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Chapter 1

Introduction

I present in this text the content and the context of my research from my PhD thesis
to my current activities, as well as some future directions that I plan to investigate.
During this whole period, R. Zimmer’s works and vision have been very influential on
the development of my research activities, and the Zimmer program stands naturally as
a unifying theme.

This introduction aims to give a brief overview of the area and of my contributions.

1.1 General context: Transformation groups of geometric
structures

The guiding principle of Klein’s Erlangen program was to unify all the geometries which
had emerged during the first half of the 19th century via the point of view of group
actions, characterizing a geometry via its group of transformations.

This vision is still in force in the modern approach: understanding the symmetries
of certain families of geometric structures, and measuring to what extent a geometry is
determined by the dynamics of its group of transformations, are in the continuation of
Klein’s program.

1.1.1 Geometric structures on manifolds

According to Klein’s point of view, a geometry is a certain homogeneous spaceX = G/H,
where we will assume G to be a Lie group andH a closed Lie subgroup. A certain number
of variations around this model geometry have been intensively investigated. A famous
one was introduced by Ehresmann, and consists in associating to an abstract manifold
M an atlas of X-valued charts whose coordinate changes are restrictions of elements of
G. This notion of M being locally X is mainly a topological one, and relates closely to
representations of π1(M) into G.

In a series of fundamental works, É. Cartan introduced progressively a geometric
notion which is the infinitesimal analogue of a homogeneous space X = G/H, related to
the so-called method of moving frames. Remarkably, it formalizes the idea of conformal or
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8 CHAPTER 1. INTRODUCTION

projective connection, and is a central tool in conformal and projective geometry for this
reason, compensating the lack of natural linear connection. The notion was ultimately
generalized by Ehresmann. Essentially, a Cartan geometry reproduces the differential-
geometric properies of the principal fibration G → G/H, when G/H is replaced by an
arbitrary manifold M with the same dimension as G/H. The geometry is therefore
defined by an H-principal fibration G → M , called the Cartan bundle, and a g-valued
1-form ω ∈ Ω1(G, g), called the Cartan connection, which plays the role of the Maurer-
Cartan form of G.

The obstruction for such geometries to be locally equivalent to G/H is given by the
curvature 2-form Ω = dω+ 1

2 [ω, ω], which produces a certain number of useful invariants.
Flat Cartan geometries are then the same as Ehresmann’s (G,X)-structures.

More widely, we can think of a geometric structure on a manifold M as an object
which lives in some principal bundle over M .

1.1.2 Transformation groups

The idea of understanding geometric transformations which come in family arose shortly
after the Erlangen program started, with Lie’s famous concept of continuous groups of
transformations. Among many contributions, in his Theorie der Transformationsgruppen
paper, he classified germs of (what is since then called) smooth Lie group actions on low-
dimensional manifolds.

Closely related to these groups of transformations, another famous problem was the
equivalence problem, essentially seeking to produce a complete set of intrinsic infinitesi-
mal invariants for a given family of geometries. It was notably investigated by É. Cartan
in the early 1900’s, while working on the existence of biholomorphisms mapping a real
hypersurface of C2 to another. This led him a couple decades later to the notion of Car-
tan connections mentioned above, unifying large families of geometries in this synthetic
concept.

As was first observed in Riemannian geometry by Myers and Steenrod in 1939, it can
happen that the full group of transformations of a geometric structure has itself a finite
dimensional geometry, i.e. is a Lie group. It is then very appealing to investigate the
relationship between those two: Which Lie group can arise as the automorphisms group
of a certain geometric manifold? And conversely, which geometric manifolds can admit
a non trivial action of a certain Lie group?

1.1.3 Rigidity of geometric structures

This suggests in particular to investigate the interplay between the infinitesimal geometric
invariants and the dynamics of a group action preserving the geometry. A celebrated
result in Riemannian geometry was the resolution by Ferrand, Obata and Schoen of a
conjecture of Lichnerowicz, which ultimately converged to the following.

Theorem (Ferrand-Obata-Schoen). Let (M, g) be a Riemannian n-manifold. If the
group of conformal transformations of (M, [g]) acts non-properly, then (M, [g]) is confor-
mally equivalent to the round sphere Sn or the Euclidean space En.
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For closed Riemann surfaces, the statement follows from Poincaré-Koebe’s uni-
formization theorem. In dimension greater than 2, it can be interpreted as a remarkable
manifestation of rigidity of the conformal class. Intuitively, this means that the pseudo-
group of local conformal maps of a Riemannian manifold always is finite dimensional.

While analogues of Ferrand-Obata-Schoen’s theorem fail quickly to be true for most
general rigid structures on non-compact manifolds, it seems reasonable to expect a per-
sisting phenomenon for compact manifolds. D’Ambra and Gromov suggested in the late
1980’s that large groups of transformations of rigid geometric structures on compact man-
ifolds might be understandable, which they referred to as a “vague general conjecture”.
Defining what large means in this context is certainly part of the question.

1.1.4 Super-rigidity of higher-rank semi-simple Lie groups

Semi-simple Lie groups, and their discrete subgroups, known for their strong linear rigid-
ity properties, stand as natural candidates for this program.

Historically, rigidity of linear representations of lattices in semi-simple Lie groups
arose in the 1960’s with various contributions around local and global rigidity of such
discrete groups. Mostow’s rigidity theorem, later extended in the higher-rank case by
Margulis, controls embeddings ρ : Γ → H of a lattice Γ of a semi-simple Lie group G
into another simple Lie group H. These deep results were later generalized by Zimmer
in the early 1980’s to ergodic, probability measure preserving G-actions or Γ-actions on
probability spaces. The result is called super-rigidity of cocycles. Contrarily to actions
of amenable groups, these semi-simple Lie groups were proven to have much more rigid
actions, leading Zimmer to conjecture that actions of such groups are combinations of
standard algebraic actions. This is essentially the framework of the Zimmer program.

In the same period, Gromov introduced in [Gro88] the notion of rigid geometric
structure on manifolds, extending Cartan’s notion of finite type G-structures. He proved
impressive general results in which orbits of the pseudo-group of local automorphisms
of a rigid structure are essentially described as level sets of certain natural equivariant
maps with range in algebraic manifolds.

1.1.5 Pseudo-Riemannian actions and other unimodular actions

Group actions on finite volume pseudo-Riemannian manifolds were a first natural field
of application of Zimmer-Gromov’s philosophy.

Connected Lie group actions. In [Zim86c], Zimmer used essentially Borel’s density
theorem to prove an embedding theorem (see Theorem 3.3 below) valid for any proba-
bility measure preserving action of a non-compact simple Lie group G, possibly of rank
1, on a geometric structure. The conclusion gives an embedding of the Lie algebra of G
into the Lie algebra of the group defining the type of the geometric structure. Hence,
a general algebraic obstruction to actions of simple Lie groups on finite volume geo-
metric structures, from which he derived striking consequences for Lie group actions by
isometries on compact Lorentzian manifolds.
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In fact, these conclusions extend optimally to semi-simple Lie group actions on fi-
nite volume pseudo-Riemannian manifolds. This is maybe not a surprise because the
homogeneous model action G y G/Γ, for Γ a lattice of G, preserve systematically a
pseudo-Riemannian metric of finite volume on G/Γ induced by the Killing metric.

The geometric considerations on compact Lorentzian manifolds, first obtained by
Zimmer, culminated a decade later when Adams, Stuck [AS97a, AS97b], and indepen-
dently, Zeghib [Zeg98a, Zeg98b], obtained the full classification, up to local isomorphism,
of the identity component of the isometry group of compact Lorentzian manifolds. See
Theorem 3.5 below.

In this classification, up to finite cover, PSL2(R) is the only non-compact simple Lie
group which can act non-trivially and isometrically on a compact Lorentzian manifold.
Importantly, it acts faithfully by isometries on compact quotients PSL2(R)/Γ endowed
with the Killing metric, which are special cases of compact quotients of the Anti-de
Sitter 3-space AdS3, the Lorentzian analogue of the hyperbolic 3-space. Gromov proved
in [Gro88] that in fact, any action of PSL2(R) on a closed Lorentzian manifold is covered
by an action on a warped product AdS3

ω×N , where N is a Riemannian manifolds.

Discrete group actions. Actions of higher-rank lattices on unimodular H-structures
were also strongly constrained by Theorem F of [Zim86c], assuming the H-structure to
be of finite-type. This includes again pseudo-Riemannian isometric actions or actions
Γ y (M,∇, ω) preserving both a linear connection and a volume form, but does not
work for a Γ-action on a compact manifold preserving a symplectic form, an almost
complex structure or just a volume form.

A longstanding problem in the field, Zimmer’s conjecture in the volume-preserving
case, has precisely been to drop the finite-type assumption in this theorem. Recent
important breakthrough by Brown, Fisher and Hurtado [BFH22, BFH20, BFH21] proved
this conjecture in a great number of cases. I refer to [WMZ98, Fis11, Fis17] for a much
more detailed history of the subject.

A very concise summary of the present state of the art is that more and more optimal
obstructions to lattices actions on compact manifolds have been established. A still
widely open area concerns now geometric and dynamical descriptions of lattices actions
close to the critical dimension. This is supported by various results such as local rigidity
of standard model actions, for both volume-preserving actions (e.g. SLn(Z) acting on the
n-torus) and non volume-preserving actions (e.g. actions on boundaries). An influential
result in the area due to Katok and Spatzier ([KS97]) establishes rigidity for hyperbolic
actions of abelian groups Rk × Z`, and became central in the Zimmer program. An
important Katok-Spatzier conjecture states that actions of abelian groups with a dense
set of Anosov elements and without rank 1 factor are smoothly conjugate to algebraic
actions (see the introduction of [SV23]). This relates to higher-rank lattices actions
via the action of an R-split Cartan subgroup on the suspension space. However, it
was remarkably observed in [KL96] that there exist analytic exotic volume-preserving
actions of SLn(Z) on closed n-manifolds, which are not conjugate to any algebraic action.
Katok-Lewis examples are nonetheless conjugate to the linear action on the n-torus when
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restricted to an invariant open-dense subset. It is now believed that geometric conclusions
follow modulo such restrictions.

For more general discrete groups, additional results were proved for isometric actions
on Lorentzian manifolds. It was observed in [Zim86c] that any discrete group with
property (T), not necessarily a higher-rank lattice, acting by isometries on a compact
Lorentzian manifold must also preserve a Riemannian metric. This ruled out non-trivial
isometric actions of lattices in Sp(1, n) or F4(−20). More recently, Frances extended
in [Fra21] this fact to lattices in SU(1, n) by different methods. This is optimal since
O(1, n)Z acts on the flat Lorentzian torus (Tn+1,−dx2

1 + · · ·+ dx2
n+1).

1.1.6 Non-unimodular Lie group actions

An essential point in Zimmer’s proof of the embedding theorem, or the super-rigidity of
cocycles theorem, is the existence of a finite measure invariant under the group action.
For non-amenable groups, this assumption is a strong requirement and excludes lots of
important examples, typically actions on flag manifolds G y G/P , for which generally
the conclusions of these theorems are false. It is therefore natural to examine actions on
geometric structures which do not fall into the range of application of these theorems,
and see if some rigidity phenomena persist or not.

Nevo-Zimmer’s measurable projective factor. Analogously to cocyle super-
rigidity in the measure-preserving case, Nevo and Zimmer obtained in [NZ99] general
structure result for stationary actions of a semi-simple Lie group G on a probablity space
(X, ν). Under a certain mixing assumption, they showed that if G does not preserve ν,
then the action fibers measurably over a non-trivial unique flag manifold G/P . Similarly
to the measure-preserving case, the main question is whether or not this fibration can
be made more regular in geometrized situation. This was later refined in [NZ09] when
the action preserves a rigid geometric structure (with other dynamical assumptions), the
outcome was a smooth projective factor, but in restriction to an open-dense subset.

Bound on the real-rank. If a conclusion as strong as an embedding is not true,
Zimmer nonetheless proved in [Zim87b] that for an action of a semisimple Lie group G
on a compact manifold, preserving an H-structure, for an arbitrary real algebraic group
H, the real-ranks verify rkRG 6 rkRH. Later, Bader and Nevo considered in [BN02] the
case of conformal pseudo-Riemannian actions, as well as conformal symplectic actions,
i.e. H = R∗ × O(p, q) or H = R∗ × Sp2n(R). These two geometries have in common
to be defined by a field of non-degenerate bilinear forms on the tangent bundle, which is
preserved up to a smooth factor by the G-action. They obtained that if equality holds
in the inequality between the real-ranks, then G is locally isomorphic to an orthogonal
group (in the pseudo-Riemannian case) or to SL3(R) (in the symplectic case), and that if
the action is moreover minimal, then the manifold is globally equivalent to a certain flag
manifold of G. The minimality assumption was then removed in [FZ05]. Finally, Bader,
Frances and Melnick proved a version of Zimmer’s embedding for Cartan geometries
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in [BFM09], and derived various restrictions for general Lie group actions (see Section
3.1.7).

1.1.7 Generalizations of Lichnerowicz conjecture

Going back a bit, the general program suggested by D’Ambra and Gromov in [DG91]
was in part motivated by Ferrand-Obata’s proof of Lichnerowicz conjecture in conformal
Riemannian geometry. The result was later generalized by Schoen to strictly pseudo-
convex CR structures [Sch95] and finally by Frances to rank 1 parabolic geometries
[Fra07]. The phenomenon was that if no reductive “sub-geometry” is preserved, then the
manifold is equivalent to the model geometry.

In conformal geometry, this assumption is called essentiality (see Definition 3.5) and
means that no conformal metric is invariant. However, it turned out that essential-
ity is much less restrictive for higher signatures (e.g. [KR97, Fra05]). For large enough
signatures, essentiality moreover authorizes higher-rank simple Lie group actions on man-
ifolds which are not even locally equivalent to the model space ([Fra15]). However, for
Lorentzian conformal structures on compact manifolds, a remaining problem is still un-
solved. The literature refers to it as Lorentzian Lichnerowicz conjecture.

Conjecture (Conj. 1). Let (M, [g]) be a compact manifold endowed with a Lorentzian
conformal class. If Conf(M, [g]) does not preserve any metric in the conformal class,
then (M, [g]) is conformally flat.

A weaker (still challenging) form of this conjecture ask the same question when the
identity component Conf(M, [g])0 is essential, as was initially asked by Lichnerowicz and
solved by Obata. Examples of self-similar Lorentzian metrics studied by Alekseevsky in
[Ale85] imply that this problem necessarily deals with the global dynamics of essential
conformal groups.

Several analogous problems were also investigated (see [Mel21] for a recent survey).
Notably, Matveev proved in [Mat07] an analogue of [Oba71] for the projective group of
a Riemannian manifold (see also [Zeg16] and the references therein).

1.1.8 Non volume-preserving discrete group actions

An additional evidence for rigidity of non-unimodular actions of lattices is a result of
Katok Spatzier proved in ([KS97]) asserting that for Γ a cocompact lattice in a higher-
rank semi-simple Lie group G, then, for every parabolic subgroup P < G, the action
Γ y G/P is locally C∞-rigid.

In a more geometric context, Iozzi had proved earlier in [Ioz92] that given a differen-
tiable action G → Diff(M), if some lattice Γ < G preserves a rigid geometric structure
on M , then so does the whole of G. The delicate point is that proving that a Γ-action
extends to G, even within the diffeomorphism group, is quite a difficult problem in itself.

In recent advances, Brown, Rodriguez-Hertz and Wang proved in [BRHW22]
a stronger version of Nevo-Zimmer’s theorem, for general lattices actions on low-
dimensional manifolds. This is based on an existence result of Γ-invariant measures
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proved in the same paper, which was key in the proof of Zimmer’s conjecture by Brown,
Fisher and Hurtado.

1.2 Organization of the manuscript and personal contribu-
tions

Plan

This memoir is globally organized as follows.
In Chapter 2, I briefly setup some conventions and notations, and recall definitions

of geometric structures which will be used in the manuscript.
In Chapter 3, I discuss actions of connected Lie groups on geometric structures and

describe the results of [Pec17, Pec18] (Section 3.2), [Pec19] (Section 3.3.1), [Pec23] (Sec-
tion 3.4) on conformal pseudo-Riemannian actions of Lie groups.

Chapter 4 is organized around actions of lattices and contains the results of [Pec20]
(Section 4.3), [Pec24] (Section 4.4) for conformal and projective actions of higher-rank
lattices.

Chapter 5 is centered on [MP22], a joint work with Karin Melnick on conformal
groups of simply-connected Lorentzian manifolds. This is a generalization of a theorem
of D’Ambra, and our proof starts similarly by applying Gromov’s stratification theorem.
The latter, in the context of our proof, can be recovered via the main results of [Pec16],
which are detailed in the same chapter in Section 5.2.2.

I give now a brief overview of the main results, following this organization.

1.2.1 Levi factor of the conformal group of a closed Lorentzian mani-
fold

Chapter 3 starts by contextualizing semi-simple Lie group actions on geometric structures
in the framework of super-rigidity. Another famous result in this setting is Zimmer’s
embedding theorem. As an illustration, Zimmer proved that up to covers, SL2(R) is the
only non-compact simple Lie group that can act by isometries of a closed Lorentzian
manifold. Beyond semi-simple isometric Lie group actions, the classification of the full
isometry group of a closed Lorentzian manifold by Adams-Stuck-Zeghib was a major
achievement in the field, and invited more generally to analyze the algebraic structure of
automorphisms groups of similar geometries.

The first contribution presented in Chapter 3 considers compact Lorentzian mani-
folds with conformal actions of semi-simple Lie groups. The presence of such algebraic
structures in the conformal group forces the geometry to be locally conformally flat, sup-
porting Conjecture 1 recalled above. As we will see, a major difference with isometric
actions, and certainly a very interesting aspect, is the lack of natural invariant volume
form.

Theorem ([Pec17, Pec18], Th. A, Cor. 2). Let (Mn, [g]), n > 3, be a closed manifold
endowed with a conformal Lorentzian structure. Let G be a connected semi-simple Lie
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group. If G acts conformally and essentially on (M, [g]), then [g] is conformally flat, i.e.
near every point, there are coordinates in which the metric reads

g = eσ(−dx2
1 + dx2

2 + · · ·+ dx2
n),

for some smooth function σ.
In particular, G is locally isomorphic to an immersed Lie subgroup of O(2, n).

Remark that essentiality forces G to be non-compact. That G locally embeds into
O(2, n) is an optimal conclusion, since PO(2, n) is the conformal group of the model space
of conformal Lorentzian geometry, the Einstein universe Ein1,n−1 ' (S1×Sn−1, [−dt2⊕
gSn−1 ])/Z2, where gSk refers to the Riemannian metric of sectional curvature +1 on the
k-sphere.

As will be detailed in this chapter, essentiality of G can be characterized via the
existence of low-dimensional closed orbits in the closure of any G-orbit. Two proofs for
this result are detailed:

• The first, [Pec17], is inspired by the proof of Gromov’s centralizer theorem, and
is under an additional analyticity assumption. At that time, Melnick had just
published [Mel11], a version for Cartan geometries of a theorem of Gromov on
local integration of isometric jets, called “Frobenius’ theorem”. It seemed to have
nice geometric consequences for actions of semi-simple Lie groups. We will see
how it can be implemented in this non-unimodular context to provide existence of
additional local Killing vector fields.

• The second, [Pec18], removes the analyticity assumption. Using a different strategy,
the proof shows that there always exist closed G-orbits, in the neighborhood of
which some element g0 acts similarly to the local conformal vector field exhibited
in the analytic proof. The new ingredient used to find these closed orbits was
the local stable manifold of the flow associated to an hyperbolic one-parameter
subgroup {ht} < G to prove that it must have a periodic orbit.

1.2.2 Extension to higher signatures

The next results show that similar phenomena happen in more general pseudo-
Riemannian actions of semi-simple Lie groups. After several anterior investigations
[Zim87b, BN02, FZ05], conformal actions of simple Lie groups whose real rank is small
compared to the signature were still poorly understood.

[Pec19] is a first step in a larger project, and addresses the question of metric signa-
tures on which a given simple Lie group of rank 1 can act conformally and non-trivially. It
is somehow the opposite situation compared to anterior results, which considered groups
with maximal possible real-rank. The question was essentially for Sp(1, k) and F4(−20).

Theorem ([Pec19] Th B). Let (Mn, [g]) be a closed pseudo-Riemannian manifold of
signature (p, q), with n > 3. Suppose that there exists ρ : Sp(1, k) → Conf(M, [g]) a
conformal action with discrete kernel. Then,
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1. min(p, q) > 3 ;

2. If min(p, q) = 3, then (M, [g]) is conformally flat. Moreover, any minimal, compact,
G-invariant subset of M is a compact orbit conformally equivalent to Ein3,3k−1, on
which Sp(1, k) acts via a Fefferman fibration.

The Einstein universe Einp,q is the natural extension in signature (p, q) of its
Lorentzian version seen above.

Hence, under a minimality assumption, this result recovers similarly to [BN02] ho-
mogeneity of the conformal structure. The action moreover respects a principal fibration
Sp(1) → Ein3,3k−1 → Sp(1, k)/P over the boundary, hence give explicitly a smooth
projective factor.

The case of F4(−20) conformal actions is a bit more curious, and behaves differently.
It was still possible to obtain an optimal lower-bound for the metric index, as in the
previous theorem (Theorem C). The geometry, however, remains more mysterious.

1.2.3 Radical of the conformal group of a closed Lorentzian manifold

Chapter 3 finishes with recent contributions prepublished in [Pec23]. The global perspec-
tives are: 1) obtain a classification, up to local isomorphism, of the identity component
Conf(M, [g])0 of the conformal group of closed Lorentzian manifolds (M, g), extending
Adams-Stuck-Zeghib theorem, 2) obtain general essentiality criteria for Lie group actions,
and 3) prove conformal flatness in as many contexts as possible, in view of Lorentzian
Lichenrowicz conjecture. Naturally, these three directions interact with each others.

A standard strategy to understand an abstract Lie group such as Conf(M, [g])0 is
to consider a Levi decomposition S.R, where R denotes the solvable radical, and S '
Conf(M, [g])0/R a Levi factor. This factor is classified by Theorem A cited above, and
Conjecture 1 is true if S is non-compact. Essentiality of S is also characterized in terms
of stabilizers. Ideally, it would be nice to obtain similar descriptions for the action of the
radical R.

