Estimation

Lasso criterion

Lasso criterion

â = argmina∈RΦ{−2b∗a+ a
∗
Ga+ 2d∗|a|}

The vector d∗ is not constant: it is random and depends on
the index, same role as the threshold η

→ data-driven penalty (see also Bertin, Le Pennec, Rivoirard
(2011) in the density setting)

Oracle inequality with ”high” probability possible....
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One of the main probabilistic ingredients

Bernstein type inequality for counting processes

Let (Hs)s≥0 be a predictable process and
Mt =

∫ t

0 Hs(dNs − λ(s)ds).
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τ x + bx/3, w ≤ V̂ µ
τ ≤ v and sups∈[0,τ ] |Hs | ≤ b

)

≤ 2 log(v/w)
log(1+ε) e

−x .

We apply it to
∫ T

0 Ψϕ(t)[dNt − λ(t)dt]. Then d is given by the
right hand-side.
For more details about the Lasso procedure, see V. Rivoirard’s talk.
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Sketch of proof

Et = exp(ξ
∫ t

0 Hsd(N − Λ)s −
∫ t

0 φ(ξHs)λ(s)ds) is a
supermartingale.
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Mτ ≥ ξ

2(1−ξ/3)

∫ τ

0
H2

s λ(s)ds + ξ−1x and sups≤τ |Hs | ≤ 1
)

≤ e−x

P

(
Mτ ≥ ξ

2(1−ξ/3)v + ξ−1x and
∫ τ

0 H2
s λ(s)ds ≤ v and sups≤τ |Hs | ≤ 1

)

≤ e−x .
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Sketch of proof (2)

Lemma

Let a, b and x be positive constants and let us consider on
(0, 1/b), g(ξ) = aξ

(1−bξ) +
x
ξ . Then minξ∈(0,1/b) g(ξ) = 2

√
ax + bx

and the minimum is achieved in ξ(a, b, x) = xb−√
ax

xb2−a
.
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Lemma

Let a, b and x be positive constants and let us consider on
(0, 1/b), g(ξ) = aξ

(1−bξ) +
x
ξ . Then minξ∈(0,1/b) g(ξ) = 2

√
ax + bx

and the minimum is achieved in ξ(a, b, x) = xb−√
ax

xb2−a
.

Then with ξ(v/2, 1/3, x),
P
(
Mτ ≥

√
2vx + x/3 and

∫ τ

0
H2

s λ(s)ds ≤ v and sups≤τ |Hs | ≤ 1
)

≤ e−x .

But also

P

(
Mτ ≥

√
2(1 + ε)

∫ τ

0
H2

s λ(s)dsx + x/3 and

v(1 + ε)−1 ≤
∫ τ

0 H2
s λ(s)ds ≤ v and sups≤τ |Hs | ≤ 1

)
≤ e−x .

Peeling + plug in ...
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Conclusion

If the concentration inequalities for the test statistics or the
χ2 statistics are ”tight” (dimension free) enough, possibility
to aggregate / select in a large/complex family and hence be
able to adapt to ”ugly” situations.
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Conclusion

If the concentration inequalities for the test statistics or the
χ2 statistics are ”tight” (dimension free) enough, possibility
to aggregate / select in a large/complex family and hence be
able to adapt to ”ugly” situations.

For estimation, also need of

known, sharp constants
observable quantities, eventually random ...
eventually change of method (threshold, Lasso)...

Future work : multiple testing, group Lasso ???
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Reynaud-Bouret, P. Adaptive estimation of the intensity of inhomogeneous Poisson processes via

concentration inequalities. Probab. Theory Related Fields, 126 (1), 103–153 (2003).

Reynaud-Bouret, P. Compensator and exponential inequalities for some suprema of counting processes.

Statistics and Probability Letters, 76(14), 1514–1521 (2006).

Reynaud-Bouret, P. Penalized projection estimators of the Aalen multiplicative intensity. Bernoulli, 12(4),

633–661 (2006).

Reynaud-Bouret, P., Schbath, S. Adaptive estimation for Hawkes processes; application to genome analysis.

Ann. Statist., 38(5), 2781–2822 (2010).

Reynaud-Bouret, P., Rivoirard, V. Near optimal thresholding estimation of a Poisson intensity on the real

line. Electronic Journal of Statistics, 4, 172–238 (2010).

Hansen, N.R, Reynaud-Bouret, P., Rivoirard, V. Lasso and probabilistic inequalities for multivariate point

processes Arxiv (2012).

44/45



Practical examples and Definitions Test Estimation

Thank you !
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