We will see that most questions are now reduced to R either abelian, or locally
isomorphic to an R-split semi-direct product RnRk.

Theorem ([Pec23], Th. D). Let (Mn, [g]), n > 3, be a compact manifold endowed with
a Lorentzian conformal structure, and let R be a connected, solvable Lie subgroup of
Conf(M, [g]). If R is essential, then there exists a Lie algebra embedding r ↪→ so(2, n).

This embedding provides an optimal obstruction, again because Ein1,n−1 =
PO(2, n)/P , where P is the stabilizer of a null-line. When the Levi factor is compact
(which can be assumed by Theorem A), essentiality of the whole identity component is
reduced to that of its nilradical. This means that if the nilradical preserves a conformal
metric, then so does Conf(M, [g])0. This is a consequence of Theorem E.

Theorem ([Pec23], Cor. 3). Let G the identity component of Conf(M, [g]). Let R/G be
its solvable radical and let N / R be the nilradical. If G/R is compact, then G is essential
if and only if N is essential.
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In particular, if the identity component Conf(M, [g])0 is essential, then some nilpo-
tent subgroup acts essentially. Theorem F which considers essential nilpotent Lie group
actions, completing results of [FM10]. We will see that it implies in particular:

Corollary ([Pec23], Cor. 4). Let (M, g) be a closed real-analytic Lorentzian manifold
and suppose that G = Conf(M, [g])0 is essential. If the nilradical N of G is non-abelian,
then (M, g) is conformally flat.

This finally reduces Conjecture 1 (in the weak form and the analytic case) to the
case where the nilradical is abelian, and the Levi factor is compact. Further technical
considerations also eliminate many possibilities for R and it seems plausible that the
conjecture can be reduced to the case where Conf(M, [g])0 ' K nRd, for K a compact
group. The methods of [MP22] described in Chapter 5 will probably be helpful in the
future for this situation of an abelian essential action.

1.2.4 Actions of lattices

Chapter 4 starts with a brief survey of the origins of the Zimmer program. In particular,
some measurable conclusions derived from cocycle super-rigidity are cited to motivate
the conjectures. In Section 4.2, background materials for stating existence results for Γ-
invariant measures from [BRHW22] are introduced. In Section 4.2.4, I explain how results
on non-existence of Γ-invariant measures for certain actions on geometric structures can
be obtained, extending the approach of [Pec20] in conformal geometry.

We will then see how the main results of [BN02] and [FZ05] (discussed in the chapter
on Lie groups) can be extended to actions of lattices. The following result synthesises the
main theorems of [Pec20] and [Pec24], and current works in finalization in the Lorentzian
case and non-uniform setting.

Theorem ([Pec20, Pec24] Th. G). Let (M, [g]) be a compact manifold of dimension at
least 3 endowed with a conformal structure of signature (p, q), with 1 6 p 6 q. Let Γ be a
lattice in a simple Lie group G with rkRG > 2 and finite center. Let ρ : Γ→ Conf(M, [g])
be a conformal action such that ρ(Γ) is not relatively compact. Then,

1. rkRG 6 p+ 1 ;

2. If rkRG = p+ 1, then M̃ is conformally diffeomorphic to Ẽin
p,q

.

(a) If p > 1, then |π1(M)| 6 2 and M is either Ẽin
p,q

or its projective model.

(b) If p = 1, then π1(M) is virtually infinite cyclic, and up to finite index, it
is sent by the holonomy homomorphism into Z × O(n) , where Z refers to
the center of Õ(2, n) and O(n) to the lift to Õ(2, n) of the O(n) factor of the
maximal compact of O(2, n).

3. If rkRG = p + 1, then G 'loc O(p + 1, k + 1), with p 6 k 6 q, and the Γ-action
almost extends to a G-action.
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As explained in this chapter, the proof relies mainly on the fact that an unbounded
Γ-action cannot preserve any finite measure, and combined with the main result of
[BRHW22], this implies that the Lyapunov functionals of the A-action on a natural
auxiliary space Mα have to satisfy certain combinatorics, ruled by the algebraic struc-
ture of the parabolic subgroup P < PO(2, n) stabilizing a null-line. This information
on the Lyapunov spectrum can be re-transcribed into the Γ-action and provides enough
dynamical information to prove local conformal flatness of M . The final globalizing step
amounts to understand Γ-actions on compact manifolds with (G,X)-structures, with
G = PO(p + 1, q + 1) and X = Einp,q. It relies on the incidence relations between
Minkowski patches in X.

The same strategy can be implemented for different geometric structures. A first
example was provided in [Pec24] for projective actions.

Theorem ([Pec24], Th. I). Let Γ be a lattice in a simple Lie group G of real-rank
n > 2 and finite center. Let M be a compact n-manifold on which Γ acts by preserving
a projective class of linear connections [∇].

If the action is infinite, then (M, [∇]) is projectively equivalent to either RPn or Sn,
endowed with their standard projective structures.

In Section 4.4, further natural future directions are discussed. Inexistence of finite
Γ-invariant measures, general control on the Lyapunov spectrum in terms of the model
geometry are a priori good starting points to various generalizations, including actions on
compact manifold preserving parabolic geometries (extending Theorem 1.5 of [BFM09]
to lattices actions) as well as elliptic H-structures (extension of [Can04, CZ12] to non-
Kähler complex manifolds for instance).

1.2.5 Conformal groups of compact simply-connected Lorentzian man-
ifolds

In this final chapter 5, the main result of an article obtained in collaboration with K.
Melnick is presented.

Theorem ([MP22], Th. J). Let (M, [g]) be a real-analytic, compact, simply-connected
conformal Lorentzian structure. Then, its conformal group Conf(M, g) is compact.

It generalizes to the conformal setting the exact same statement for the isometry
group, proved by D’Ambra in [D’A88]. If compact Riemannian manifolds all have
compact isometry group by Myers-Steenrod theorem, a plethora of compact pseudo-
Riemannian manifolds have non-compact isometry groups. D’Ambra’s theorem shows
that in Lorentzian signature, under an analyticity assumption, all these manifolds must
have infinite fundamental group. As we will see, this relates to a result of Gromov on
representations of the fundamental group of compact unimodular analytic rigid geometric
structures admitting large group actions.

D’Ambra’s theorem is proper to Lorentzian geometry, and so is ours. But in our
situation, the reason for that is the geometry of the model space Ein1,n−1, which forbids
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conformal flatness of M as in Theorem J, and explains maybe more conceptually this
Lorentzian specificity. So, all preceding results related to Conjecture 1 indicated that the
conformal group cannot be large. The question was then to eliminate every non-compact
case.

The proof starts like the proof of D’Ambra, and uses heavily Gromov’s stratification
theorem (see Chapter 2). We will see that the difficulty resides in the fact that no invari-
ant volume may exist. Zeghib’s fundational works on foliations in Lorentzian geometry
attached to isometric dynamics already provided an alternative proof of D’Ambra’s the-
orem. The idea was that if Conf(M, [g])0 is non-compact, then we can exhibit foliations
by hypersurfaces attached to some well chosen diverging sequences of conformal maps.
As it frequently happens, the foliation was only defined in restriction to an open-dense
subset and a technical point was to extend leaves to a singular locus where the group has
compact orbits to finally deduce a contradiction, because all leaves must accumulate to
this small singular subset.

This approach looks promising for further investigations of conformal essential ac-
tions of higher-rank abelian Lie groups, which are the remaining cases for Conjecture 1.
Notably, the same approach was used in a recent proof by Frances and Melnick [FM21]
of the weak conjecture in dimension 3 and with analytic regularity.

1.2.6 Elementary proof of Frobenius’ theorem

Gromov’s stratification theorem is intensively used in the proof of Theorem J. It follows
from another result of Gromov’s, which he called “Frobenius theorem”, a result of local
integration of isometric r-jets. This theorem was also used in the first analytic proof of
Theorem A obtained during my PhD. I obtained in [Pec16] a new elementary proof of
“Frobenius theorem” for Cartan geometries, and other natural rigid geometric structures.
The same approach provided a generalization to Cartan geometries of a theorem of
Singer characterizing local homogeneity of Riemannian manifolds at infinitesimal scale.
See Section 5.2.2 for more details.

Theorem ([Pec16] Th. K). Let (M,G, ω) be a Cartan geometry with model space (G,H),
such that Adg(H) is an algebraic subgroup of GL(g), and let φ : G →W be an equivariant
map, where W is a vector space with an action of Adg(H).

Then, there exists an open dense subset Ω ⊂M , and an H-equivariant map ψ : G → V
where V is a finite dimensional vector space with a linear action of Ad(H), such that for
any b ∈ G projecting in Ω and u ∈ TbG, the following are equivalent.

1. There exists a local Killing vector field X of (M,G, ω) defined on a neighborhood of
b and such that X(b) = u.

2. (Luψ)(b) = 0.

The map ψ encodes essentially the curvature map and its covariant derivatives up to
order dimG. The advantage of having such a (more or less) concrete map which detects
local Killing fields can be used in various situations to exhibit local symmetries, and
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can be widely used (for instance to prove local homogeneity). A natural one would be
to consider higher-rank lattices actions on unimodular Cartan geometries, and see if a
version of Gromov’s centralizer theorem could be deduce. This relates to questions raised
in Chapter 4.

Denoting the derivatives of the curvature by κi, the generalization of Singer’s theorem
reads as follows.

Theorem ([Pec16], Th. L). Let (M,G, ω) be a Cartan geometry modeled on (G,H) and
let r = dimH. If the maps κ, κ1, . . . , κr all have range in a single H-orbit, then the
Cartan geometry is locally homogeneous, i.e. its pseudo-group of local automorphisms
acts transitively.

As a byproduct, an elementary proof for the open-dense theorem of Gromov ([Gro88])
in the case of Cartan geometries follows from this generalization of Singer’s theorem.
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Chapter 2

Preliminaries

2.1 A couple conventions

Real-rank and restricted roots. Let g be a semi-simple real Lie algebra with no
compact factor. An R-split Cartan subalgebra is a maximal abelian subalgebra a ⊂ g
whose adjoint action ad(a) is R-diagonalizable. The real-rank rkR g of g is the common
dimension of all its R-split Cartan subalgebras. The set of its restricted roots will
be denoted by Σ, the restricted root-space associated to λ ∈ Σ will be denoted by
gλ, m will be the compact part of the centralizer of a, so that the restricted root space
decomposition writes g = a⊕m⊕

⊕
λ∈Σ gλ.

Standing notation. Most of the time, I will reserve the letter G for a semi-simple
Lie group without compact factors (often of real-rank larger than or equal to 2) which
will play the role of the acting group, or also when a lattice of G acts on a geometric
manifold. For model spaces of Cartan geometry for instance, I will prefer to use the bold
font G, P etc.., H for the structural group of a principal fiber bundle, etc..

Implicit convention. If a Lie group acts by diffeomorphisms of a compact manifold,
its Lie algebra identifies with a Lie algebra of complete vector fields, the vector field
corresponding to X ∈ g being, by definition, the infinitesimal generator of {e−tX}t∈R.
This identification will be used each time a Lie group action arises.

Lattices. An R-split Cartan subgroup of G is a connected Lie subgroup A < G tangent
to an R-split Cartan subalgebra at the identity. The real-rank of G is the real-rank of g.
“G has higher-rank” means rkRG > 2. A lattice Γ < G is a discrete subgroup such that
vol(G/Γ) < ∞, where vol refers to the Haar measure on G/Γ. A lattice Γ is said to be
uniform if G/Γ is compact. A lattice is said to be irreducible if the projection of Γ on a
non-trivial factor of G (if any) is dense.

Pseudo-Riemannian metrics. A pseudo-Riemannian metric g of signature (p, q) on
a manifold M is a smooth assignment of quadratic forms of signature (p, q) on tangent

21
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spaces of M . Here, p refers to the dimension of maximal negative-definite subspaces,
and q to the dimension of maximal positive-definite subspaces. A conformal class
of signature (p, q) is an equivalence class of pseudo-Riemannian metric for the relation
g ∼ g′ if and only if g′ = eσg for some σ ∈ C∞(M). A metric is said to be Lorentzian
if it has signature (1, n− 1).

Principal fibrations. Let H be a Lie group. A principal fiber bundle with structural
group H (or an H-principal fibration) consists of a manifold P with a smooth, free and
properH-action, by convention on the right, so that the quotientM := P/H has a smooth
manifold structure. It is a fiber bundle π : P → M , whose fibers are parametrized by a
free right-action of H. Given two H-principal fibrations π1 : P1 →M1 and π2 : P2 →M2,
an isomorphism is a diffeomorphism F : P1 → P2 verifying F (u1.h) = F (u1).h for all
u1 ∈ P1 and h ∈ H. In particular, F induces a diffeomorphism f : M1 → M2 such that
π2 ◦ F = f ◦ π1. If the fibrations are the same, all these isomorphisms form a group,
called the automorphisms group of the principal H-bundle.

2.2 Geometric structures on differentiable manifolds

The aim is to define a general notion of geometric structures on manifolds which will
encompass all classical examples. Of course, there are several approaches. I will discuss
three major cases: G-structures, Cartan geometries, and Gromov’s A-rigid geometric
structures.

Although it is not clear for the second family in general, the idea will systematically
be to define a geometric structure φ on a manifold M in local charts and require that
there exists r > 1 such that the “value” of φ at x only depends on the r-th jet at x of
the chart and transforms equivariantly when the chart changes. To sum up, the starting
point is an equivariant map φ from the bundle of r-frames with values in some space W
on which the structural group Dr(n) acts naturally.

I will denote by Jrx(f) the r-th jet at a point x of a smooth map between differentiable
manifolds, essentially its Taylor expansion at order r at x.

Definition 2.1. Given a smooth manifold M , and an integer r > 1, its r-frames bundle
is defined as Fr(M) = {Jr0 (ψ), x ∈ M, ψ : (Rn, 0) → (U, x) local chart at x}. Denote
by Dr(n) = {Jr0 (f), f : (Rn, 0)→ (Rn, 0) germ of diffeomorphism}.

The natural projection π : Fr(M)→M defines a Dr(n)-principal fibration, with the
action Jr0 (ψ).Jr0 (f) := J0(ψ ◦ f). For r = 1, D1(n) identifies with GL(Rn) and a 1-frame
at x is the same as a linear isomorphism Rn → TxM , which can be seen as the data of
a basis of vector space.

Automorphisms group. The group of all automorphisms of a geometric structure
may itself have a remarkable geometric structure, and turn out to be a Lie transformation
group. Certainly, one of the most famous results in this area is a theorem in Riemannian
geometry due to Myers and Steenrod.
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Theorem 2.1 ([MS39]). Let (Mn, g) be a Riemannian manifold. Then, the isometry
group Isom(M, g) has a unique Lie group structure, compatible with the compact-open
topology, such that its action on M is smooth.

Furthermore, if M is compact, then Isom(M, g) is compact.

Finite dimensionality of the isometry group is a manifestation of rigidity of the ge-
ometric structure. This phenomenon has been systematized by Gromov in a very influ-
ential contribution [Gro88]. Compactness, however, is proper to Riemannian geometry
and to the natural length distance, preserved by all isometries. This distance disappears
once the metric tensor is allowed to be non positive definite for instance.

2.2.1 G-structures

Definition 2.2. Given a smooth n-manifold M , an integer r > 1 and a Lie subgroup
G < Dr(n), a G-structure on M is the data of a principal reduction P ⊂ Fr(M) with
structural group G.

Equivalently, a G-structure is the same as a section σ : M → Fr(M)/G, or to a
Dr(n)-equivariant map φ : Fr(M)→ Dr(n)/G.

Example 1. 1. Let g be a pseudo-Riemannian metric on M . Then, it is the same
as an O(p, q)-structure on M (hence defined on the bundle of 1-frames). The
corresponding equivariant map being φg : u ∈ F1(M) 7→ (gπ(u)(ui, uj))ij ∈ Sp,q,
where a 1-frame is seen as a basis (u1, . . . , un) of Tπ(u)M , and Sp,q is the GLn(R)-
homogeneous space of symmetric matrices of signature (p, q), whose isotropy is a
conjugate of O(p, q).

2. Let [g] = {eσg, σ ∈ C∞(M)} be a conformal class of signature (p, q). The post-
composition p+ ◦ φg : F1(M) → P+(Sp,q) = {rays of quadratic forms} is indepen-
dent of the metric g in the conformal class, and defines a GLn(R)-equivariant map
F1(M)→ GLn(R)/CO(p, q), where CO(p, q) = R>0×O(p, q). So, [g] is the same
as a CO(p, q)-structure on M .

3. A bit more technically, we can observe that a linear connection ∇ onM is the same
as a GLn(R)-reduction of F2(M), the map being essentially J2

0 (ψ) 7→ (Γki,j) ∈ Rn3 ,
where Γki,j denote the Christoffel symbols of ∇ in the chart ψ, which only depends
on the 2-jet of ψ.

Definition 2.3. Let PM → M and PN → N be two G-structures of order r on two
n-manifolds M and N . Then, an isomorphism of G-structure between M and N is a
diffeomorphism f : M → N such that the differential action Jr(f) sends PM into PN .

In particular, given a group Γ, a Γ-action onM is said to be by automorphisms of the
G-structure if it lifts to an action by principal bundle automorphisms of πM : PM →M .

Of course, we recover in this way isometric/conformal/affine actions in the previous
examples.
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Prolongation procedure. Start with a G-structure of order 1 on M . An important
step in Cartan’s equivalence method is the so-called prolongation procedure (see [Ste61],
[Slo96], or [Kob95]). It consists in associating to the G-structure P →M a higher-order
structure, which we can see as a G(1)-structure on the total space P itself, where G(1) is a
Lie group algebraically defined by G. Automorphisms of P →M then canonically lift to
automorphisms of this new structure P 1 → P . The procedure can then be iterated, and
gives rise to a tower of prolongations P k+1 → P k → · · · → P → M , where P k+1 → P k

has structural groupG(k) which can be explicitly computed. An automorphism of P →M
lifts to every stage of this tower.

Definition 2.4. A G-structure is said to be of finite type if there exists an integer k > 1
such that G(k) = {e}.

See [Kob95] for details on this definition and examples. For instance, O(p, q)-
structures are of finite order 1, GLn(C)-structures are of infinite order, CO(p, q)-structure
are of finite order (equal to 2) if and only if p+ q > 3.

In particular, when the structure is of finite type k, automorphisms of G-structures
of finite type act on the last stage P (k) → P (k−1) by preserving an {e}-structure, i.e. a
global frame field on P (k−1), the most rigid geometric structure. This leads to the proof
of the following.

Theorem 2.2. Let π : P → M be a G-structure of finite type k. Then, the auto-
morphisms group Aut(P → M) has a unique Lie group structure, compatible with the
compact-open topology, such that its action on M is smooth. Moreover, its dimension is
bounded above by dimM + dim g + · · ·+ dim g(k).

Elliptic G-structures. Another important family of G-structures are given by linear
subgroups G < GLn(R) whose Lie algebra g contains no matrix of rank 1. These are
called elliptic. Certainly, the most emblematic case is G = GLn(C) < GL2n(R), and
corresponds to an almost-complex structure J on an even-dimensional manifold.

A remarkable property is that even-though elliptic G-structures are not of finite type
in general, nor rigid in Gromov’s sense, a global rigidity phenomenon happens.

Theorem 2.3 ([Och66]). Let M be a compact manifold and let P → M be an elliptic
G-structure. Then, its automorphisms group is a Lie transformation group.

The proof in this non-locally rigid situation relies on the fact that the Lie algebra
of (globally defined) Killing fields of the G-structure satisfies a certain system of elliptic
PDE’s, which forces it to be finite dimensional.

In particular, the group of biholomorphisms of a compact almost-complex manifold
is a Lie transformation group (this was first proved in [BKW63]). Contrarily to Theorem
2.2, it is crucial to require compactness of M .

2.2.2 Cartan geometries

[Sha97, ČS09] are standard references. See also these recent notes of McKay [McK23].
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Let G be a Lie group, H a closed subgroup, and X = G/H. LetM be a differentiable
manifold with the same dimension as X. A Cartan geometry on M is a notion which
can be thought as a curved version of the homogeneous space X, similarly to the idea
that a Riemannian manifold is a curved version of the Euclidean space. It mimics the
infinitesimal properties of the principal fibration G→ X.

Definition 2.5. A Cartan geometry on M , with model space (G,H), is the data of
an H-principal fibration π : G → M , called the Cartan bundle, and a g-valued 1-form
ω ∈ Ω1(G, g), called the Cartan connection, such that:

1. For all b ∈ G, ωb : TbG → g is a linear isomorphism.

2. For all A ∈ h and b ∈ G, ωb
(

d
dt

∣∣
t=0

b.etA
)

= A.

3. For all h ∈ H, (Rh)∗ω = Ad(h−1)ω.

An isomorphism between two Cartan geometries (M,GM , ωM ) and (N,GN , ωN ) is a
diffeomorphism f : M → N , which can be lifted to a principal bundle automorphism
F : GM → GN such that F ∗ωN = ωM . Under a standard assumption on the model space,
such lifts are uniquely determined, and we can consider without ambiguity isomorphisms
to be defined either between the base manifolds or between the Cartan bundles.

The notion of Cartan geometry encompasses most classical notions of geometric struc-
tures in differential geometry.

Examples. Among others (I skip normalizing conditions on the Cartan connection):

1. A pseudo-Riemannian metric of signature (p, q) is a Cartan geometry with model
space X = Rp,q with the transitive isometric action of O(p, q) nRp+q.

2. A linear connection on an n-manifold is a Cartan geometry with model space X =
Rn, with the transitive affine action of GLn(R) nRn.

3. A pseudo-Riemannian conformal class [g] of signature (p, q), with p + q > 3, is
a Cartan geometry with model space X = Einp,q, with the transitive action of
PO(p + 1, q + 1). See ref for the definition, it is the analogue of the standard
conformal n-sphere Sn with the action of the Möbius group PO(1, n+ 1).

These geometries carry a notion of curvature, which coincides with the Riemann
curvature tensor in the cases of linear connections or pseudo-Riemannian metrics. In
general, the curvature is the 2-form on G defined by Ω = dω + 1

2 [ω, ω]. A Cartan
geometry is said to be flat if Ω = 0, which means that the geometry is locally isomorphic
to the model space. Hence, flat Cartan geometries are (G,X)-structures.

As for finite-type G-structures or Gromov’s rigid A-structures, Cartan geometries are
locally rigid, because the lift of any local automorphism preserves the Cartan connection,
which defines a global framing on TG. In particular, the automorphism group of a Cartan
geometry modeled on (G,H) is a Lie transformation group, with dimension bounded
above by dimG. However, unless the curvature vanishes, and apart from this dimension
bound, the Lie group structure has a priori no reason to be related to G.
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2.2.3 Gromov’s A-rigid structures

The notion of geometric structure in Gromov’s sense extends the definition of G-
structures. In this setting, a geometric structure on an n-manifold M is an equivariant
map

φ : Fr(M)→W,

where W is a manifold with an action of Dr(n), but the image of φ is not required to
lie in a single Dr(n)-orbit. Similarly to G-structures, an isomorphism between (M1, φ1)
and (M2, φ2) is a diffeomorphism f such that φ1 = φ2 ◦ Jr(f).

Gromov developed in [Gro88] an impressive arsenal of results describing geometric
structures from various perspectives (topological properties, orbits of the pseudo-group
of local automorphisms, infinitesimal automorphisms..), under two main assumptions: 1)
W is a smooth real variety on which Dr(n) acts algebraically, 2) the geometric structure
is rigid.

This notion of rigidity is an infinitesimal property, and its formal definition needs to
consider “isometric r-jets”. For the sake of readability, we can retain the following.

Intuitive definition: For k > 1, a geometric structure is said to be k-rigid if any
local automorphism is determined by its k-jet Jkx0(f) at any given point x0 ∈ M . In
particular, the Lie algebra of local Killing fields defined on any open subset is finite
dimensional.

The general good definition builds on this idea but at infinitesimal scale.
Among many others, below are a few consequences of this theory.

1. Open-dense theorem. This theorem states that if the pseudo-group of local auto-
morphisms a rigid geometric A-structure admits a dense orbit, then this orbit is
open, i.e. the geometric structure is locally homogeneous when restricted to an
open-dense subset. A famous application was found in [BFL93] in the classification
of contact Anosov flows with smooth stable and unstable foliations. An elemen-
tary proof of the open-dense theorem for Cartan geometries and other geometric
structures is established in [Pec16].

2. Representation of the π1. This result states that in the analytic case, if a non-
compact simple Lie group G acts on a rigid A-structure on a compact manifold M ,
by preserving a volume density, then there exists a linear representation of π1(M)
whose Zariski closure contains a copy of G. Hence provides topological obstructions
to simple Lie group actions.

3. Stratification by Autloc-orbits. Again in the analytic case, for a rigid A-structure
on a compact manifold M , this theorem gives an analytic stratification M = Ω1 ∪
· · · ∪ Ωk, invariant under local automorphisms, such that in each stratum, Autloc-
orbits coincide locally with level sets of a map with constant rank. This is key in
D’Ambra’s theorem [D’A88], which has recently been extended by Melnick and me
to the conformal setting [MP22].



Chapter 3

Lie group actions on conformal
structures

In this chapter, I mainly discuss connected Lie group actions on pseudo-Riemannian
manifolds.

3.1 History and motivations

A strong indication that Lie group actions by automorphisms of geometric structures shall
be understandable is Zimmer’s cocycle super-rigidity theorem, an extension of Margulis’
super-rigidity theorem to ergodic actions of higher-rank semi-simple Lie groups. In fact,
Margulis’ theorem itself can be interpreted as a structure theorem for certain actions
of semi-simple Lie groups. Hence this super-rigidity phenomena suggest that, to some
extent, higher-rank semi-simple Lie group actions can be understood.

Throughout all this section, unless otherwise stated, G will always denote a connected,
real, semi-simple Lie group without compact factor, with finite center and with real-rank
at least 2. Also, Γ will denote an irreducible lattice subgroup of G.

3.1.1 Super-rigidity in terms of actions on principal fiber bundles and
cocycles

Margulis’ super-rigidity theorem works in the general context of product of algebraic
groups defined over local fields of characteristic zero. For expository reason, I will stick
to the real case, which is enough for the purpose of this text, optimal statements can be
found in [Mar91, Zim84a].

Theorem 3.1. Let G be a real semi-simple Lie group, with finite center and with rkRG >
2. Let Γ be an irreducible lattice in G. Let H be a non-compact, simple, real algebraic
group and let ρ : Γ→ H be a group homomorphism whose image is Zariski dense in H.
Then, there exists a Lie group homomorphism ρ : G→ H such that ρ = ρ|Γ.

27



28 CHAPTER 3. LIE GROUP ACTIONS ON CONFORMAL STRUCTURES

The hypothesis of Zariski density is not very restrictive, as for any lattice Γ and
homorphism ρ : Γ→ H, the Zariski closure of ρ(Γ) is always semi-simple (even for other
fields than R), [Mar91] Theorem 6.16.

Another (maybe more concrete) form of this theorem says that for any linear finite
dimensional representation ρ : Γ → GLd(R), there exists a Lie group representation
ρ : G → GLd(R), a compact subgroup K < GLd(R) centralizing ρ(G), and a group
homomorphism ρK : Γ→ K such that

ρ(γ) = ρ(γ)ρK(γ)

for all γ ∈ Γ, i.e. ρ extends to a Lie group representation up to a compact noise. We
will say that ρ almost extends to ρ.

Remark 1. Margulis’ theorem in fact also completely describes the compact valued ho-
momorphism ρK .

A famous consequence of Theorem 3.1 and its p-adic version is the arithmeticity
theorem of Margulis, asserting that all irreducible lattices of a higher-rank semi-simple
Lie group are arithmetic (see Theorem 6.1.2 of [Zim84a] and the references therein).

G-actions on H-principal bundles. Let us take a moment to look at this theorem
with a more geometric point of view. Fix Γ < G a lattice subgroup. Then, the data
of a group homomorphism ρ : Γ → H is the same as that of an H-principal bundle
π : P → G/Γ together with a G-action by principal bundle automorphisms above the
natural G action on G/Γ.

To see it, associate to any ρ the principal bundle P ρ := (G×H)/Γ, where Γ acts via
γ.(g, h) = (gγ, ρ(γ−1)h), on which G acts naturally on the left via the first coordinate.
Conversely, to an H-principal fibration π : P → G/Γ with a principal G-action, and to
any x ∈ π−1(eΓ), corresponds ρx : Γ → H defined by the relation γ.x = x.ρx(γ)−1 for
all γ ∈ Γ. A different choice of x yields a conjugate of ρx by an element of H, hence we
can associate a conjugacy class of representations Γ → H modulo conjugacy by H. It
is then straightforward to exhibit a G-equivariant isomorphism ϕ : P → P ρx such that
ϕ(x) = (e, e).Γ.

Now that the data of ρ is the same as that of a principal bundle π : P → G/Γ
with a principal G-action, then how does the content of Margulis super-rigidity theorem
translate?

First, the hypothesis of Zariski density of ρ(Γ) is equivalent to assuming that there
does not exist a non-trivial, G-invariant, principal reduction P ′ ( P with structural
group a proper algebraic subgroup H ′ < H. More generally, the notion of Zariski closure
of ρ(Γ) leads to the definition of algebraic hull of a G-action on a principal bundle with
algebraic structural group, and here we assume the algebraic hull of the action to be the
whole structural group H.

Now, a group homomorphism ρ : Γ → H extends to a Lie group homomorphism
ρ : G → H if and only if the associated H-principal bundle P → G/Γ admits a global
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trivialization P ' G/Γ×H in which the G-action reads

g.(x, h) = (g.x, ρ(g)h), (3.1)

for all x ∈ G/Γ and h ∈ H.
So finally, Margulis super-rigidity theorem can be rephrased by saying that given an

H-principal fibration P → G/Γ, on which G acts by automorphisms above the natural
action G y G/Γ, and “algebraically irreducibly” in the sense that no proper algebraic
reduction of P is G-invariant, then the G-action can be “diagonalized” in some smooth
global trivialization of P as in (3.1).

Theorem 3.1 is sufficiently strong to provide arithmeticity of all irreducible higher-
rank lattices. It is therefore very appealing to investigate the consequences of its geo-
metric interpretation.

Super-rigidity of cocycles In the early 1980, Zimmer extended the previous inter-
pretation to a non-homogeneous setting, and proved that the same phenomenon persists
when the G-action on G/Γ is replaced by an ergodic, measure preserving G-action on
a probability space (X,µ). This more general version is formulated in the category of
measurable spaces, in which any principal fibration is trivial. Consequently, the analogue
of the principal action of G on P → G/Γ are G-actions on a direct product P = X ×H
which commute with the right-action of H on P and project to the initial action of G on
X. These are all of the form g.(x, h) = (g.x, c(g, x)h) where c : G×X → H is a cocycle
over the G-action on X.

Definition 3.1. Let G act on a Borel space (X,µ) and let H be a real algebraic group.
An H-valued cocycle over the G-action is a measurable map c : G ×X → H such that
for all g1, g2 ∈ G and µ-almost every x ∈ X,

c(g1g2, x) = c(g1, g2.x)c(g2, x). (3.2)

The relation (3.2) is called the cocycle identity.

Example 2. If X is a smooth manifold on which G acts differentiably, then, given a
measurable trivialization TX ' X ×Rn, for any g ∈ G and x ∈ X, the differential dxg
is identified with an element c(g, x) ∈ GLn(R), and the map (g, x) 7→ c(g, x) satisfies the
cocycle identity by the chain rule.

Cocycles appear in many other natural contexts, some of which being described for
instance in these introductive notes of Feres: [Fer02b].

Let (X,µ) be a probability space on which G acts measurably. Given a cocycle
c : G × X → H, we can define a principal bundle action1 of G on P := X × H by
g.(x, h) = (g.x, c(g, x)h). We have seen that conversely, all principal actions of G on P
are of this form.

1That is: an action of G on X ×H which projects to the action on X and commutes with the right
H-action (x, h).h′ = (x, hh′).
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Analogously to Margulis’ theorem, the conclusion of the cocycle super-rigidity the-
orem is that there exists a special measurable trivialization of P in which the cocycle
associated to the G-action is of the simplest possible form: c(g, x) = ρ(g) for µ-almost
every x ∈ X, where ρ : G→ H is a Lie group homomorphism. A change of trivialization
of P is on the form (x, h) 7→ (x, ϕ(x)h), where ϕ : X → H is a measurable map. After
this change, the cocycle transforms into

c′(g, x) = ϕ(g.x)−1c(g, x)ϕ(x). (3.3)

Definition 3.2. Two cocycles verifying (3.3) are said to be cohomologous.

We can now state Zimmer’s cocycle super-rigidity.

Theorem 3.2. Let G be a real semi-simple Lie group without compact factor, with finite
center, and with rkRG > 2. Let (X,µ) be a probability space on which G acts by pre-
serving the measure µ. Let H be a real algebraic group and c : G×X → H a measurable
cocycle. Then, there exists a smooth homomorphism ρ : G → H, a compact subgroup
K < G centralizing ρ(G), and a measurable cocycle cK : G×X → K such that µ-almost
everywhere

c(g, x) = ρ(g)cK(g, x).

Remark 2. Instead of group actions on measurable principal bundles, this theorem deals
with measurable cocycles over a G-action, which a more efficient point of view, but it is
exactly the same notion.
Remark 3. Margulis’ super-rigidity theorem is obtained as a consequence of this result,
as any group homomorphism ρ : Γ → H yields a cohomoglogy class of cocycles cρ :
G×G/Γ→ H, and X = G/Γ is by definition equipped with a finite G-invariant measure.
Remark 4. There is another version of Theorem 3.2, which is the straight analogue of
Theorem 3.1: if the algebraic hull of the cocycle is all of H (which corresponds to the
Zariski density of ρ(Γ) in Margulis’ theorem), then the cocycle cK can be made trivial.

3.1.2 Geometric structures as principal bundles

Many natural and familiar geometric structures can be interpreted as principal fiber bun-
dles. An important class is that of H-structures and offers nice geometric consequences of
super-rigidity results. References on the subject can be found in [Kob95, Ste61, CQB04].

Given a smooth n-manifold, we denote by Fr(M) the bundle of r-frames of M .
A point of Fr(M) is the r-jet at some point x ∈ M of a germ of local chart
ψ : (Rn, 0) → (U, x) defined on a neighborhood of x. Hence, Fr(M) has a natural
structure of principal fiber bundle over M , with structural group Dr = {Jr0 (f), f :
(Rn, 0) → (Rn, 0) smooth germ}. Note that for r = 1, Dr ' GLn(R) and elements of
F1(M) are linear frames.

Definition 3.3. Let Mn be a smooth n-manifold, r > 1 and H < Dr a Lie subgroup.
An H-structure on M is an H-reduction P of Fr(M). Equivalently, it is a global section
s : M → Fr(M)/H. The integer r is called the order of the structure.
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Example 3. For instance, the data of a pseudo-Riemannian metric of signature (p, q)
on M is the same as that of an H-structure of order 1, with structure group H =
O(p, q) < GLn(R). Indeed, by tensoriality, the metric yields a GLn(R)-equivariant map
F1(M) → GLn(R)/O(p, q). Various natural geometric structures (such as conformal,
almost-complex or almost-symplectic structures) also fall into the setting of H-structures
of order 1, see Chapter 1 of [Kob95].

Example 4. Another example is that of linear connections, or more generally projective
classes of connections, which are typically non-tensorial, hence need higher order frames
to be interpreted as equivariant maps (see [KN64]). For instance, a linear connection is
the same as a GLn(R)-reduction of F2(M).

Given two n-manifolds M and N , endowed with H-structures PM → M and PN →
N , a (local) isomorphism between them is a (local) diffeomorphism f : M → N such
that Jr(f)(PM ) ⊂ PN . In particular, the group of automorphisms of the H-structure
PM → M acts on on PM by bundle automorphisms. Hence, any action of a group G
on a geometric structure which is interpretable as an H-structure can be thought as a
G-action on an H-principal fiber bundle over the base manifold, which in turn gives rise
to a cohomology class of measurable cocycles G×M → H.

Therefore, when G is either a higher-rank semi-simple Lie group, or a lattice in such
group, and when G preserves a finite measure on M , Theorem 3.2 yields interesting
dynamical information. In [Zim84c], a first version of Zimmer’s embedding theorem,
recalled below, was proved in the higher-rank case as a consequence of super-rigidity of
cocycles. Later, Zimmer extended in [Zim86c] this obstruction to Γ-actions on unimod-
ular, finite type2 H-structures. We recall the statement in the next chapter on lattices
actions. Let us highlight the finite-type assumption, Zimmer’s original conjectures in
the volume-preserving case ([Zim87a]) claimed precisely that this assumption can be
dropped.

3.1.3 Zimmer’s embedding theorem

Definition 3.4. An H-structure on a manifold M is said to be unimodular if the linear
part H` of H is contained in SL′n(R) = {g ∈ GLn(R) : det g = ±1}.

Equivalently, unimodular H-structures are those which define naturally a volume
density on the base manifold, and in particular a finite invariant measure when the man-
ifold is compact. For instance, pseudo-Riemannian metrics (H = O(p, q)) or symplectic
forms (H = Sp2n(R)) define unimodular H-structures, whereas conformal structures or
linear connections do not.

Theorem 3.3 ([Zim86c]). LetMn be a compact manifold endowed with a unimodular H-
structure π : P →M , with H an algebraic subgroup of GL(r)(n). Let G be a non-compact
simple Lie group acting locally faithfullly on this H-structure.

2In Cartan’s sense, see [Kob95]. It essentially means that the structure is rigid, in the sense of having
finite dimensional local groups of transformations.
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Then, there exists a Lie algebra embedding ι : g ↪→ h ⊂ gl(r)(n). Furthermore, if
p : gl(r)(n) → gl(1)(n) = gln(R) is the natural projection, the representation p ◦ ι : g →
gln(R) contains the adjoint representation of g as a direct factor.

The proof relies essentially on a generalization of Borel’s density theorem, which
asserts that if an algebraic non-compact simple group acts algebraically on a variety, by
preserving a finite measure, then it acts trivially on the Zariski closure of the support of
the measure.

Remark 5. It is worth noting that contrarily to the analogue statement for lattices stated
later (Theorem 4.2), the H-structure here is not assumed to be of finite type, the con-
clusion follows for instance for Sp2n(R)-structures. However, the important point is
that it is unimodular, the conclusions are not valid for conformal structures for instance
(H = R>0×O(p, q) but SO(p+ 1, q+ 1) is the conformal group of (Sp×Sq,−gSp ⊕ gSq),
and does not embed locally into H).

The following phenomenon is key in the proof of the embedding theorem, and il-
lustrates in a simpler context a method that can be implemented more generally (see
[BN02, BFM09]).

Proposition 3.1 ([Zim84c]). Let G be a non-compact simple Lie group action by C1

diffeomorphisms of a manifold M and by preserving a finite measure µ. Then, for µ-
almost every x, x is either a G-fixed point, or the stabilizer Gx is discrete.

Proof. Consider the G-equivariant map Φ : x ∈M 7→ gx ∈W := tk6dimGGrk(g), where
gx refers to the Lie algebra of the stabilizer of x. We have a natural algebraic action of
Ad(G) on every stratum ofW , which is a projective variety. The map Φ is G-equivariant,
so the push-forward ν := Φ∗µ is Ad(G) invariant on W . The key idea, which can be
fruitfully used in many more sophisticated contexts, is to apply the following.

Lemma 1. Let H y V be a real algebraic group action on a variety V . Suppose that H
preserves a finite measure µ. Then, the restriction of the H-action to the Zariski closure
V ′ := Suppµ has cocompact kernel.

Applying this to any stratum of W which intersects the support of ν, we deduce that
Ad(G) acts trivially on Supp ν. This means that µ-almost every point of M is sent to
an ideal of g, which is exactly the desired conclusion.

Remark 6. In other contexts, the action can be shown to be locally free almost every-
where. Typically, for isometric actions on finite volume pseudo-Riemannian manifold,
the G-action is linearized near any fixed point, and the set of G-fixed points has empty
interior by rigidity. So, fixed points form always locally a submanifold with positive codi-
mension. Hence, the set of G-fixed points is nowhere dense and the set of full Lebesgue
measure in Proposition 3.1 can be chosen in the complement of G-fixed points.
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Extension to Cartan geometries. Theorem 3.3 has been extended to non-simple
Lie group actions on Cartan geometries in [BFM09].

Let H be a connected Lie group and let S < H be a subgroup, not required to
be closed. Following [Sha99], define the discompact radical of S as the largest algebraic
subgroup Sd in the Zariski closure of Adh(S) which does not admit any proper, algebraic,
normal, cocompact subgroup. For instance, Hd = Adh(H) for S = H an algebraic semi-
simple Lie group of non-compact type. The idea is to apply Lemma 1 to some finite
measure preserving algebraic action of Hd and conclude that it is trivial on the support
of the measure.

Let (M,G, ω) be a Cartan geometry with an effective model space (G,P). We denote
by π : G →M the fibration. Let H < Aut(M,G, ω) be a Lie subgroup. The correspond-
ing H-action gives rise to a natural map ι : G → Mon(h, g), where Mon(h, g) denotes the
variety of injective linear maps from h to g, defined by ι(b)(X) = ωb(X) for all b ∈ G and
X ∈ h. Recall that by effectiveness of the model, we can define without ambiguity lifts
to the Cartan bundle of infinitesimal automorphisms of the Cartan geometry and X can
be seen as a vector field on M or as a right-P -invariant vector field on G (see [ČS09]).

Theorem 3.4 ([BFM09]). Suppose that Adg(P ) is almost algebraic in GL(g). If S
preserves a finite Borel measure µ onM , then for µ-almost every x, for every b ∈ π−1(x),
there exists an algebraic subgroup Š < Adg(P ) such that

• for all p̌ ∈ Š, p̌.ιb(h) = ιb(h),

• the induced homomorphism Š → GL(h) is algebraic, with image Sd.

In particular, this result can be applied systematically when M is compact and S is
amenable, and as corollaries they obtained upper bounds on the real-rank of a semisimple
Lie group action (take S < G to be an R-split Cartan subgroup in a semi-simple Lie
group H) or the nilpotence degree of a nilpotent Lie group action. In more specific
Cartan geometries, the idea can be implemented to provide further restrictions, as in
[Pec19], see Theorem B and Theorem C below.

Isometric actions on pseudo-Riemannian manifolds. As an illustration of Theo-
rem 3.3, let us observe that its conclusions are optimal in the case of pseudo-Riemannian
isometric actions of simple Lie groups, i.e. for r = 1 and H = O(p, q).

Let G be a non-compact simple Lie group acting isometrically on a closed pseudo-
Riemannian manifold of signature (p, q). Zimmer’s result implies that g identifies with a
Lie subalgebra of so(p, q), and that there exists a g-invariant vector subspace V ⊂ Rp,q

and a linear isomorphism f : g→ V such that f([X,Y ]) = X.f(Y ) for all X,Y ∈ g. By
simplicity of g, this subspace V is either totally isotropic, or non-degenerate.

Conversely, given a non-compact simple Lie group G and a pair of non-negative
integers (p, q), the existence of an embedding of g into so(p, q) and of such a subspace
V yields that of a compact pseudo-Riemannian manifold of signature (p, q) on which G
acts isometrically with discrete kernel. Indeed,



34 CHAPTER 3. LIE GROUP ACTIONS ON CONFORMAL STRUCTURES

• either V is non-degenerate, and we obtain an ad(g)-skew-symmetric quadratic form
of signature (p′, q′) on g, with p′ 6 p and q′ 6 q, hence a bi-invariant pseudo-
Riemannian metric of signature (p′, q′) on G ; or

• V is totally isotropic, and then dim g 6 min(p, q), and the Killing form of g has
signature (p′, q′) with p′ 6 p and q′ 6 q, and we obtain similarly a bi-invariant
metric on G of signature (p′, q′).

In both cases, G acts isometrically (for instance) on a direct product G/Γ×Tp−p′,q−q′ ,
where Γ is a cocompact lattice of G and G/Γ is endowed with the G-invariant metric of
signature (p′, q′) exhibited previously.

In conclusion:

Corollary 1. Given a non-compact, simple Lie group G and a signature (p, q), the
following are equivalent:

1. There exists a compact pseudo-Riemannian manifold (M, g) of signature (p, q) on
which G acts isometrically and locally faithfully.

2. There exists a non-degenerate bi-invariant quadratic form3 on g of signature (p′, q′)
with p′ 6 p, q′ 6 q, or q′ 6 p and p′ 6 q.

In particular, up to local isomorphism, SL2(R) is the only simple, non-compact Lie
group admitting an isometric action on some closed Lorentzian manifold ([Zim86c], The-
orem 4.1). This is because sl2(R) is the only non-compact simple Lie algebra with
Lorentzian Killing form.

3.1.4 Isometry groups of closed Lorentzian manifolds

Restrictions on isometric actions of nilpotent Lie groups are also derived in [Zim86c],
which suggested that the whole Lie group structure of Isom(M, g) is understandable, for
(M, g) a closed Lorentzian manifold. This was made concrete by several contributions of
Adams, Stuck and, independently, Zeghib.

Theorem 3.5 ([AS97a, AS97b, Zeg98a, Zeg98b]). Let (M, g) be a compact Lorentzian
manifold and let G = Isom(M, g)0 denote the identity component of its isometry group.
Then, its Lie algebra splits into a direct product g = s⊕ k⊕ a where k is the Lie algebra
of a compact semi-simple Lie group, a is abelian and s is in the following list:

1. sl2(R)

2. heis(2n+ 1), n > 1,

3. Oscillator algebras, i.e. certain solvable extensions Rn heis(2n+ 1), n > 1,
3If g is non-complex, ad(g)-skew-symmetric quadratic forms are scalar multiples of the Killing form.

For g = hR with h a simple complex Lie algebra, the real and imaginary parts of the Killing form of h
span the space of ad(g)-skew-symmetric quadratic forms on g.
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4. {0}.

Conversely, for any such Lie algebra g, there exists a compact Lorentzian manifold whose
isometry group admits g as Lie algebra.

See for instance §3.3 of [BGZ19] for definitions of oscillator algebras and their
quadratic structures in a broader context. A noticeable point in this result is the ab-
sence of the affine algebra R n R, which means that an isometric action of the affine
group Aff(R) of the real line always gives rise to a locally faithful action of S̃L2(R), see
Theorem 3.9 below and the discussion.

Ideally, it would be very interesting to obtain similar understanding of automor-
phisms groups of geometric structures. This was suggested by Gromov with his “vague
conjecture” on rigid geometric structures ([DG91] §0.8). With further motivations, this
problem has always been driving my research interests.

3.1.5 Warped product structures in the presence of an isometric simple
Lie group action

Isometric actions of SL2(R) on closed Lorentzian manifolds can be realized as follows.
Let AdS3 = (PSL2(R), gK), where gK refers to the bi-invariant Killing metric. This
is an important Lorentzian space form, of sectional curvature −1, whose compact quo-
tients have attracted strong interest , in particular via their relations with surface group
representations into PSL2(R) (see for instance [BBD+12], although the literature grew
significantly afterwards).

The 3-dimensional case has the specificity of having a non-simple isometry group
whose identity component is PSL2(R)×PSL2(R), hence admits various sorts of discrete
groups acting properly discontinuously. We are interested here in the most elementary
version: quotients by subgroups of the form {id} × Γ, where Γ is a uniform lattice in
PSL2(R). These subgroups are centralized by a whole copy of PSL2(R), which con-
sequently acts on the quotient manifold by isometries, providing examples of isometric
actions of PSL2(R) on closed Lorentzian manifolds.

These examples are in fact the main ingredients to build such actions in general. In
[Gro88], §5., it is proved that if PSL2(R) acts on a closed Lorentzian manifold (M, g),
then the action is locally free everywhere4 , the ambient metric induces a scalar multiple
of the AdS3 metric on all orbits, and that furthermore the orthogonal distribution to
PSL2(R)-orbits is integrable with geodesic leaves. Finally, some cover of M is isometric
to a warped product AdS3

ω×N , where N is a Riemannian manifold and ω : N → R>0.
The same observation is generalized in theorem 5.3.E. of [Gro88] for an isometric

action of a simple Lie group G on a closed pseudo-Riemannian manifold (M, g), provided
that rkRG > min(p, q)−min(p′, q′), where (p, q) is the signature of (M, g) and (p′, q′) the
signature of the Killing form of G. Also, in [QB06] and other related articles, Quirroga-
Barranco described closed pseudo-Riemannian manifold with simple Lie group actions,
under various assumptions such as topological transitivity.

4Recall Proposition 3.1 which only implied local freeness over a subset of full Lebesgue measure.
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3.1.6 Induced action over flag manifolds and measurable projective
factors

All previous results cover cases of probability-measure-preserving G-actions. Hence, they
do not include important examples such as semi-simple Lie group actions on flag man-
ifolds. More generally, natural directions to look at are dynamics on non-unimodular
G-structures or parabolic Cartan geometries. Even though such actions are out of range
of super-rigidity results, various advances have been established via different techniques
including a generalization of Borel’s density theorem as well as general structure results
of Furstenberg about stationary measures of semi-simple Lie group actions.

A remarkable one is a general structure result up to measurable equivalence due to
Nevo and Zimmer, which can be viewed as a counter-part to super-rigidity of cocycles,
in the non-measure preserving case. Under a mixing assumption and for higher-rank
G, it states that G-actions on probability spaces are measurably equivalent to standard
examples of stationary actions built as a fibration over a flag manifold of G.

Example 5. Let P < G be a parabolic subgroup, (X, ν) be a probability space on which P
acts measurably and preserves ν. Then, we can form the associated space Y = G×PX =
(G × X)/P , where as usual, (g, x) ∼ (gp, p−1.x). The G-action on the first coordinate
induces an action of G on Y which projects to the action on G/P . Given an admissible5

measure µ on G and a (G,µ)-stationary probability measure ν0 on G/P , we can associate
a (G,µ)-stationary measure on Y .

We reproduce below Nevo-Zimmer’s existence result of measurable projective factor
for higher-rank semi-simple Lie group actions.

Theorem 3.6 ([NZ99]). Let G be a semi-simple Lie group with finite center, no compact
factors and real-rank at least 2. Let µ be an admissible measure on G. Let (X, ν) be a
probability space with a measurable µ-stationary G-action. Suppose that the action of the
minimal parabolic subgroup P is mixing.

Then, there is a parabolic subgroup Q < G, an ergodic Q-space (X0, λ), where λ is
a Q-invariant probability measure, such that (X, ν) is measurably and G-equivariantly
isomorphic to the associated space G×Q X0.

In particular, the conclusion says that there exists a measurable, G-equivariant map
ϕ : (X, ν) → G/Q, called a measurable projective factor. The G-action on X preserves
the measure ν if and only if Q = G.

More recently, this result has been reinforced and extended to lattices actions in
[BRHW22] and independently in [BH21] within the framework of operator algebras, but
the conclusions are always in the measurable category. A natural problem is then:

Question 1. Starting from a smooth (G,µ)-stationary action on a compact manifold
(M,ν), under which conditions the measurable isomorphism of [NZ99] can be made dif-
ferentiable?

5A probability measure whose support generates G as a semi-group and such that µ⊗k is absolutely
continuous with respect to Lebesgue measure for some k > 1.
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3.1.7 Actions on conformal structures and more general geometric
structures

In [Zim87b], Zimmer proved that when a semi-simple Lie group G without compact
factor acts on an H-structure P →M on a compact n-manifold M , with H < GL

(r)
n (R)

algebraic, we always have the upper bound rkRG 6 rkRH. Remark that no invariant
volume is assumed, so this applies to conformal actions for instance. Further works built
on this observation, this is detailed later in Section 4.4.1 in the chapter on lattices actions.

Let us cite for now the following result by Bader, Frances and Melnick for actions on
parabolic Cartan geometries ([BFM09], Theorem 1.5).

Theorem 3.7. Let (M,G, ω) be a Cartan geometry on a compact manifold M , modeled
on a flag manifold G/P. Let H < Aut(M,G, ω) be a connected Lie subgroup. Let g
denote the Lie algebra of G. Then,

1. rkR(Ad(H)) 6 rkR(G) ;

2. If rkR(Ad(H)) = rkR(G), then M is isomorphic, as a Cartan geometry, to some
quotient Γ \ X̃, for Γ < G̃.

Specializing to semi-simple H, the first bound is in concordance with [Zim87b], and
the geometric conclusions extend [BN02] and [FZ05]. Hence, actions of semi-simple Lie
groups of maximal real-rank were completely understood, but the general problem of
lower-rank actions was still unclear after these works.

3.2 SL2(R)-actions on conformal Lorentzian structures

Let (M, g) be a pseudo-Riemannian manifold. The conformal class of g is [g] = {eσg, σ ∈
C∞(M)}, and a diffeomorphism f : M → M is said to be conformal if it preserves [g],
setwise. We call (M, [g]) a conformal structure and denote by Conf(M, [g]) its group of
conformal diffeomorphisms.

Of course, for any g′ ∈ [g], Isom(M, g′) < Conf(M, [g]). Legitimately, we can ask:
when does there exist conformal diffeomorphisms which are not isometries of some con-
formal metric?

Conformal structures admitting such conformal maps are called essential (see Defi-
nition 3.5). Let us recall a famous theorem of Ferrand, Obata and Schoen characterizing
essential Riemannian conformal structures [Oba71, LF71, LF76, Fer96, Sch95]. In the
compact case, [Oba71] solved a conjecture of Lichnerowicz about the essentiality of the
identity component Conf(M, [g])0. Later, [LF71, LF76] extended Obata’s result to the
whole of Conf(M, [g]), still for M compact. Finally, in [Fer96, Sch95] the result is ulti-
mately extended to non-compact Riemannian manifolds.

Theorem 3.8 (Ferrand-Obata-Schoen). Let (Mn, g), n > 2, be a Riemannian manifold.
If Conf(M, [g]) is essential, then (M, [g]) is conformally diffeomorphic to either Sn or
Rn with their standard Euclidean structures.
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This result generated a great amount of work in various directions, see [Mel21] for a
survey. Noticeably, the result can, partly, be explained in dimension greater than 2 by the
rigidity of conformal structures. It led Gromov to conjecture in [Gro88] that more gener-
ally, every rigid geometric structure on which a “large” group G acts by automorphisms
are classifiable.

It turned out that the situation is certainly more complicated than what Gromov
expected, even for very concrete geometric structures. Various works, including [KR97,
Fra05, Fra15], showed that for pseudo-Riemannian signatures, no analogous statement
can reasonably be expected.

However, in Lorentzian signature, although infinitely many distinct compact topolo-
gies, on which infinitely many distinct conformal structures are essential, all known ex-
amples are conformally flat. And a problem remains open, called the Lorentzian Lich-
nerowicz conjecture:

Conjecture 1. Let (M, [g]) be a Lorentzian conformal structure on a compact manifold
of dimension at least 3. If it is essential, then it is conformally flat.

A weaker (still challenging) form of this conjecture ask the same question when the
identity component Conf(M, [g])0 is essential, as was initially asked by Lichnerowicz.

Recall that conformal structures are all conformally flat in dimension 2. Importantly,
if true, a proof of this conjecture will necessarily be based on the global dynamics of
groups acting essentially and conformally on M , as it is locally false: for instance, Alek-
seevsky exhibited in [Ale85] infinitely many non-conformally flat, Lorentzian metrics g
on Rn admitting a conformal vector field X, which is essential6 on arbitrarily small
neighborhoods of its singularities.

This global geometrico-dynamical problem is another important source of motivation
for my investigations.

3.2.1 Some examples of closed Lorentzian manifolds with large confor-
mal group

Let us first review some examples of compact Lorentzian manifolds with large essential
conformal groups. Tori or AdS3-manifolds described in Section 3.1.5 are natural con-
structions, but the identity component of their conformal group are all inessential (this
follows from Proposition 3.2).

1. Einstein Universe. A central object in conformal Lorentzian geometry is the
Lorentzian Einstein Universe Ein1,n−1. It can be defined as the conformal bound-
ary of the (n + 1)-dimensional anti de Sitter space AdSn+1, just as the Möbius
sphere (Sn, [gcan]) is the conformal boundary of the real hyperbolic space Hn+1

R .

As a manifold, Ein1,n−1 is the smooth projective quadric P({q2,n = 0}) ⊂ RPn+1

where, for x ∈ Rn+2,

q2,n(x) = −x2
0 − x2

1 + x2
2 + · · ·+ x2

n+1.

6Meaning that LXg′ 6= 0, for any g′ ∈ [g].
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The degenerate metric induced by q2,n on the isotropic cone {q2,n = 0} descends
to a Lorentzian conformal class on Ein1,n−1, conformally invariant under PO(2, n).
When n > 3, a first manifestation of rigidity of conformal structures is that every
local conformal map of Ein1,n−1 is obtained in this way. This is Liouville’s theorem
(see [CK83]). It is doubly covered by (S1×Sn−1, [−dt2⊕gSn−1 ]), hence has universal
cover R× Sn−1 with the lift of the conformal class.

Another point of view is that it is the conformal compactification of Lorentzian
spaces of constant sectional curvature. In particular, Minkowski space-time R1,n−1

is conformally equivalent to an open-dense subset of Ein1,n−1, unique up to the
PO(2, n)-action. Such open subsets are calledMinkowski patches and the conformal
diffeomorphisms with R1,n−1 stereographic projections, similarly to the Euclidean
case. A sensible divergence is the nature of infinity: in the Euclidean case, it
consists in a single point (the pole of projection), in the Lorentzian case, it is a
light-cone emanating from a point.

Importantly in what follows, as a PO(2, n)-space, Ein1,n−1 is a flag manifold
PO(2, n)/P , where P is the stabilizer of a null-line. By a generalization of a theo-
rem of É. Cartan, a general conformal Lorentzian structure (M, [g]) is a normalized
Cartan geometry with model space (PO(2, n),Ein1,n−1), hence is a special case of
parabolic geometry ([ČS09]).

Finally, let us mention that this construction extends analogously to any pseudo-
Riemannian signature (p, q).

2. Lorentzian Hopf manifolds. Consider the pointed Minkowski space R1,n−1 \ {0}.
For λ > 1, the infinite cyclic group 〈hλ〉 generated by the homothetie hλ(x) = λx
acts freely properly discontinuously and conformally, hence the flat metric ofR1,n−1

induces a conformally flat metric on 〈hλ〉 \ (R1,n−1 \ {0}). The conformal group
R∗×O(1, n−1) descends to the quotient, and induces an action of S1×O(1, n−1).
This construction can be twisted by modifying the Z-action of hλ, and will reduce
accordingly the size of the conformal group at the quotient.

The projection of the null-cone is a single, compact, degenerate O(1, n − 1)-orbit
diffeomorphic to Sn−2 × S1. All other O(1, n− 1)-orbits are non-compact, and all
their accumulation points are on the compact orbit.

3. Kleinian Lorentzian examples. In [Fra05], Frances constructed for every g > 2, a
compact manifold, diffeomorphic to (S1×Sn−2)]g×S1, endowed with a conformally
flat Lorentzian structure [g], and with a conformal essential action of SL2(R). These
are obtained by modding out an open domain of Ein1,n−1 by a Lorentzian Schottky
group.

Using Ehresmann-Thurston’s principle, he proved that these structures can be de-
formed in such a way that they still admit a one-parameter subgroup {ϕt} of
esseêntial conformal maps.
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3.2.2 Discreteness of stabilizers as a criterion for inessentiality

Recall that a general property of isometric actions of non-compact simple Lie groups
is that they are locally free over an open-dense subset. For Lorentzian metric, they
act locally freely on the whole manifold, it is the first step to obtain the local product
structure described in Section 3.1.5.

An isometric action being a special case of conformal action, a very natural question
is to detect when a conformal action can be reduced to an isometric one. For instance,
for (M, g) a Riemannian manifold, a closed subgroup H < Conf(M, [g]) fixes a metric in
the conformal class if and only if it acts properly on M .

This is far from being completely understood in general, so general criteria for essen-
tiality are interesting problems in themselves, or for further use. Let us remind:

Definition 3.5. Let (M, g) be a pseudo-Riemannian manifold. Let H < Conf(M, [g])
be a subgroup. Then, H is said to be inessential if there exists a metric g′ ∈ [g] such
that H < Isom(M, g′). Otherwise, H is said to be essential.

Remark 7. The action of H is inessential if and only if it preserves a volume-density on
M .

Below is a question that arises quickly after taking this definition.

Question 2. Let H1 < H2 < Conf(M, [g]) be subgroups. Suppose that H1 has non
compact closure7 in Conf(M, [g]) and that H2 is essential. Then, is H1 also essential ?
If not, under which criteria (algebraic, dynamical..) can we be sure that it is?

For instance, suppose that H2 = SL2(R) acts conformally and essentially onM . Does
any non-elliptic one-parameter subgroup also act essentially?

The first results about conformal actions of simple Lie groups that I present are
the following criteria of essentiality. By Theorem 3.5, any conformal action, on a closed
Lorentzian manifold, of a non-compact simple Lie group not locally isomorphic to SL2(R)
must be essential. For Lie groups locally isomorphic to SL2(R), we have the following,
proved in [Pec18].

Proposition 3.2 ([Pec18]). Let (M, [g]) be a closed Lorentzian conformal structure and
let S < Conf(M, [g]) be an immersed Lie subgroup locally isomorphic to SL2(R). Then,
the following are equivalent:

1. S acts locally freely everywhere.

2. S is inessential.

3. Conf(M, [g])0 is inessential.

The implication 2. ⇒ 1. was already know as recalled before. The non-trivial part
in 2. ⇐⇒ 3. is that if S preserves a metric in the conformal class, then so does all of
the identity component of Conf(M, [g]). Hence, we get a concrete criterion to answer
Question 2 for H1 = SL2(R) and H2 = Conf(M, [g])0: if H2 is essential, then H1 is
essential and it admits an orbit of dimension less or equal than 2.

7Otherwise, an elementary averaging argument provides an H1-invariant metric.
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3.2.3 Conformal flatness in the presence of an essential semi-simple
Lie group

The main contribution of the work of my PhD and my first postdoc is the following local
conformal flatness result for conformal semi-simple Lie group actions on closed Lorentzian
manifolds. It gives a rigidity result for actions of SL2(R) on conformal Lorentzian struc-
ture, completing Gromov’s local product structure for isometric actions of SL2(R) re-
called in Section 3.1.5.

Theorem A ([Pec17, Pec18]). Let (Mn, [g]), n > 3, be a closed manifold endowed with
a conformal Lorentzian structure. Let G be a connected semi-simple Lie group. If G acts
conformally and essentially on (M, [g]), then [g] is conformally flat, i.e. near every point,
there are coordinates in which the metric reads

g = eσ(−dx2
1 + dx2

2 + · · ·+ dx2
n),

for some smooth function σ.

This result is not far from being optimal. As shown in Example 6 below, there are
essential actions of PSL2(R) on some non-conformally flat, real-analytic closed pseudo-
Riemannian manifolds of signature (3, n), n > 4. However, the question of an extension
of Theorem A to signature (2, n) is still open to my knowledge.

Levi factor of the conformal group

By Proposition 3.2, an equivalent formulation of this result is that given a closed
Lorentzian manifold (M, g) of dimension at least 3, if the Levi factor of Conf(M, g)0

is non-compact, then the Lorentzian Lichnerowicz conjecture (Conjecture 1) is true.
From this local conclusion, we derive a conformal extension of theorem 4.1 of [Zim86c],

where a non-compact simple Lie group acting isometrically on a closed Lorentzian man-
ifold is proved to be necessary a finite cover of PSL2(R) ' O(1, 2)0.

We obtain here more possibilities for the Levi factor of Conf(M, [g])0.

Corollary 2. Let (Mn, g), n > 3, be a compact Lorentzian manifold and let G be a
connected semi-simple Lie group of non-compact type. If G acts conformally on (M, [g]),
then G is locally isomorphic to a Lie group of the form S × K, where K is a compact
semi-simple Lie group and S is isomorphic to a semi-simple Lie subgroup of non-compact
type of O(2, n), i.e. S is locally isomorphic to one of the following :

• O(1, k), 2 6 k 6 n ;

• SU(1, k), 1 6 k 6 n/2 ;

• O(2, k), k 6 n ;

• O(1, k)×O(1, k′), with k + k′ 6 max(n, 4).
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Proof. A Lie algebra of conformal vector fields of an open subset of R1,n−1 is isomorphic
to a Lie subalgebra of so(2, n).

Remark 8. Conversely, for any S in the previous list, there exists a compact quotient of
Ẽin

1,n−1
whose conformal group is locally isomorphic to S ×K, for some compact Lie

group K.

Remark 9. This corollary is recovered in [Pec19] without using conformal flatness of
(M, [g]) by using ideas similar to [BN02]. Let G simple and non-compact act conformally
on a closed Lorentzian manifold. Considering tangent spaces to G-orbits, we obtain a G-
equivariant map M → P(S2g∗), similar to the map used in the proof of Proposition 3.2.
Considering an Iwasawa decomposition G = KAN , and an AN -invariant probability
measure on M , Lemma 1 gives existence of points at which AN is “virtually” in the
stabilizer, i.e. geometrically, everything happens like if it was, although it could not be.
From this, enough algebraic constraints on G follows to conclude that it must be in the
list of Corollary 2. The approach is implementable in higher signature, and is started for
rank 1 actions in [Pec19].

I gave two proofs to Theorem A. The first corresponds to the work of my PhD and is
under the additional assumption of analyticity of the conformal structure. The second
proof, a year later, extended the result to the general smooth category. It needed to
overcome a significant difficulty compared to the first analytic proof: a major advantage
of working with rigid real-analytic structures is that certain general results of Gromov on
their local automorphisms become much stronger than in the C∞ case, and as explained
below, it seems that Gromov’s results do not fit well with smooth, non-volume preserving
actions of Lie groups. Recently, Frances made an intensive use in [Fra20] of methods
related to Frobenius’ theorem (see below) for smooth isometric actions of discrete groups
on closed Lorentzian 3-manifolds, but again, in his context, the invariant volume is
crucial.

Proof of Theorem A in the real-analytic setting ([Pec17])

This approach is similar to the proof of Gromov’s centralizer theorem (see for instance
[CQB03]), a key step in the proof of Gromov’s representation of the fundamental group,
see Theorem 5.2 below. In the context of a volume preserving action of a non-compact
simple Lie group G preserving a rigid analytic geometric structure on a compact manifold
M , the centralizer theorem guarantees the existence, for Lebesgue-almost every x ∈M , of
a Lie algebra h of local Killing vector fields defined on a neighborhood U of x, centralizing
every vector field of g, and such that Tx(G.x) ⊂ {Xx, X ∈ h}. Typically, if M = G/Γ
and the structure is the pseudo-Riemannian metric defined by the Killing form, then G
acts locally on the right on M , in the sense that left-invariant vector fields of G define
a Lie algebra of local Killing vector fields at the neighborhood of every point, which
centralizes the Lie algebra of (globally defined) right-invariant vector fields.

The main idea of the analytic proof of Theorem A is that the technical tool used
for exhibiting this “new” Lie algebra of local symmetries works for any rigid geometric
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structure, and that it would probably yield additional dynamical information to the G-
action. The difference in this conformal context is the lack of a G-invariant volume, or
even of a G-invariant finite measure, and classical proofs of Gromov’s centralizer theorem
weren’t adaptable. The proof was reduced to actions of Lie group locally isomorphic to
SL2(R) by Proposition 3.2, so let G = SL2(R) to simplify.

The main ingredient is the so-called “Frobenius’ theorem”, dealing with the question
of local integration of infinitesimal isometries (§1. of [Gro88], see also [Ben97]). Melnick
proved a version for Cartan geometries of this theorem in the analytic case (see Section
5.2.2 below for more details). Let π : G → M denote the Cartan bundle associated
to the analytic conformal structure [g]. Theorem 3.11 of [Mel11] gives the existence of
an equivariant map φ : G → V , where V is some vector space with an action of the
structural group, such that for any b ∈ G and u ∈ TbG, u.φ(b) = 0 if and only if there
exists a local Killing vector field X of G defined near b and such that X(b) = u. By
definition, this vector field projects to a local conformal vector field X defined near π(b),
and is (theoretically but not explicitly) completely determined by X(b), which is in some
sense its 2-jet at π(b).

The strategy, first used by Melnick in her proof of Gromov’s centralizer theorem for
Cartan geometries in [Mel11], was to modify Bader-Frances-Melnick’s proof of Zimmer’s
embedding theorem for Cartan geometries [BFM09], and include the map φ in their
machinery. Considering S < G the affine group, and a finite S-invariant measure µ onM ,
Furstenberg’s generalization of Borel’s density theorem [Fur76] implies the existence, at
some point b projecting into the support of µ, of a tangent direction u ∈ TbG annihilating
the map φ, and provided also algebraic information on ωb(u) ∈ so(2, n), where ω is the
Cartan connection.

If the measure is chosen to be supported in a special S-invariant compact subset,
the outcome was a local conformal vector field X, vanishing at x = π(b), which is
locally contracting, and whose flow is defined for all positive times and conjugate to
diag(1, e−t, . . . , e−t, e−2t). This local conformal vector fields is not contained in the ini-
tial SL2(R)-action, and vanishing of the Weyl tensor follows from considering both its
dynamics and the original action of SL2(R).

Proof of Theorem A in the general case ([Pec18])

The conclusions of Frobenius’ theorem are true only over an open-dense subset for a
smooth, rigid structure defined on a compact manifold (an elementary proof for Cartan
geometries in the smooth case is performed in [Pec16]). This subset is in fact proved to
be the whole manifold if the structure is assumed to be analytic. The main advantage of
working in the real-analytic case was this specific point.

Removing this exceptional set with empty interior makes a big difference, especially
for actions which do not preserve a volume. Their orbits often accumulate to a singular
locus for the action (e.g. a low-dimensional closed orbit or something more complicated).
So, if Frobenius’ theorem does not work in some closed subset F ⊂M with empty interior,
then it could unfortunately be that all G-orbits accumulate to F , a real difficulty for the
dynamical approached which I used, since every finite S-invariant measure could be
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supported in F . If a measure with non-empty interior support was invariant, then the
methods would extend but this is almost assuming the action inessential.

So, it seemed necessary to find a different angle to remove the analyticity assumption.
Let G still denote SL2(R). By Proposition 3.2, it follows that there always exist orbits
of dimension 1 or 2. Technical works, combined with Frances-Melnick results [FM13]
on normal forms of conformal vector fields, gave conformal flatness of the neighborhood
of any 1-dimensional orbit. The main problem, where Frobenius theorem was used in
the analytic case, was to prove that if the closure of a 2-dimensional orbit G.x does not
contain fixed points nor 1-dimensional orbits, then for some point y ∈ G.x, G.y is a
closed, 2-dimensional degenerate orbit diffeomorphic to a 2-torus.

Considering the action of a hyperbolic one-parameter subgroup {ht} < G, this re-
duced to proving that the corresponding conformal flow has a periodic orbit in some
compact invariant subsets where it has no singularity. After that, the first return map
ht0 played the role of the local conformal vector field in the analytic proof.

The technical point to get the existence of a closed orbit of ht was to show that for an
ergodic measure supported in the compact subset in question, all its Lyapunov exponents
are non-zero and with the same sign, thanks to the special form of its conformal distortion.
Pesin’s local stable manifold (see Theorem 4.5) is then a small piece of hypersurface,
transverse to the direction of the flow. Using Poincaré’s recurrence theorem, periodicity
follows from a standard fixed point result in the stable manifold.

3.3 Extensions to higher signatures

Corollary 2 raises the general question of classification of semi-simple Lie group actions
on compact pseudo-Riemannian manifolds. For a closed conformal structure (M, [g]) of
signature (p, q), with dimM > 3, if G is a semi-simple Lie group without compact factor
acting conformally on M , then rkRG 6 min(p, q) + 1, and that if equality holds then M
is a quotient of the universal cover of Einp,q by a discrete subgroup of conformal maps
acting freely properly discontinuously, and in particular G is locally isomorphic to a Lie
subgroup of SO(p + 1, q + 1). For G simple, this was proved in [BN02] (the geometric
conclusion under a minimality assumption on the action) and [FZ05] (which removed the
assumption). The semi-simple case follows from Theorem 1.5 of [BFM09].

Even though a conformal pseudo-Riemannian structure is rigid, assuming the exis-
tence of an essential non-compact simple Lie group of conformal transformations is not
necessarily enough to force the geometry to be even locally equivalent to the model space
Einp,q, as the following example given in [Fra15] shows.

Example 6. The metric dx1dx2 + dx3dx4 + x2
3dx2

1 + gRp−2,q−2 on Rp+q is conformally in-
variant under any matrix of the form ϕλ = diag(e−α+2β, e3α, e2α−β, e3β, eα+β, . . . , eα+β),
and for any choice of λ = (α, β) such that α < β < α/2 < 0, the group 〈ϕλ〉 acts properly
discontinuoulsy on Rp+q \ {0}, yielding a compact conformal structure Mλ, diffeomor-
phic to S1×Sp+q−1. This structure is non-conformally flat. Any diffeomorphism of Rp+q

fixing the origin, which is conformal with respect to the above metric and normalizes ϕλ
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descends to a conformal transformation of Mλ. In particular, O(p− 2, q− 2) acts confor-
mally on Mλ. Moreover, if the action was inessential, by Proposition 3.1, then it would
be locally free over an open-dense subset of M , which is not the case here, proving that
this is an essential conformal action of O(p − 2, q − 2) on a compact, non-conformally
flat, real-analytic pseudo-Riemannian manifold of signature (p, q).

Hence, there are quite large orthogonal groups (whose rank can go up to the maximal
rank minus 3) which preserve a whole family of non-conformally flat compact structures
of a given signature, and this seems to indicate that a general understanding of conformal
actions of semi-simple Lie groups is out of reach.

3.3.1 Minimal metric index

Nonetheless, another natural approach is to determine, given a semi-simple Lie group
without compact factor G (or any group in general), what is the minimal metric index
kG of a compact conformal structure on which G can act non-trivially. By metric index,
we mean the integer min(p, q) where (p, q) denotes the signature of the metric, hence the
dimension of its maximal isotropic subspaces. We note first that the adjoint represen-
tation of G always yields a conformal action of G on Einp,q, where (p + 1, q + 1) is the
signature of the Killing form. Hence, kG 6 min(dimK,dimG − dimK) − 1, where K
denotes a maximal compact subgroup of G.

From this perspective, the results of [BN02, FZ05] mean that for a semi-simple Lie
group G of real-rank r, the minimal metric index kG is greater than or equal to r−1, and
that when equality holds, the manifold is some quotient of Ẽin

p,q
with min(p, q) = r−1.

In particular, if G is not locally isomorphic to a Lie subgroup of some O(r, s) with s >
r, then kG > r−1 and it is interesting to determine this value. The adjoint representation
gives an easily determined upper bound for kG, and more generally, kG 6 k0

G, where

k0
G = min{k > 0 | ∃` > k, ∃ρ : g ↪→ so(k + 1, `+ 1)}.

Comparably to Zimmer’s conjectures, we can ask whether or not this inequality can be
strict:

Question 3. Does there exist a compact conformal structure (M, [g]) of signature (p, q),
with min(p, q) < k0

G, on which G acts conformally, with discrete kernel?

Expectedly, the answer should be no, i.e. kG = k0
G. If it turns out to be the case, the

next question is naturally: what can be said on the geometry of a conformal structure
(M, [g]) of optimal metric index kG on which G acts conformally? Is it necessarily, up to
finite cover, conformal to some Einp,q?

In any event, if non-homogeneous, the orbit structure of the G-action on M would
certainly be interesting to analyze. In particular, it follows from Zimmer’s cocycle super-
rigidity that G cannot preserve any finite measure on M (recall that min(p, q) = kG).
Therefore, considering a minimal compact G-invariant subset, [NZ02] can provide the
existence of a non-trivial measurable projective factor.
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I started investigating this question in [Pec19], where it is addressed for rank 1 simple
Lie groups, somehow the opposite situation of [BN02, FZ05].

For G = SO(1, k), k > 2, we of course have kG = 0 since it acts on the Möbius
sphere. For G = SU(1, k), k > 2, we have kG = 1 = k0

G since SU(1, k) ↪→ SO(2, 2k) and
by Ferrand-Obata-Schoen’s theorem, it cannot act conformally on a closed Riemannian
manifold. For Sp(1, k) and F4(−20), the problem was less clear.

Theorem B. Let (Mn, [g]) be a closed pseudo-Riemannian manifold of signature (p, q),
with n > 3. Suppose that there exists ρ : Sp(1, k) → Conf(M, [g]) a conformal action
with discrete kernel. Then,

1. min(p, q) > 3 ;

2. If min(p, q) = 3, then (M, [g]) is conformally flat. Moreover, any minimal, compact,
G-invariant subset of M is a compact orbit conformally equivalent to Ein3,3k−1, on
which Sp(1, k) acts via a Fefferman fibration.

Remark 10. There is a natural way to embed sp(1, k) ↪→ so(4, 4k), which then produces
a transitive action of Sp(1, k) on Ein3,4k−3. This remarkable action is an analogue of
the SU(1, n)-action on Ein1,2n−1, seen as the Fefferman fibration over the CR sphere
S2n−1. Here, we have a principal fibration Sp(1) → Ein3,4k−3 → Sp(1, k)/P over the
boundary at infinity of the quaternionic hyperbolic space, and the Sp(1, k)-action is by
bundle automorphisms.

So, under a minimality assumption, this proves existence of a smooth projective factor
M → G/P (to be compared with Theorem 3.6).

Theorem C. Let (Mn, [g]) be a closed pseudo-Riemannian manifold of signature (p, q),
with n > 3. Suppose that there exists ρ : F4(−20) → Conf(M, [g]) a conformal action with
discrete kernel. Then, min(p, q) > 9.

Remark 11. There exists a realization of the Lie algebra f4(−20) in so(10, 16), hence a
locally faithful action of F4(−20) on Ein9,15.

The proofs in these theorems, as explained in Remark 9, build on [BN02]. Particularly
encouraging is a comparison with Theorem 1 of [BN02]. It states that there exists a point
x at which TxM contains a totally isotropic of dimension rkRG−1. The rest of the proof
essentially uses maximality of this isotropic subspace when rkRG = min(p, q) + 1.

In [Pec19], for G of real-rank 1 and restricted-root system of type (BC)1 (i.e.
{±α,±2α}), it is proved that a point x ∈M , TxM contains a totally isotropic subspace of
dimension dim g2α

8, which readily gives the lower bound min(p, q) > dim g2α. This was
optimal, except for F4(−20). It was a bit curious since this dimension relates naturally
to the division algebra (complex, quaternionic, octonionic) over which the hyperbolic
space admitting G/P as boundary is defined, so looked as very good candidate. But
apparently, no analogue of the Fefferman fibration exist for the octonionic case.Technical

8i.e. of dimension 1 for SU(1, k), 3 for Sp(1, k) and 7 for F4(−20).
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works at the Lie algebra level allowed to prove that the metric index has to be in fact at
least 9, but the geometry of the critical case is still mysterious to me.

The next step is of course to continue this investigation for every semi-simple Lie
group, and obtain an understanding similar to Corollary 1. For these types of Lie groups,
we have seen that the initial control on the rank can be promoted to a control on the
dimension of a certain restricted root space g2α. A more general relation seems plausible
and very interesting.

3.4 The solvable radical of the conformal group of closed
Lorentzian manifolds

The automorphisms group of a rigid geometric structure has a natural Lie group struc-
ture, and a standard problem is to determine, conversely, which Lie group can arise this
way. Describing the identity component of these groups is already a challenging problem
in itself, and seems more tractable in a first attempt.

The initial motivations from super-rigidity theorems naturally lead to consider semi-
simple Lie group actions, hence to understand the “semi-simple part” of the identity
component of these automorphisms groups. It is nevertheless tempting to consider the
“solvable part” of the automorphisms groups of geometric structures, and see if similar
phenomenon occur.

3.4.1 Brief review

Isometry groups of closed Lorentzian manifolds were originally seen as very suitable
candidates for such program. In [Zim86c], it is proved that for (M, g) a closed Lorentzian
manifolds, the nilradical of Isom(M, g) is at most 2-step nilpotent. Further works led
ultimately to the full classification in [AS97a, AS97b, Zeg98a], up to local isomorphism,
of the identity component Isom(M, g) of a general compact Lorentzian manifold (M, g).
This was recalled in Section 3.1.4.

Let G be the identity component of Isom(M, g). As any Lie algebra, its Lie algebra
decomposes into a semi-direct product g = sn r where r is the solvable radical of g and s
is a semi-simple Lie subalgebra, i.e. a section of g→ g/r. This is the Levi decomposition
of g. Then, the structure results of Adams-Stuck and Zeghib read:

• The semi-direct product is direct.

• If s is non-compact9, then s ' sl2(R)⊕ k where k is semi-simple of compact type,
and r is abelian.

• If r is non-abelian, then r ' heis(2d+ 1)⊕Rk or r ' (Rn heis(2d+ 1))⊕Rk.

9This shortcut means that any Lie group, for instance Aut(s), admitting s as a Lie algebra is non-
compact, or equivalently that the Killing form of s is not negative definite.
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It follows from their work that if a solvable Lie group G acts isometrically on a closed
Lorentzian manifold, then g is isomorphic to a direct product Rk⊕ g0, where g0 is either
an Heisenberg Lie algebra heis(2d+ 1), an oscillator Lie algebra Rn heis(2d+ 1) or the
affine Lie algebra of the line aff(R).

Concerning the last case of the affine algebra, in [AS97b] and [Zeg98a], the authors
established the following remarkable rigidity result:

Theorem 3.9. Suppose that the affine Lie group Aff(R) acts by isometries on a closed
Lorentzian manifold (M, g). Then, its action extends to an S̃L2(R) action, up to a
central factor, i.e. there exists a locally faithful, isometric action of S̃L2(R) and an iso-
metric action of R (possibly trivial) such that the initial action comes from an embedding
Aff(R) ↪→ S̃L2(R)×R.

This result gives an echo to a theorem of Ghys [Ghy85] asserting that if a closed
3-manifold admits a (say smooth) locally-free action of Aff(R), preserving a C0 volume-
form, then the action is smoothly conjugate to an homogeneous action of Aff(R) on
G/Γ, where G is either S̃L2(R) or SOL. In [Asa12], Asaoka classified locally-free actions
of Aff(R) and obtained as corollary that the invariant volume cannot be removed in
Ghys’ result, as there exist non-homogeneous, locally free actions actions of Aff(R). By
analogy, it can be asked what remains from Theorem 3.9 for conformal essential action
of the affine group, which do not preserve a volume form neither.

For higher signatures, a wide range of possibilities are open for solvable Lie group
actions and it seems quite difficult to achieve a description as sharp as in the Lorentzian
case. Nonetheless, several advances have been established in the homogeneous case, for
transitive isometric actions of solvable Lie groups on pseudo-Riemannian manifolds of
finite volume, see [BGZ19] and references therein.

3.4.2 Embedding result for the radical

Let (M, [g]) be a compact Lorentzian structure. Similarly to what has been exposed
above, a strategy to understand Conf(M, [g]) is to consider a Levi decomposition sn r of
its Lie algebra, classify the possibilities for s and r, and finally reconstruct the semi-direct
product.

Corollary 2 classifies the possible Levi factors. For the radical R of Conf(M, [g])0, the
following result for general solvable Lie group actions, combined with Theorem E below,
gives an optimal obstruction.

Theorem D ([Pec23]). Let (Mn, [g]), n > 3, be a compact manifold endowed with
a Lorentzian conformal structure, and let R be a connected, solvable Lie subgroup of
Conf(M, [g]). If R is essential, then there exists a Lie algebra embedding r ↪→ so(2, n).

Recall that PO(2, n) = Conf(Ein1,n−1), so every Lie subgroup of PO(2, n) acts faith-
fully and conformally on at least one closed Lorentzian n-manifold. This result supports
Conjecture 1 because if true, the latter would imply theorem as an immediate conse-
quence (just as Corollary 2 is a consequence of Theorem A).
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Applying Theorem D to the solvable radical R of Conf(M, [g])0, and Theorem E
below, we conclude that for any closed Lorentzian manifold (M, g), if Conf(M, [g])0 is
essential, then, up to local isomorphism, it is a semi-direct product of a compact semi-
simple Lie group with an immersed subgroup of O(2, n).

Any semi-simple Lie subgroup of O(2, n) can be realized, up to local isomorphism,
as the conformal group of some quotient Γ \ Ẽin

1,n−1
. This raises the following problem

(to be compared with Theorem 3.9).

Question 4. Which solvable Lie subgroups of O(2, n) can be realized as the radical of
the conformal group of some closed Lorentzian n-manifold?

For instance, for any k 6 n − 2, the Heisenberg group H2k+1 of dimension 2k + 1
embeds in O(2, n), but to my knowledge, it is not clear if we can construct compact
Lorentzian manifolds with a conformal group of the form K nH2k+1 for some compact
semi-simple Lie group K.

3.4.3 Criteria for essentiality

Question 2 can be addressed in the present situation of solvable Lie group actions. Recall
that it asked, given two conformal groups H1 < H2, if the existence of an H1-invariant
metric in the conformal class implies that of an H2-invariant metric.

Theorem E ([Pec23]). Let (M, g) be a closed Lorentzian manifold and let R be a solvable
Lie subgroup of Conf(M, [g]). Let N be the nilradical of R. If N is inessential, then so
is R.

Furthermore, when N is non-abelian, then its essentiality is characterized by that of
Nk, the last non-zero term of its lower-central series.

Corollary 3 ([Pec23]). Let G the identity component of Conf(M, [g]). Let R / G be its
solvable radical and let N / R be the nilradical. If G/R is compact, then G is essential if
and only if N is essential.

Lorentzian manifolds for which G/R is non-compact and G is essential are confor-
mally flat by [Pec18]. The fact that their holonomy centralizes a non-compact simple
Lie subgroup of PO(2, n) = Conf(Ein1,n−1) seems to be an indication that they are
classifiable up to conformal equivalence, justifying our assumption.

3.4.4 Nilpotent Lie group actions

By Corollary 3, if the identity component Conf(M, [g])0 is essential and has compact
Levi factor, then some nilpotent subgroup of Conf(M, [g])0 is also essential.

Frances and Melnick proved in [FM10] that if a nilpotent Lie groupN , with nilpotence
degree k, acts conformally on a closed pseudo-Riemannian manifold of signature (p, q),
then k 6 2 min(p, q) + 1 and that if equality holds, the manifold is a quotient of the
universal cover of Einp,q by a cyclic group. Apart from this result, to the best of my
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knowledge, most results about solvable Lie group actions in pseudo-Riemannian geometry
concern isometric actions and not much is known about their conformal essential actions,
even in Lorentzian signature (see nonetheless [BDRZ23] in the general homogeneous case
and the announced results therein).

The last result from [Pec23] I would like to cite deals, in Lorentzian signature, with
nilpotent Lie groups with no restriction on the nilpotence degree. The convention used
below is that for a nilpotent Lie algebra n, its nilpotence degree is the smallest integer
d > 1 such that nd = {0}, where we denote by {ni}i>1 the lower central series of n.

Theorem F. Let H be a connected nilpotent real Lie group of nilpotence degree k + 1
and let (Mn, g), n > 3, be a compact Lorentzian manifold. Let H act locally faithfully by
conformal transformations of M . Then, we have the following.

1. Assume that H is abelian.

(a) Then H acts locally freely on an open-dense subset of M , hence dimH 6 n.

(b) If H is essential, then it admits either a fixed point, or an isotropic 1-
dimensional orbit.

(c) If dimH = n or H ' Rn−1 and if H acts faithfully and essentially, then an
open subset of M is conformally flat.

2. If H is non-abelian, then it is inessential if and only if Hk acts locally freely.

3. If H is non-abelian and essential, then an open subset of M is conformally flat.
Precisely, h has nilpotence degree k 6 3, dim hk = 1 and if X ∈ hk \ {0}, then X
has a singularity of order 2.

Remark 12. By [FM10], the result is new for k = 1 or 2. The proof is independent.

Note that we recover inessentiality criteria in terms of discreteness of stabilizers,
similarly to what was observed for SL2(R)-actions, except for actions of R. For a simple
reason:

Example 7. Consider the 3-dimensional Hopf manifold (M, [g]) = 〈2 id〉\(R1,2\{0}). Let
{ut} be a unipotent one-parameter subgroup of O(1, 2) and let {kt} be the one induced
by the homothetic flow on R1,2 (it factorizes into an S1-action). Then, the commutative
product {utkt} is an essential conformal flow with no singularity.

For most solvable Lie groups, acting locally freely on a compact Lorentzian conformal
structure is a sufficient condition for inessentiality (combine Theorem E and F). The main
remaining case is for actions of the affine group.

Question 5. Suppose that the affine group Aff(R) acts locally freely and conformally on
a closed Lorentzian manifold. Is the action inessential?

Remark that if yes, then it would extend (up to a central factor) to an action of
S̃L2(R) by Theorem 3.9.
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Concerning Conjecture 1, Frances and Melnick recently proved in [FM21] that a
compact, real-analytic, Lorentzian 3-manifold such that Conf(M, [g])0 is essential is con-
formally flat. In particular, analyticity reduces the proof to conformal flatness of an open
subset.

Under the same analyticity assumption, we deduce from what precedes the following
in arbitrary dimension.

Corollary 4. Let (M, g) be a closed real-analytic Lorentzian manifold and suppose that
G = Conf(M, [g])0 is essential. If the nilradical N of G is non-abelian, then (M, g) is
conformally flat.

Somehow, this suggests that Conjecture 1 is probably reducible to the abelian case,
i.e. that either (M, [g]) is conformally flat, or its conformal group is locally isomorphic
to a semi-direct product KnRk, with K a compact group. The main problem would be
to prove that if Conf(M, [g]) contains an essential subgroup isomorphic to a semi-direct
product RnϕR

k, with ϕ(R) non relatively compact in GL(Rk), then (M, [g]) is confor-
mally flat. If the Jordan decomposition of ϕ(R) has non-trivial unipotent component,
then known methods apply. So, we are essentially left with R-split semi-direct products,
with, once more, the affine group as the ultimate case to handle.
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Chapter 4

Actions of lattices and the Zimmer
program

4.1 A brief history of the Zimmer program

4.1.1 Cocycle super-rigidity and its measurable conclusions

Zimmer’s conjectures emerged in the early 1980’s and were initially mainly motivated,
and supported, by cocycle super-rigidity. This super-rigidity result itself arose when
Zimmer worked on the problem of measurable orbit equivalence of semi-simple Lie groups,
which also can be interpreted in terms of cocycles [Zim80]. Contrarily to amenable group
actions which were proven to be all orbit equivalent shortly before (by results of Dye and
Connes-Feldman-Weiss), super-rigidity of cocycles proved that two ergodic, probability
measure preserving, free actions of higher-rank semisimple Lie groups are orbit equivalent
if and only if the groups are isomorphic and the actions automorphically conjugate.

As recalled in Section 3.1.1, cocycle super-rigidity can be viewed as a structure result
for semi-simple Lie group actions on principal fiber bundles. It extends to probability
measure preserving actions of lattices via a standard procedure called induction (see
Definition 4.2 below), and modulo ergodic assumptions on the action, strong dynamical
information are derived for the initial action of the lattice. The introduction of [FM03]
gives an account of the different variations by various people (including Lewis, Lifchitz,
Margulis, Stuck, Venkatarama and Zimmer) around super-rigidity which preceded their
generalization. The version of Fisher-Margulis has the advantage of removing the as-
sumption on the algebraic hull of the action, the price to pay being to have a conclusion
modulo compact-valued cocycles.

As before, we formulate below a restricted version of cocycle super-rigidity to the real
setting. Let (X,µ) be a probability space and Γ y X be a probability measure preserving
action. Let H be a real algebraic group and let c : Γ×X → H be a measurable cocycle.
An integrability condition is needed in the result, in order to apply Oseledet’s theorem.
As in the definition of Lyapunov exponents, it is automatic if c is obtained from a C1

action of Γ on a compact manifold.

53
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Definition 4.1. A cocycle c : Γ × X → H is said to be integrable if for any finite set
S ⊂ Γ, the function {x ∈ X 7→ supγ∈S ‖c(γ, x)‖} is in L1(X,µ).

Theorem 4.1 ([FM03]). Let G be a semi-simple Lie group without compact factor, finite
center, and real-rank at least 2. Let Γ < G be an irreducible lattice and let H be a real
algebraic group. Let (X,µ) be a probability space and Γ y X an ergodic, probability
measure preserving action. Let c : Γ×X → H be an integrable cocycle.

Then, there exists a Lie group homomorphism ρ : G→ H, a compact subgroup K ⊂ H
which centralizes ρ(G), and a K-valued cocycle cK : Γ×X → H such that for µ-almost
every x ∈ X and for all γ ∈ Γ,

c(γ, x) = ρ(γ)cK(γ, x).

Theorem 4.1 implies that for an action of Γ on an H-principal bundle P over a
probability measure preserving smooth action of Γ on (M,µ), for say M a compact
manifold, there exists a measurable global section σ : M → P , and ρ, K, cK as in the
theorem, such that γ.σ(x) = σ(γ.x).ρ(γ)cK(γ, x) for all γ ∈ Γ and for µ-almost every
x ∈ X.

Recall that for a differentiable action of Γ on an n-manifoldM , any measurable frame
field σ : M → F1(M) defines a cocycle c : Γ×M → GLn(R) called the derivative cocycle.
More generally, geometric actions of Γ on M are by definition those which can be lifted
to some action by principal bundle automorphisms, and similarly, any global framing of
the principal bundle defining the geometry gives rise to an H-valued cocycle, for H the
structural group.

Despite of the apparent “flexibility” of its measurable conclusions, for various dif-
ferentiable actions of Γ, super-rigidity of cocycles has several “rigid applications”, all of
them saying that dynamical properties of the action of Γ are ruled by a certain linear
representation of the Lie algebra g.

Let us quote:

Corollary 5. Let Γ y (M,µ) be a smooth, ergodic, probability measure preserving action
of Γ on a compact n-manifold M .

Then, there exists a Lie group homomorphism ρ : G̃ → GLn(R) such that for every
γ ∈ Γ, the Lyapunov spectrum of γ, seen as a diffeomorphism of M , is {log |λk|, k =
1 . . . n}, where λ1, . . . , λn are the complex eigenvalues of ρ(γ̃) with multiplicities, for any
γ̃ projecting to γ.

Interestingly, if G is large compare to dimM , in the sense that every Lie group
homomorphism G̃ → GLn(R) is trivial, then for every Γ-invariant probability measure
µ, the Lyapunov exponents of all elements of Γ are zero. In fact:

Corollary 6. Suppose that Γ acts on an H-structure P →M and preserves a probability
measure µ on the base. If g does not embed into h, then there exists a Γ-invariant,
measurable, Riemannian metric on M .
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For instance, for Γ = SLn(Z), any probability measure preserving C1-action of Γ on
a compact (n − 1)-manifold automatically preserves a measurable Riemannian metric,
because there is no non-trivial homomorphism sln(R)→ gln−1(R).

Another interesting observation, with a similar flavor, follows from [Zim90] for co-
compact Γ, later generalized to the non-uniform case, which we do not detail here but
says essentially that the algebraic hull of a lattice is reductive with compact center (this
relates with Fisher-Margulis’ version). Considering the action of Γ on the bundle of uni-
modular 2-frames, whose structural group is of the form SLn(R)nU , with U a unipotent
group, it follows:

Corollary 7. Suppose that Γ acts smoothly on a closed n-manifold M and preserves a
volume form ω. Then there exists a Γ-invariant measurable connection.

Recall that a linear connection on a manifold M is an H-structure of order 2 (see
Section 2.2.1), hence a section of a certain fiber bundle overM . A measurable connection
is then a measurable section in this point of view.

4.1.2 Zimmer’s conjectures

Somehow, the main purpose of the Zimmer program is to upgrade the conclusions that
can be derived from his machinery from measurable to differentiable. For instance, if it is
proven that the Γ-invariant Riemannian metric in Corollary 6 is in fact regular enough,
then it means that the action α : Γ → Diff(Mn) has in fact range into a compact Lie
subgroup of dimension at most n(n+1)

2 by Myers-Steenrod Theorem, from which finiteness
of the action follows by Margulis’ super-rigidity.

The idea of starting with a measurable object produced by a group action and prove
that it is in fact much more regular is at the core of many proofs of rigidity results, and
gives more motivation to Zimmer’s conjectures. The proof of Margulis’ super-rigidity
notably starts with the construction a Γ-equivariant measurable map from the Fursten-
berg boundary to some projective space on which Γ acts, and use it to build the smooth
extension of the homomorphism Γ→ H.

As originally formulated (see [Zim87a, Zim86a]), the conjectures dealt with volume
preserving actions of lattices, by analogy with the homogeneous setting: G/Γ with the
Haar measure is replaced by a (M,ω) with M compact and ω a volume density.

Conjecture 2. Let Γ be a lattice in a semi-simple Lie group G with finite center and
all of whose simple factors are of real-rank at least 2. Let M be a compact manifold.
Let M be a compact n-manifold and let P → M be an H-structure of ordrer 1, with
H < GLn(R) algebraic. Suppose that Γ acts on M by preserving both a volume density
and the H-structure.

Then,

• Either there exists a Lie algebra embedding g→ h ;

• Or Γ preserves a smooth Riemannian metric on M .
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As a special case, for G = SLd(R) and H = SLn(R), the condition g ↪→ h means
d 6 n, so the conjecture sounds more concrete.

Conjecture 3. Let Γ be a lattice in SLd(R) with d > 3. Let M be a compact n-manifold
and ω a volume form. If d > n, then any volume preserving action Γ → Diffω(M) has
finite image.

Remark 13. For Γ = SLn(Z), the action on the n-torus Rn/Zn has infinite image and
preserves the Euclidean volume.

Remark 14. When g does not embed into h, Conjecture 2 first would give that the action
has range into Isom(M, g) < Diff(M) for some Riemannian metric g. The latter is
compact and has dimension at most n(n+ 1)/2 by Myers-Steenrod theorem, where n =
dimM . In some cases, Margulis’ theorem implies that furthermore any homomorphism
Γ into such compact groups must have finite image, explaining the stronger conclusion
in Conjecture 3.

For other groups than SLd(R), the idea is the same: the conjecture predicts that for
every semi-simple Lie group G, there exists an explicitly determined bound dvol(G) such
that for any compact manifold M with dimM < dvol(G), any volume-preserving action
Γ → Diffω(M) transits through a compact Lie group action (see for instance §4.5. of
[Fis11] or §2.4. of [Can17] for details).

4.1.3 Extension of the conjecture by Farb and Shalen

In [FS99], Farb and Shalen obtained partial results for real-analytic actions of some
higher-rank lattices on surfaces and some closed 3-manifolds. Instead of applying ar-
guments from ergodic theory, they rather used topological considerations, including for
instance Lefschetz fixed-point theorem. Hence, the invariant volume form was no longer
a crucial ingredient, and it led them to extend Conjecture 2.

Their conjecture predicted that for another explicitly computable1 integer d(G) <
dvol(G), for any compact manifold M with dimM < d(G), any smooth action Γ →
Diff(M) preserves a Riemannian metric.

Although this was not conjectured by Zimmer, the literature refers to it also as
Zimmer’s non-volume preserving conjecture. In the case G = SLn(R), d(G) = n− 1 and
the conjecture is that there does not exist a compact manifold of dimension 6 n− 2 on
which a lattice Γ < G acts with infinite image. Note that this is sharp, since the whole
SLn(R) acts on RPn−1.

4.1.4 Advances on the conjectures and related problems until 2016

A first important result which supported the volume-preserving conjecture was this gen-
eral geometric result proved in [Zim86c].

1Except for g = so∗(2n), d(G) = min{dimG/P, P strict parabolic subgroup}.
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Theorem 4.2. Let M be a closed manifold endowed with a finite type H-structure π :
P →M , with H an algebraic subgroup of Dr for some r > 1. Let G be a real semi-simple
Lie group without compact factor, with finite center and rkRG > 2. Let Γ be a lattice of
G.

Let ρ : Γ→ Aut(P ) be an action of Γ by automorphisms of the H-structure. Suppose
that the Γ preserves a volume density on M . Then,

• either there is a non-trivial homomorphism g→ h ;

• or ρ(Γ) has compact closure in Aut(P ).

As a consequence, it follows that if Γ = SLm(Z), m > 3, and if Γ acts differentiably
on a closed n-manifoldM , by preserving both an affine connection and a volume density,
and if m > n, then the action factorizes through a finite group action, i.e. is trivial up
to passing to a finite index subgroup ( [Zim86b]).

It also implies that if Γ acts isometrically, with unbounded image, on a closed pseudo-
Riemannian manifold (M, g) of signature (p, q), then g ↪→ so(p, q). As a consequence,
for any closed Lorentzian manifold (Mn, g), any isometric action SL3(Z) → Isom(M, g)
has finite image, independently of n.

Several advances were obtained in the 1990’s to prove inexistence of Γ-actions in
dimension 1 and 2. In [Wit94], Witte proved that any action by homeomorphism
Γ→ Homeo(S1) has finite image, but under the restrictive assumption rkQ Γ > 2. After
proving that the action has a fixed point, the statement was equivalent to prove non-left-
orderability of Γ. Later, Ghys [Ghy99], and independently Burger and Monod [BM02],
extended Witte’s result to any irreducible lattice Γ, provided that the action is by C1 dif-
feomorphisms. Ghys approach relies essentially on Thurston’s stability theorem, whereas
Burger-Monod’s proof is based on bounded cohomology. As already mentioned, Farb and
Shalen [FS99] obtained inexistence results for “2-big” lattices actions by real-analytic dif-
feomorphisms on surfaces and certain cases of analytic actions on homology 3-spheres.
In [FH03], Franks and Handel obtained a proof of the volume-preserving Conjecture 3
in the case of SL3(Z) (and other discrete almost simple groups) acting analytically on
closed oriented surfaces.

4.1.5 Katok-Lewis examples and invariant geometric structures

If Zimmer’s conjectures are true, then it is natural to consider actions at the critical
dimension. In the case Γ = SLn(Z), the action on the n-torus has optimal dimension
among volume-preserving actions. This action is known to be locally rigid, as a special
case of [FM03]. However, there exist volume-preserving exotic actions of SLn(Z) on
closed n-manifold which are not homeomorphic to a torus. The first construction is due
to Katok-Lewis [KL96], later extended by Benveniste. It consists in blowing-up the origin
in Rn/Zn, which is an SLn(Z)-fixed point. Benveniste and Fisher [BF05] later observed
that these actions do not preserve any rigid geometric structure. More recently, Fisher
and Melnick [FM22] constructed new examples of exotic SLn(Z)-actions.
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However, they do preserve a rigid geometric structure(s) in the complement of the ex-
ceptional divisor in Katok-Lewis’ example, namely the flat connection. An open problem
is the following.

Question 6. Let SLn(Z) act on a closed n-manifold by volume-preserving diffeomor-
phisms. Does there exist an SLn(Z)-invariant rigid-geometric structure defined on an
open-dense subset? Similarly for any volume-preserving action of a higher-rank lattice at
the critical dimension.

Notably, this problem is supported by a topological version of cocycle super-rigidity
due to Feres and Labourie [FL98] (see also [Lab98] for the context).

In particular, this raises the question of understanding Γ-actions on (compact or
non-compact) manifold which preserve a finite volume and a rigid geometric structure.

Recall Corollary 7 which gives a measurable Γ-invariant connection. A natural prob-
lem which has been investigated in the volume preserving case was to assume this con-
nection to be smooth. Contributions of Zimmer, Feres, Goetze and finally Zeghib led to
the following geometric result.

Theorem 4.3 ([Zim86b, Fer92, Goe94, Zeg97]). Let n > 3 and Γ < SLn(R) be a lattice.
Suppose that Γ acts on a compact n-manifold M and preserves a linear connection ∇ and
a volume form ω. If the action is infinite, then Γ is a finite-index subgroup of SLn(Z),
and up to affine covering, the action is the linear action Γ y Tn.

Zeghib’s article goes a step further and also characterizes non-trivial actions in di-
mension n+ 1, as being of the form Tn × S1, with a trivial action on the second factor,
always up to a finite covering.

Theorem I below gives a non-unimodular version of this theorem, when the action
preserves a projective class of connections in dimension n− 1.

4.1.6 Recent advances on Zimmer’s conjectures

In a series of articles [BFH22, BFH20, BFH21], the first being prepublished in 2016,
Brown, Fisher and Hurtado made spectacular progress on both volume and non-volume
preserving conjectures. Their methods apply in all situations and give lower bounds on
the dimension of a compact manifold on which Γ acts with infinite image. These bounds
are the bounds announced by the conjecture in the non-volume preserving case and when
G is R-split. In particular, it proves Conjecture 3, and its non-volume preserving version,
in any dimension.

The methods of their articles build on several techniques. One is strong property
(T) of Lafforgue, which provides at the end existence of a Γ-invariant differentiable
Riemannian metric, essentially via a fixed-point argument in appropriate spaces of jets
of metrics. To apply this, they needed to prove that the Γ-action has sub-exponential
growth of derivatives, and for that they used recent results by Brown, Rodriguez-Hertz
and Wang [BRHW22] - also prepublished in 2016 - which guarantee the existence of finite
Γ-invariant measures in various dynamical configurations.
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This point strongly interested me for its possible applications to conformal geometry.
It is detailed in the next section.

Let us mention, to conclude this very quick and biased survey of the field, a recent
result by Deroin and Hurtado [DH20] which extends [Ghy99, BM02] to actions by home-
omorphisms, and relies on similar methods for constructing invariant measures on an
auxiliary compact space with a Γ-action , called the almost periodic space.

4.2 Recent tools from smooth ergodic theory

Let Γ be a lattice in a semi-simple Lie group G, with no compact factors and finite
center. Suppose that α : Γ → Diff(M) is a smooth action on a closed manifold M .
To α corresponds an associated fiber bundle Mα → G/Γ, whose total space is Mα =
(G ×M)/Γ, where Γ acts on the right via (g, x).γ = (gγ, γ−1.x), and whose projection
is the map induced by the projection on the first factor.

By construction, G acts on Mα via left translations on the first coordinate. This
action is smooth, locally free and fiber-preserving. Moreover, G-orbits are transverse to
the fibers, hence they define a flat, G-invariant connection on Mα.

Definition 4.2. Given a Γ-action α on a manifoldM , the fibrationMα → G/Γ is called
the suspension space of α and the G-action on Mα is called the induced action.

Some properties of the Γ-action on M are reflected in the induced G-action. Impor-
tantly:

Proposition 4.1 ([NZ99], Lem. 6.1). Let α be a Γ-action on a compact manifold M .
Then, Γ preserves a finite measure µ on M if and only if G preserves a finite measure ν
on Mα.

For the direct implication, given a Γ-invariant measure µ on M , we obtain a G-
invariant family of finite measures {µgΓ} on Mα such that µgΓ is supported on the fiber
of gΓ, for every gΓ ∈ G/Γ. Therefore, ν =

∫
G/Γ µgΓ dvol(gΓ) is finite andG-invariant. For

the converse, starting from a G-invariant finite measure ν onMα, ν can be desintegrated
along the fibration Mα → G/Γ and with respect to the Haar measure. The measures on
the fibers then yield a Γ-invariant measure on M , essentially because of the uniqueness
of the desintegration.

Also, Γ acts ergodically on M with respect to µ if and only if G acts ergodically on
Mα with respect to ν.

4.2.1 Lyapunov exponents and higher-rank Oseledets theorem

Let f : M → M be a smooth map of a manifold M , and suppose that f preserves a
finite ergodic measure µ. Oseledets’ Multiplicative Ergodic Theorem (see for instance
[Fil19, Boc, Wil17]), guarantees that if (log ‖dxf‖)+ ∈ L1(M,µ) and (log ‖dxf−1‖)+ ∈
L1(M,µ), then there exists a set Λ of full measure, measurable distributions {0} = E0 (
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E1 ( . . . ( Er = TxM defined over Λ and numbers χ1 < · · · < χr such that for all
1 6 k 6 r, and for all v ∈ Ek \ Ek−1, we have

1

n
log |dxfn.v| −−→

+∞
χk. (4.1)

For f ∈ Diff(M), combining the preceding result for f and f−1, the filtration becomes
a measurable splitting TM = E′1 ⊕ · · · ⊕E′r over Λ such that (4.1) holds for every x ∈ Λ
and v ∈ E′k(x) as n→ ±∞.

This result has a generalization when the probability measure preserving transforma-
tions or flows of vector fields come in commutative families, which gives a higher rank
version (see for instance [Hu93] or §3.6.1 of [BP07]). The result is a simultaneous Os-
eledets splitting of TM for which Lyapunov exponents vary linearly. We will apply in
fact the theorem to the restriction of the differential action to a subbundle of TM , so I
give the following formulation.

Theorem 4.4. Let M be a manifold on which a connected abelian group A ' Rk acts
differentiably, and let µ be an A-invariant, A-ergodic probability measure. Let E →M be
a vector bundle and suppose that the A-action lifts to an action by bundle automorphisms
of E. Suppose that for any compact subset K ⊂ A, the function x 7→ supa∈K | log(‖dxa‖)|
is µ-integrable.

Then, there exist:

1. a measurable set Λ ⊂M of µ-measure 1,

2. a finite set of linear forms χ1, . . . , χr ∈ a∗,

3. and a measurable, A-invariant splitting E = E1 ⊕ · · · ⊕ Er defined over Λ,

such that for any Riemannian norm ‖.‖ on E and for every x ∈ Λ and every v ∈
Ei(x) \ {0},

1

|X|
(log ‖eX .v‖ − χi(X)) −−−−−→

|X|→∞
X∈a

0,

and
1

|X|
(log |det Jacx(eX)| −

∑
16i6r

χi(X) dimEi(x)) −−−−−→
|X|→∞
X∈a

0,

where Jacx(eX) denotes the matrix of eX : E(x)→ E(eX .x) with respect to some bounded
measurable frame field of E.

Given a linear A-action on the vector bundle E, and a finite measure µ satisfying the
hypothesis of Theorem 4.4, we will call χ1, . . . , χr the Lyapunov functionals of µ.
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4.2.2 Pesin’s stable manifold theorem and Ledrappier-Young formula

Lyapunov exponents give “tangential” asymptotic estimates on the action of the diffeo-
morphism f . This information passes in fact locally to its action on the manifold, and
importantly relates to the metric entropy of the f -invariant measure.

Let f : M → M be a C1+α diffeomorphism of a compact manifold and let µ be
an ergodic f -invariant probability measure. Suppose that f has a negative Lyapunov
exponent and let χ1 < · · ·χi < 0 6 χi+1 < · · · < χr be the Lyapunov exponents of f .
Let Λ ⊂ M be the full measure subset where (4.1) holds. Equip M with an arbitrary
Riemannian metric and let d be the associated length distance.

I state below a light version of Pesin’s Stable Manifold Theorem. Important estimates
on the size of local stable manifolds, as well as a lower subexponential bound on their
decay along future f -orbits, are skipped and I only focus on what will be used later.
Many references contain proofs of this central result of differentiable dynamics, in its full
strength, among which [BP07] and [FHY83].

Theorem 4.5. Let ρ ∈]χi, 0[. Then, there exist a full measure subset Λρ ⊂ Λ, and
for every x ∈ Λρ, an embedded disc W loc,ρ

s (x) containing x, such that TxW
loc,ρ
s (x) =⊕

k6iEk(x) is the strongly stable subspace at x and a constant C(x) > 0 such that for
all y, z ∈W loc,ρ

s (x), and n > 0,

d(fn(y), fn(z)) 6 C(x)d(y, z)eρn. (4.2)

Moreover, in an a priori smaller disc at x, any point y such that d(fn(y), fn(x)) 6
Cd(y, x)eρn, for a certain constant C, in fact belongs to W loc,ρ

s (x).

Definition 4.3. For any x ∈ Λρ, the embedded disc W loc,ρ
s (x) is called the local stable

manifold of f at x.

Margulis-Ruelle inequality relates the metric entropy of a finite f -invariant measure
µ and its positive Lyapunov exponents and reads:

hµ(f) 6
∑
λk>0

λk dimEk(x). (4.3)

A major result measures the default of equality in Margulis-Ruelle’s inequality with the
Hausdorff dimension of the marginal measures obtained by desintegrating µ along unsta-
ble manifolds. It is Ledrappier-Young’s formula ([LY85a, LY85b]). It is a fundamental
tool in the proof of Theorem 4.6 from [BRHW22] and restated below.

4.2.3 A-invariant measures with maximal entropy

Consider a higher-rank uniform2 lattice Γ < G acting by, say C2, diffeomorphisms of a
compact manifold. Let π : Mα → G/Γ denote the suspension space of this action. Fix

2To avoid technicality, I use this restriction which makes the total space of the suspension compact,
so that we avoid various technical problems (e.g. the integrability condition in Oseledets’ theorem). But
no significant difficulty is hidden.
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A < G an R-split Cartan subgroup, let Σ ⊂ a∗ denote the restricted-roots of a and let
g = a⊕m⊕

⊕
λ∈Σ gλ be the corresponding restricted root space decomposition.

Recall that the orbits of the locally free action of G onMα are everywhere transverse
to the fibers, hence they define a smooth, G-invariant splitting TMα = H ⊕F where for
all xα ∈ Mα, Hxα is the tangent space to G.xα and Fxα the tangent space to the fiber
π−1(π(xα)). For V ⊂ g a vector subspace and xα ∈Mα, denote by V (xα) = {Xxα , X ∈
V }3.

Let µ be a finite A-invariant, A-ergodic measure on Mα. A part of the conclusions
of Theorem 4.4 is directly predictable, independently of µ: the splitting

g(xα) = g0(xα)⊕
⊕
λ∈Σ

gλ(xα)

diagonalizes the action of A on the horizontal distribution H since any g ∈ A commutes
with vector fields generated by elements of g0 = a⊕m and if X ∈ gλ and if g = eX0 , then
dxαg.Xxα = eλ(X0)Xgxα . In particular, for any A-invariant probability measure µ, the
Lyapunov spectrum of any g ∈ A with respect to µ is completely known in the horizontal
direction and does not depend on µ.

In contrast, the central question is to undestand its vertical part where all the dynam-
ics of Γ is encoded. So, let us apply Theorem 4.4 to the vertical subbundle F →Mα. We
call vertical Lyapunov functionals of µ the Lyapunov functionals obtained in this way.

Definition 4.4. Let {χ1, . . . , χr} ⊂ a∗ be the vertical Lyapunov functionals of µ. A
restricted root λ ∈ Σ is said to be µ-resonant if there exists 1 6 i 6 r and c > 0 such
that λ = cχi.

Theorem 4.6 ([BRHW22]). Let µ be an A-invariant, A-ergodic measure on Mα such
that π∗µ is the Haar measure on G/Γ.

Let λ ∈ Σ be a restricted root. If λ is not µ-resonant, then µ is Gλ-invariant.

The heuristic for obtaining G-invariance of µ is then very natural: let Gµ denote
the stabilizer of µ in G. Then, Gµ contains A, and every restricted root-space Gλ for
λ /∈ ∪ri=1R>0.χi. Now, a standard algebraic property states that a strict Lie subalgebra
h ⊂ g, containing a, cannot contain more than a certain explicit number of restricted root-
spaces. For instance, in g = sln(R), a Lie subalgebra containing the Cartan subalgebra
and strictly more than (n − 1)2 = n(n − 1) − (n − 1) restricted root-spaces must be
equal to sln(R). More generally, this leads to the idea of minimal resonant codimension
introduced in [BRHW22].

Definition 4.5. Let g be a semi-simple Lie algebra without compact factors and with
restricted root-system Σ. Let

Σ′ =

{
Σ if Σ 6= (BC)`

B` if Σ = (BC)`.

3Recall that any X ∈ g is identified with a vector field ofMα, say X, defined by Xxα = d
dt

∣∣
t=0

etX .xα.
I use implicitly this identification X = X in all the text.
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The minimal resonant codimension r(g) of g is then, denoting by g′ the real split form of
type Σ′, the minimum of dim(g′/p′), when p′ runs among proper parabolic subalgebras
of g′.

Hence, r(g) is the smallest possible number of coarse restricted roots of Σ that can
appear transversally to a strict parabolic subalgebra of g. We see also that when g is
split, r(g) coincides with the minimal dimension of a flag manifold G/P .

An important consequence of Theorem 4.6 above is:

Corollary 8. Suppose that Γ acts on a compact manifold M and that for a given R-
split Cartan subalgebra A < G, there exists a finite A-invariant, A-ergodic measure µ on
the suspension Mα, projecting to the Haar measure of G/Γ, with strictly less than r(g)
vertical Lyapunov functionals (e.g. when dimM < r(g)). Then, µ is G-invariant.

With no more restriction than the differentiability of the action, there is no hope
to have a stronger estimates on the number of Lyapunov exponents than a dimensional
count. However, if some geometric structure is assumed to be invariant, then more
restrictions on these functionals appear and therefore, we can prove existence of finite
invariant measures in a broader context.

4.2.4 Non-existence of finite invariant measures for actions on rigid
geometric structures

Certain families of geometries do not carry natural volume density, and they do not define
finite measures even when the underlying manifold is compact. This is for example the
case for conformal structures or linear connections. The lack of finite invariant measure
is an additional difficulty in the study of dynamics of group actions on these geometric
structures.

In fact, we can go further than this general (which may sound pessimistic) observation,
and prove that in the case of actions of semi-simple Lie groups and their lattices, provided
that they are big enough, they do not preserve any finite Borel probability measure.

I collect here some useful observations which can be applied in geometric contexts,
detailed later in section 4.4.1. The Proposition below is a variation on Proposition 4.1
of [Pec20], which is in the special case of conformal structures, i.e. H = R>0 ×O(p, q).
Definition of H-structures of finite type is recalled in Section 2.2.1.

Proposition 4.2. Let M be a compact manifold endowed with an H-structure of finite
type, with H a reductive group. Suppose that Γ acts on M by automorphisms of the
H-structure and such that the image of the action is unbounded. If g does not embed into
h, then there does not exist any finite Γ-invariant measure on M .

This observation was used by Zimmer in his proof of Theorem F of [Zim86c] for
actions on unimodular H-structures of finite type, with a slightly different formulation
and more restricted context. The ideas for proving the above statement are the following.
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Proof. By definition of a finite type H-structure, the prolongation procedure of the initial
H-structure P →M stabilizes after finitely many steps to an {e}-structure P k+1 → P k,
i.e. a global framing on P k, and for all intermediate index i 6 k, the Γ action lifts to
an action on P i+1 → P i. The key fact is that if Γ preserves a finite measure on P i,
then so does the lift of its action to P i+1. Hence, Γ finally acts on the last stage P k by
preserving a finite measure. But this violates the fact that Γ acts freely and properly
on P k and the hypothesis makes that Γ is closed when realized as a subgroup of the Lie
group Aut(P i) for any i ([Ste61] Ch. VII, [Kob95] Ch.I, Theorem 5.1, see also [McK23],
§.21, for a similar approach in the case of Cartan geometries).

Let us briefly comment on how measures are lifted in the prolongation tower. It is
where the assumption on g is used: G does not embed locally in any of the structural
groups of the principal bundles of the prolongation. So, if Γ preserves a finite measure µi
on P i, then cocycle super-rigidity (Theorem 4.1) implies that the action is cohomologuous
to a compact valued action, i.e. that there is a measurable trivialization P i+1 ' P i×H i,
a compact subgroup K < H i such that the action preserves the measurable subbundle
P i × K. Consequently, the Γ-action on P i+1 preserves the pull-back µi+1 of µi ⊗ dk,
where dk denotes the Haar measure on K.

A few facts and definitions about Cartan geometries are recalled in Section 2.2.2

Corollary 9. Let (M,G, ω) be a Cartan geometry modeled on a flag manifold G/P.
Suppose Γ acts on M by automorphisms of the Cartan geometry and that G does not
embed into P. If Γ preserves a finite measure on M , then the action has compact closure.

This is basically due to the fact that the Cartan geometry defines an H-structure on
M , with H = Adg/p(P) ⊂ GL(g/p), isomorphic to the Levi subgroup of P.

Therefore, the non-existence of finite Γ-invariant measures on (M,G, ω) is provided
by the non-existence of an embedding of G into the Levi subgroup of P, which can be
small compared to G, e.g. when P is the Borel subgroup.
Example 8. For conformal structures of signature (p, q) in dimension at least 3, the Levi
subgroup of the corresponding parabolic subgroup of O(p + 1, q + 1) is isomorphic to
R∗ × O(p, q), hence the criterion is that for G not locally isomorphic to a subgroup
of O(p, q), any lattice Γ < G acting conformally on a pseudo-Riemannian manifold of
signature (p, q) cannot preserve a finite measure, unless the action is bounded.
Example 9. When G = SLn(R) and P is the Borel subgroup, any action of a higher-rank
lattice on a compact manifold, that preserves a Cartan geometry modeled on (G,P) and
a finite measure must be bounded, regardless the size of n.

For groups with property (T), similar conclusions follow for actions on certain finite
type H-structures.

Proposition 4.3 ([Zim84b], Theorem 10). Let Γ be a discrete group with property (T)
and H a real algebraic group. Let (X,µ) be a probability space on which Γ acts by
preserving µ and ergodically. Let α : Γ × X → H be a measurable cocycle. Then, α is
cohomologous to a cocycle β whose image is contained in an algebraic subgroup H1 < H
with property (T).
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Since neither SO(1, n) nor SU(1, n) admit a non-compact algebraic subgroup with
property (T), it follows for instance that if Γ has property (T) and acts conformally on a
closed Lorentzian manifold and preserves a finite measure µ, then the action has compact
closure, and similarly for actions on finite type H-structures, with H an algebraic group
whose Levi factor is of the form K × SO(1, n) or K × SU(1, n).

Similarly, the same argument can be applied for Γ-actions on certain Cartan geome-
tries, for instance projective structures on closed surfaces. For these, assuming the action
Γ → Proj(S, [∇]) faithful and with unbounded image, we get a free and proper action
of Γ on the Cartan bundle G → S, whose structural group is GL2(R) nR2, hence does
not contain no non-compact algebraic subgroup with property (T). Therefore, the action
cannot be probability measure preserving.

In the case where Γ is a lattice in Sp(n, 1) or F4(−20), these observations can be com-
bined with the methods of [BRHW22] and the output is a dynamical information which
encourages further investigations for Γ-actions on such rigid geometric structures which
do not admit Γ-invariant measures. In particular, if {ht} is a one parameter-subgroup
parametrizing the R-split Cartan subgroup, then for any {ht}-invariant measure for the
induced G-action, the Lyapunov exponents of ht cannot be all zero. Furthermore, spe-
cific restrictions on the Lyapunov spectrum follow from [Kai89] and seems to be a first
interesting step into this direction.

4.3 Conformal actions of higher-rank lattices at the critical
case

The results of [BRHW22] give existence of finite Γ-invariant measures, provided certain
dynamical conditions. Once their result was prepublished, a very natural direction to look
at was conformal actions of Γ on pseudo-Riemannian manifolds. Since their approach
was key in the non-existence of low-dimensional actions of Γ (proof of Conjecture 3), it
seemed plausible that it will give other interesting obstructions in this geometric context.

For instance, a question which was not known to the experts was the existence (or
non-existence) of a non-trivial conformal action of Γ on certain compact Lorentzian
manifolds. Typically: does there exist a compact Lorentzian manifold on which SL3(Z),
or a finite index subgroup, acts conformally with finite kernel?

If the action is isometric, then Theorem F of [Zim86c] gives non-existence in any
dimension. If the action extends to a conformal action of SL3(R), then non-existence
is a consequence of [BN02], and also the subsequent developments about conformal Lie
group actions. In [Ioz92], Iozzi showed that if there exists a differentiable action of
G → Diff(M), such that the restriction to Γ preserves the conformal structure (or any
rigid structure), then all of G preserves the conformal structure, which would again be
impossible. But, this requires to show (if true) that the Γ-action extends to a G-action
by diffeomorphisms, which a priori does not simplify the question.
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4.3.1 The Riemannian case

For positive-definite metrics, the question of existence of a conformal action of a higher-
rank lattice is directly answered by Ferrand-Obata’s theorem in the compact case, already
discussed previously on essentiality problems, which we reproduce below.

Theorem 4.7 ([Oba71, LF71, LF76]). Let (M, [g]) be a compact manifold endowed with
a Riemannian conformal structure. If Conf(M, [g]) is non-compact, then (Mn, [g]) is
conformally diffeomorphic to the round sphere Sn.

The conformal group of Sn is the Möbius group PO(1, n+ 1), fundamentally because
Sn = ∂∞Hn+1

R is the conformal boundary of the real hyperbolic space. Hence, any con-
formal action of a higher-rank lattice Γ on a closed Riemannian manifold either transits
through a compact Lie group action, or is a conformal action on Sn, i.e. a group homo-
morphism Γ → PO(1, n + 1), so has compact closure again, by Margulis super-rigidity
theorem.

4.3.2 General case: discretization of Bader-Nevo’s and Frances-
Zeghib’s theorems

The pseudo-Riemannian analogue of the Möbius sphere is the conformal boundary of
the pseudo-hyperbolic space Hp,q+1. The latter is the projectivization of {−x2

0 − · · · −
x2
p + x2

p+1 + · · ·+ x2
p+q+1 < 0}, with the metric inherited from Rp+1,q+1. It has constant

negative sectional curvature and its isometry group is PO(p + 1, q + 1), whose action
extends to the conformal boundary Einp,q, the projective quadric {−x2

0 − · · · − x2
p +

x2
p+1 + · · · + x2

p+q+1 = 0}. The latter comes now with a conformal class of pseudo-
Riemannian metric of signature (p, q), which is conformally flat and has PO(p+ 1, q+ 1)
as conformal group. As a homogeneous space, Einp,q identifies with a flag manifold of
PO(p + 1, q + 1), with isotropy the maximal parabolic subgroup P isomorphic to the
stabilizer of a null line.

More concretely, this conformal structure is doubly covered by (Sp×Sq, [−gSp⊕gSq ]),
where gSk denotes the Riemannian metric of constant curvature +1 on the k-sphere.
Hence, the universal cover of the projective model of Einstein Universe is

Ẽin
p,q

=

{
(Sp × Sq, [−gSp ⊕ gSq ]) if p > 1

(R× Sn−1, [−dt2 ⊕ gSn−1 ]) if p = 1.
(4.4)

A natural question within conformal geometry is to obtain a pseudo-Riemannian
analogue of Theorem 4.7. Several works have shown that no straight analogue is plausible,
see Section 3.2.

The following result was known for the action of the full ambient Lie group, by
combining [Zim87b], [BN02] and [FZ05]. In [Pec20] and [Pec24], and with a currently
finalizing article4, I have obtained the extension of their results to lattices actions.

4The statement available at the time of this writing assumes Γ to be uniform and min(p, q) > 1.
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Theorem G. Let (M, [g]) be a compact manifold of dimension at least 3 endowed with
a conformal structure of signature (p, q), with 1 6 p 6 q. Let Γ be a lattice in a simple
Lie group G with rkRG > 2 and finite center. Let ρ : Γ → Conf(M, [g]) be a conformal
action such that ρ(Γ) is not relatively compact. Then,

1. rkRG 6 p+ 1 ;

2. If rkRG = p+ 1, then M̃ is conformally diffeomorphic to Ẽin
p,q

.

(a) If p > 1, then |π1(M)| 6 2 and M is either Ẽin
p,q

or its projective model.
(b) If p = 1, then π1(M) is virtually infinite cyclic, and up to finite index, it

is sent by the holonomy homomorphism into Z × O(n) , where Z refers to
the center of Õ(2, n) and O(n) to the lift to Õ(2, n) of the O(n) factor of the
maximal compact of O(2, n).

3. If rkRG = p + 1, then G 'loc O(p + 1, k + 1), with p 6 k 6 q, and the Γ-action
almost extends to a G-action.

Recall that by almost extend, we mean that there exists a non-trivial Lie group ho-
momorphism ρ : G → Conf(M, [g]), a compact subgroup K < Conf(M, [g]) centralizing
ρ(G), and an homomorphism ρK : Γ→ K such that ρ(γ) = ρ(γ)ρK(γ) for all γ ∈ Γ.
Remark 15. Recall Example 6, which shows that for there are non-conformally flat com-
pact manifolds of signature (p, q), with essential conformal of O(p − 2, q − 2), so that
in Theorem G, no similar geometric conclusions can be expected if we simply drop the
assumption on the rank.
Remark 16. The fact that the action almost extends is an observation made a posteriori :
the proof does not show it until it is reduced to a straight application of Margulis’ super-
rigidity theorem.

Recall that in Kobayashi’s theorem about Lie transformation groups ([Kob95]), the
automorphisms group of a finite type G-structure has a natural Lie group structure but
not necessarily connected. Hence, it is not possible to apply Margulis’ theorem a priori
to the action ρ : Γ → Conf(M, [g]). It could be for instance that Conf(M, [g]) is itself
a discrete group containing Γ. The same goes for general geometric structures (rigid or
not), whose automorphism group is known to be a Lie group. Remark that this includes
complex structures on compact manifolds, or elliptic G-structures more generally (see
Section 2.2.1), and the same problem arose in [Can04] and [CZ12] where actions by
biholomorphisms on compact Kähler manifolds are considered.

So, for a general, say rigid, geometric structure φ on a compact manifold M with a
Γ-action by automorphisms ρ : Γ→ Aut(M,φ), if one wants to apply directly Margulis’
super-rigidity, the main question is to know whether Γ∩ρ−1(Aut(M,φ)0) has finite index
in Γ or not. Again, it is not clear if this brings any simplification to the initial question.
Theorem G implies that it is always the case for conformal actions of lattices of maximal
real-rank. But the contrary happens for the inessential action of O(p, q)Z on the flat
pseudo-Riemannian torus (Tp+q,−dx2

1−· · ·−dx2
p+dx2

p+1+· · ·+dx2
p+q), whose conformal

group reduces to its isometry group O(p, q)Z nTp+q.
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The extension question. Recall Corollary 1, which implies that O(p, q) does not act
isometrically on closed pseudo-Riemannian manifolds of signature (p, q), except when
p+ q 6 3. So, for greater values of p and q, inessentiality of a conformal O(p, q)Z-action
is an obstruction to the extension.

Remark 17. In [FM22], Fisher and Melnick observed that volume preserving actions of
SLn(Z) on a compact n-manifold does not extend to a S̃Ln(R) action.

On this example, the obstruction comes from the fact that only elements of O(p, q)
normalizing the Zn-action on Rp,q descend to the quotient, and only a local action of
O(p, q) survives at the quotient. Although the question makes sense for general volume-
preserving actions, in a first attempt, it seems interesting to work on the following.

Question 7. Let Γ = O(p, q)Z act by isometries on a closed pseudo-Riemannian manifold
M . Does the lifted 5 action Γ̃ y M̃ extend to an isometric action of O(p, q)?

Eventually, an additional analytic assumption would be reasonable, in the same spirit
as in the proof of Gromov’s centralizer theorem (see the next chapter).

Question 8. Let Γ < O(p, q) be a lattice. Suppose that Γ acts conformally essentially
on a closed pseudo-Riemannian of signature (p, q). Does the action extend to O(p, q)?

4.3.3 Organization of the proof of Theorem G

Theorem G is in fact the combination of results from [Pec20, Pec24] and ongoing works
for the Lorentzian case p = 1 and the extension to non-uniform lattices. The proof in
the uniform case can globally be divided as follows.

We denote by Mα the suspension space of a conformal action α : Γ→ Conf(M, [g]).
Let A be a fixed R-split Cartan subgroup of G.

Step 1: Lyapunov functionals of the A-action. Given an A-invariant, A-ergodic
finite invariant measure µ on Mα, let χ1, . . . , χr ∈ a∗ denote its vertical Lyapunov
functionals. The fact that Γ preserves the conformal class [g] on M implies that there
is a smooth, G-invariant, conformal class on the vertical tangent bundle of the fibration
Mα → G/Γ. Consequently, the fiberwise dynamics of A is restricted, and Proposition
3.5 of [Pec20] gives that there r 6 2p + 1 and that there exists χ ∈ a∗ such that, after
reordering the functionals, χi + χr+1−i = χ for all 1 6 i 6 r.

Step 2: Upper bound on the rank and further restrictions Assume by contra-
diction ` = rkRG > p + 1. In particular, G does not embed into R>0 × O(p, q), the
structural group of the H-structure associated to the conformal class [g]. Therefore, by
Proposition ref, since α(Γ) is not relatively compact in Conf(M, [g]), Γ does not pre-
serve any finite invariant measure on M , and the same goes for the action of G on Mα

5Here, Γ̃ is an extension of Γ by π1(M). It is not clear if the short exact sequence splits, so that Γ
itself acts on the universal cover, like in the torus case.
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by ref. Considering a finite measure on Mα which is invariant by the Borel subgroup
containing A, we obtain a finite A-invariant, A-ergodic measure µ projecting to the Haar
measure of G/Γ. Since µ cannot be G-invariant, Corollary 8 implies that 2p+1 > r(g), a
contradiction for every restricted root systems, except A` (see Table 1 of [BFH22]). For
exceptional root-systems, this gives in fact better estimates, which led to Theorem H.

For G admitting A` as restricted root system, a variation of Theorem 4.6 can be used
(see §4.2.1 of [Pec20]), together with the fact that χ1, . . . , χr span a subspace of a∗ of
dimension at most b r2c+ 1.

Step 3: Uniform contractions at the critical case. For rkRG = p+ 1, G does not
embed into R>0×O(p, q) neither. So, similarly to the previous step, no finite G-invariant
measure exist on Mα. But, this time, no contradiction follows. Instead, from the fact
that the stabilizer Gµ of an A-invariant measure µ is a strict subgroup of G, Theorem
4.6 implies that a big number of Lyapunov fonctionals are µ-resonant, hence must follow
a pattern related to the roots.

Combining this with the linear relations they satisfy, it follows that a direction X ∈ a
satisfies χ1(X) = · · · = χr(X) = −1. Consequently, the local stable manifold of the flow
associated to etX on Mα contains an open subset of the fiber. Considering recurrent
points of this flow, we can interpret this information in the Γ-action: there exist an open
subset U , x ∈ U , a sequence {γk} ⊂ Γ and Tk → +∞ such that γkU → {x} (for the
Hausdorff distance), and

1

Tk
log ‖γk∗v‖ → −1, (4.5)

for any non-zero v ∈ TU .
This procedure can be repeated for any Borel-invariant measure in Mα, so for any

compact Γ-invariant subset K of M , there exist x ∈ K, U a neighborhood of x, {γk}
and {Tk} satisfying (4.5).

Step 4: Vanishing of the Weyl curvature and existence of maximal charts. By
standard geometric arguments, the Weyl tensor of (M, [g]) can tolerate such dynamics
only if it is identically zero over U . If it was not identically zero overM , we would obtain
a contradiction by choosing the measure µ supported in the boundary of the Γ-invariant
compact subset {x ∈M | Wx = 0}.

So, the manifold is conformally flat when rkRG = p + 1: every point has a neigh-
borhood conformally diffeomorphic to an open subset of the flat space Rp,q. We can do
better: starting with a small open subset U with the dynamical data (4.5), we can “go
backward” an consider the γ−1

k .U which get uniformly larger and larger, take a limit in
some sense, to end up with a neighborhood U∞ of x which is conformally equivalent to
the whole Rp,q. This forbids for instance M to be a pseudo-Riemannian torus.

Hence, M is in fact covered by open subsets, conformally equivalent to Rp,q. We call
such subsets maximal charts.
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Step 5: Completeness of the geometric structure This final step is based on the
global geometry of the model space Ẽin

p,q
, and this is where the Lorentzian and pseudo-

Riemannian case diverge. By a generalization of Liouville’s theorem, any subset of Ẽin
p,q

conformally equivalent to Rp,q is a Minkowski patch, i.e. a connected component of the
complement of a light-cone in Ẽin

p,q
. The previous step shows that M̃ is covered by open

subsets {Ui} such that the developing map D : M̃ → Ẽin
p,q

is injective in restriction to
every Ui and sends it onto a Minkowski patch of Ẽin

p,q
. For min(p, q) > 1, Minkowski

patches are arranged very similarly to hemispheres in the projective sphere. Injectivity
of D can then be deduced by combining a certain number of elementary arguments, and
the result follows easily after that (see the beginning of §.5 of [Pec24]).

The main difference with Ẽin
1,n−1

resides in the fact that the complement of a light-
cone has infinitely many connected components, whereas we only get two “antipodal”
Minkowski patches in higher signatures. So, monodrony phenomena seem technically
difficult to rule out when trying to extend injectivity of the developing map from patch
to patch.

A different global approach, nonetheless shows that in Lorentzian signature, a con-
formal structure on a compact manifold satisfying the conclusions of Step 4 is globally
hyperbolic. Results on globally hyperbolic conformally flat space-times [Sal12, Sma23b,
Sma23a] ultimately conclude that M̃ is conformal to Ẽin

1,n−1
.

4.3.4 Lower bounds for the metric index

Similarly to what has been discussed for Lie group actions in Section 3.3, it is natural to
ask if other constraints than a bound on the real-rank can be obtained.

Question 9. Let Γ be an irreducible lattice in a higher-rank semi-simple Lie group G. Let
k0
G as defined in Section 3.3.1. Does there exist a compact manifold M , with a conformal

structure [g] of signature (p, q), with min(p, q) < k0
G, and with an unbounded conformal

action Γ→ Conf(M, [g])?

Some technical considerations in Step 2 on the structure of the restricted-roots which
are transverse to the stabilizer of the A-invariant measure µ (which is known to be a
maximal parabolic subgroup of G), combined with the fact that they all have to be
positively proportional to exactly one Lyapunov functional, led to the following.

Surprisingly, these considerations provide better estimates only for exceptional root-
systems. It seems to be proper to conformal geometry and its model space (PO(p +
1, q + 1), P ), which dictates the general configuration of Lyapunov functionals. It is
plausible that this approach will give interesting conclusions for actions on other parabolic
geometries.

Theorem H ([Pec20]). Let (M, [g]) be a compact manifold of dimension at least 3 en-
dowed with a conformal structure of signature (p, q). Let Γ be a lattice in a simple Lie
group G whose restricted root-system is Σ. Assume that there exists a conformal action
ρ : Γ→ Conf(M, [g]) such that ρ(Γ) is not relatively compact.
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1. If Σ = E6, then min(p, q) > 8.

2. If Σ = E7, then min(p, q) > 14.

3. If Σ = E8, then min(p, q) > 28.

4. If Σ = F4, then min(p, q) > 7.

5. If Σ = G2, then min(p, q) > 2.

Remark 18. Furthermore, we can deduce from the proof of Theorem G:

1. If Σ = F4, a compact manifold of metric index 7 on which such a lattice acts
conformally with unbounded image is conformally equivalent to Einp,q or Ẽin

p,q
.

2. If Σ = E8, a compact manifold of metric index 28 on which such a lattice acts
conformally with unbounded image is conformally equivalent to Einp,q or Ẽin

p,q
.

Conformal flatness was established in Section 7 of [Pec20], but it was not pointed out in
[Pec24] that the global conclusion follows similarly, although it is immediate: the working
assumption in that paper was min(p, q) > 1 and for any compact Γ-invariant subset, the
existence of a sequence {γn} ⊂ Γ with an assymptotically uniformly contracting dynamics
near a point in this compact subset. That is exactly what is obtained at the end of [Pec20]
via elementary considerations on the resonance.

I suspect that these actions do not exist. The problem is purely a question of represen-
tation theory: by Margulis’ Super-rigidity Theorem, the question is that of an embedding
of g into so(p+1, q+1). For instance, the split form f4(4) of f4 has restricted root-system F4

and the lowest degree representation of f4(4) is 26-dimensional and preserves a quadratic
form of signature (12, 14) (see Section 5 of [Pec19]), it seems to indicate that there is no
embedding into so(8, N) for any N . So far, I do not have the answer.

4.4 Extension to projective actions and other geometric
structures

I describe in this section ongoing research activities, which are natural subsequent devel-
opments following the results on actions of lattices that have been detailed above.

In [Pec24], it is observed that the proof of the global part of Theorem G in the non-
Lorentzian case min(p, q) > 1 applies verbatim to a similar context where a lattice in a
simple Lie group of real-rank n acts projectively on a compact n-manifold endowed with
a linear connection. This is due to a global resemblance between Einp,q and RPn, when
min(p, q) > 1. Hence, a global statement for projective actions was another outcome of
this approach.

Theorem I ([Pec24]). Let Γ be a lattice in a simple Lie group G of real-rank n > 2 and
finite center. Let M be a compact n-manifold on which Γ acts by preserving a projective
class of linear connections [∇].
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If the action is infinite, then (M, [∇]) is projectively equivalent to either RPn or Sn,
endowed with their standard projective structures.

This result was in fact expected to be true without assuming the existence of an in-
variant projective structure (for instance [BRHW22] Conjecture 1.1 and 1.8, or Question
4.8 of [Fis11]). Although, in a "non-geometric" setting, exotic volume-preserving actions
of SLn(Z) at the critical dimension n indicates a wide range of possible topologies for
volume-preserving actions (see [KL96, BF05, FM22]), none of these examples can be
adapted to compact manifolds of dimension n− 1.

Recently, Brown, Rodriguez-Hertz and Wang have announced a proof of this result
in the general differentiable case, i.e. without requiring that the action preserves a
projective class of connections.

Nonetheless, the proof of Theorem I indicates that it can be extended to other types
of geometric structures, for which either the current state of the art does not suggest an
accessible, non-geometric proof ready to be developed, or even no analogue at all can be
expected.

4.4.1 General bound on the real-rank

In [Zim87b], Zimmer established that if a simple Lie group G acts non-trivially on a
compact manifold by preserving an H-structure, with H algebraic, then rkRG 6 rkRH,
where the latter is naturally understood as the dimension of maximal R-split tori of
H. For instance, if H = R∗ × O(p, q), which corresponds to conformal actions of G on
pseudo-Riemannian manifolds of signature (p, q), it means that rkRG 6 min(p, q) + 1.

This observation was extended later in [BFM09] to G-actions preserving Cartan con-
nections, and interestingly to non-simple Lie groups G (as recalled in Section 3.1.3). The
conclusion relates similarly, via an inequality, the algebraic rank of the acting group with
the algebraic rank of the structural group of the Cartan bundle. But it does not apply
to discrete group actions.

Not yet prepublished and directly based on a paper of Kaimanovich [Kai89], the fol-
lowing result systematizes the control on Lyapunov functionals of a probability measure
preserving action of an abelian Lie group action which preserves certain geometric struc-
tures. These are obtained by projecting the restricted-roots of a semi-simple Lie algebra
to some subspace of the dual of the Cartan subalgebra.

Proposition 4.4. Let H be a semi-simple Lie group without compact factor. Let A = Rk

act differentiably on a manifold M by preserving a finite measure µ, which is also A-
ergodic. Let c : A×M → Ad(H) be a cocycle satisfying the assumptions of Theorem 4.4.
Then, there exist an R-split Cartan subalgebra ah of h and a linear map f : a→ ah such
that the Lyapunov functionals of c with respect to µ are {λ ◦ f, λ ∈ Σ}, where Σ denotes
the set of restricted-roots attached to ah.

Kaimanovich’s paper, later generalized by Karlsson and Margulis [KM99] to CAT(0)
spaces, interprets geometrically the conclusions of Oseledets’ theorem (see also §3 of
[Fil19]). We call Lyapunov regular any sequence (gk) of matrices in GLn(R) for which
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there exists a flag {0} = V0 ⊂ · · · ⊂ Vr = Rn and numbers λ1 < · · · < λr such that
1
k log |gkv| → λi for all v ∈ Vi \ Vi−1, and such that lim 1

k log |det gk| exists and is finite.
In particular, Oseledets’ theorem means that under an integrability condition on the
generator of the cocycle c : Z × X → GLn(R), for almost every x, the sequence gk :=
c(k, x) is (forward and backward) Lyapunov regular. In this approach, this regularity is
reduced to a geometric property of the sequence of points pk = g′k.o, with g

′
k ∈ SL±n (R)

a renormalization of gk and o ∈ SL±n (R)/O(n) an origin in the corresponding symmetric
space of non-compact type: (gk) is forward Lyapunov regular if and only if there exists
a geodesic ray γv emanating from o such that d(pk, γv(k)) grows sub-linearly.

In this perspective, Proposition 4.4 above means that there exists a totally geodesic
flat in H/K, together with a linear parametrization, such that the A-orbit of the origin
of this flat stays at sub-linear distance from the flat.

In the direction of a discrete version of [Zim87b]. Suppose that Γ < G acts on
a compact manifold by preserving an H-structure P → M . Proposition 4.4 can then
be applied to the action of an R-split Cartan subgroup A < G on the suspension space
Mα of the action. Indeed, the fact that Γ preserves an H-structure on M means that
the induced action of G preserves an H-structure on the vertical tangent bundle of the
suspension space Mα, hence automatically the linear cocycle associated to the vertical
differential action is cohomologuous to an H-valued cocycle G×Mα → H.

With the global motivation of generalizing [Zim87b] to lattices actions, a first step is
the next intermediate result, which does not need the geometric structure to be rigid in
any sense (in particular not being of finite type). Ideally, we would like to assume H to
be a real algebraic subgroup of Dr(n), for general H-structures.

Theorem 4.8. Let M be a compact manifold endowed with an H-structure of order 1,
π : P →M , with H < GLn(R) algebraic and isogenous to T ×Hs, where Hs is an almost
algebraic semi-simple group and T is an algebraic torus. Let Γ < G be a uniform lattice
in a simple Lie group of real-rank at least 2 and finite center. Suppose that Γ acts on M
by preserving the H-structure and that the action is unbounded.

Then, rkRG 6 rkRH, the latter being understood as the dimension of maximal R-
split tori of H.

Proof. Here the proof follows more or less directly from that of Theorem 1.1 of [BFH22]
in the volume-preserving case. Low dimensionality is used to restrict the number of
vertical Lyapunov functionals {χ1, . . . , χr} of a carefully chosen A-invariant measure on
the suspension space. The volume preserving assumption gives the additional restriction
χ1 + · · · + χr = 0 which increases by 1 the dimensional lower bound. We can follow
exactly the same path but finally use Proposition 4.4 to obtain the restriction in terms
of the rank of H.

4.4.2 Some geometric questions

Applying this result to the case H = GLn(C), we obtain that if Γ acts holomorphically
on a compact manifold with almost-complex structure of complex dimension n, then
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rkRG 6 n. This is simply due to the value of the real-rank of gln(C).
This bound was already known from Cantat ([Can04], see also [CZ12]), in the case of

holomorphic actions of lattices on compact Kähler manifolds. His conclusion is stronger,
and he proves that if the real-rank of G equals n, then the manifold in question is
biholomorphic to CPn. An interesting direction of research would be to generalize or
disprove Cantat’s and Cantat-Zeghib’s geometric results in the setting of holomorphic
actions on complex, or even almost-complex manifolds.

Question 10. Let Γ of real-rank n > 2 act holomorphically on a compact complex n-
manifold M . Is M biholomorphic to CPn? Similarly if M is a 2n-dimensional compact
real manifold with an almost-complex structure.

Recall that for a compact complex manifold M , the group of biholomorphisms is a
Lie group (for global reasons), although a complex structure is not rigid in Gromov’s
sense. In particular, a closed group of biholomorphisms can a priori act non-properly
on all the frame bundles Fr(M), so it is not possible to rule out from the beginning the
existence of finite Γ-invariant measures as in Proposition 4.2.

Another corollary concerns actions of lattices actions on Cartan geometries.

Corollary 10. Let (M,G, ω) be a compact manifold endowed with a Cartan geometry
modeled on a flag manifold G/P. Suppose that Γ acts on M by automorphisms of the
Cartan geometry, with unbouded image. Then, rkRG 6 rkRG.

Here the proofs is again not long and relies on the fact that any Cartan geometry
defines an H-structure, with structure group the adjoint action of P on gX/pX, where
gX and pX refer to the Lie algebras of G and P respectively. The dimension of R-split
tori in this adjoint group is the same as the dimension of those of G. Hence, observing
similarly as before that the Γ-invariant Cartan geometry on M defines a G-invariant
“fiberwise Cartan geometry” on the suspension space Mα, a routine adaptation yields
the conclusion of the corollary.

However, a generalization of Theorem G to general parabolic geometries needs addi-
tional ingredients, at the local and global scale.

Question 11. Let (M,G, ω) be a compact manifold endowed with a Cartan geometry
modeled on a flag manifold G/P. Suppose that Γ has real-rank rkRG, acts on M by
automorphisms of the Cartan geometry and with unbouded image. Up to finite covers
and quotients, is M isomorphic to the model space G/P?



Chapter 5

Conformal extension of D’Ambra’s
theorem

5.1 Generalities

In the 1980’s, D’Ambra proved the following impressive result in Lorentzian geometry.

Theorem 5.1 ([D’A88]). Let (M, g) be a real-analytic, compact, simply-connected
Lorentzian manifold. Then its isometry group Isom(M, g) is compact.

Let us first give some examples of such manifolds: any compact simply-connected Lie
group (e.g. SU(n)) can be given an arbitrary left-invariant Lorentzian metric, or more
generally, any compact simply-connected manifold M with zero Euler characteristic (an
odd dimensional sphere for instance) admits a Lorentzian metric. Warped product of such
a manifold with an arbitrary compact simply-connected Riemannian manifold provides
additional examples.

If the analyticity assumption is believed to be unnecessary1, compactness and simple-
connectedness are clearly required. Notably, Adams-Stuck-Zeghib’s classification result of
isometry groups of compact Lorentzian manifolds provides the whole list of non-compact
Lie groups which can arise as group of isometries of a compact Lorentzian manifold
(see Theorem 3.5 before). The list includes simple, nilpotent and solvable Lie groups.
D’Ambra’s theorem implies that in the analytic case, if one of these groups act on a
closed Lorentzian manifold, then the latter has infinite fundamental group.

Remark 19. Recall that a closed Lorentzian manifold with a locally faithful isometric
action of S̃L2(R) is isometrically covered by a warped product of ÃdS

3
×ω N for some

Riemannian manifold N by [Gro88]. So the initial manifold has infinite fundamental
group. This important example is a basic case of Gromov’s representation theorem
recalled below. The difficult part in Theorem 5.1 is when Isom(M, g) is non-compact but
has poor algebraic structure compared to one which contains a local copy of SL2(R), e.g.
when Isom(M, g) is isomorphic to R.

1To my knowledge, no proof valid in C∞ regularity has been established so far.

75
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5.1.1 Extension to the conformal setting

Many examples of Lorentzian manifolds have essential conformal group: their conformal
group does not reduce to the isometry group of any metric in the conformal class (see
Definition 3.5). For instance, Lorentzian Hopf manifolds, or Frances’ examples of quo-
tients of certain domains of discontinuity in Ein1,n−1 of “Lorentzian Kleinian groups”,
and some deformations of such structures ([Fra05]), are essential compact Lorentzian
manifolds. These examples show a certain abundance of compact essential geometries.

Consequently, it could a priori happen that a compact, simply-connected Lorentzian
manifold has non-compact conformal group, while having compact isometry group. Re-
mark however that the previous examples are all obtained by modding out a simply-
connected open domain Ω of the model space by an infinite group of conformal maps of
Ω.

In a joint work with Melnick, we extended D’Ambra’s theorem and proved that
similarly to the isometric case, in analytic regularity, having infinite fundamental group
is a necessary condition to the non-compactness of the conformal group.

Theorem J ([MP22]). Let (M, [g]) be a real-analytic, compact, simply-connected con-
formal Lorentzian structure. Then its conformal group Conf(M, g) is compact.

5.1.2 Relation to Lorentzian Lichnerowicz conjecture

By a standard averaging argument, a compact subgroup of Conf(M, [g]) always preserves
a metric in the conformal class. Consequently, Theorem 5.1 implies that for a compact,
simply connected, real-analytic Lorentzian manifold (M, g), its conformal group is non-
compact if and only if it is essential. Therefore, if true, Lorentzian Lichnerowicz con-
jecture (Conjecture 1) would imply that if Conf(M, [g]) is non-compact, then (M, [g]) is
conformally flat. But this is impossible for a very simple reason: the universal cover of
Ein1,n−1 is non-compact, and consequently,

Proposition 5.1. A Lorentzian conformal structure [g] on a compact simply connected
manifold M cannot be conformally flat.

Proof. The developing map D : M → Ẽin
1,n−1

of a conformally flat structure onM = M̃
would have to be a covering map by compactness of M , a contradiction.

Thus, Theorem J is equivalent to the Lorentzian Lichnerowicz conjecture in the spe-
cial case of real-analytic Lorentzian manifolds with finite fundamental group. This in-
terpretation of the result is in fact leading globally our proof, since we use intensively
the conflict between Proposition 5.1 and the curvature restrictions following from the
existence of a diverging sequence {gn} ⊂ Conf(M, [g]).

Remark that among all signatures, Lorentzian structures are characterized by non-
compactness of their model space Ẽin

1,n−1
(see Section 3.2.1 and 4.3.2). In signature

(p, q) with min(p, q) > 1, the conformal group of Ẽin
p,q

= (Sp × Sq, [−gSp ⊕ gSq ]) is
isomorphic to O(p+ 1, q + 1). So, contrarily to the isometric case, it is much simpler to
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observe that Theorem J is purely Lorentzian, and it explains more naturally the reason
in terms of model spaces.

5.1.3 General topological obstruction in the volume-preserving case:
Gromov’s representation of the fundamental group theorem.

In Theorem 5.1, modulo an extra (or believed to be extra) analyticity assumption,
D’Ambra proved that for a compact Lorentzian manifold, the non-compactness of the
isometry group forces the underlying topology to have infinite fundamental group. In
fact, her theorem gives an echo to a more general theorem on which several authors
contributed ([Gro88, DG91, FZ02, Zim89, CQB03] among others), and motivates the
investigation of automorphisms groups of unimodular geometric structures with finite
fundamental group. The formulation below is, as customary in this memoir, a weakened
version of the optimal results.

Theorem 5.2 ([Gro88]). Let G be a non-compact simple Lie group which acts by auto-
morphisms of a real-analytic rigid geometric structure (M,φ). Suppose that the G-action
also preserves a volume form and is ergodic with respect to Lebesgue’s measure class.

Then, there exists a finite-dimensional representation ρ : π1(M)→ GLd(R) such that
the Zariski closure ρ(π1(M))

Z
contains a Lie subgroup locally isomorphic to G.

Consequently, under the assumptions of the previous theorem, the fundamental group
of M cannot be amenable because the Zariski closure of an amenable group is still
amenable ([Zim84a], Prop. 4.1.15). And even when the fundamental group is non
amenable, this result says somehow that it has to be at least “as big as G”. For example,
a straight application of Margulis’ super rigidity implies that G = SL4(R) cannot act on
a compact manifold whose fundamental group is isomorphic to a lattice in SL3(R) and
by preserving a real-analytic unimodular rigid geometric structure (e.g. by preserving
an analytic volume form and a linear connection).

However, these general observations only apply to non-compact simple Lie group
actions (and their lattices by [FZ02]) and not for non-semisimple algebraic structures.
In a way, [D’A88] establishes an extension of these obstructions to any non-compact
group action for Lorentzian metrics, but it is also proved that these are singular among
pseudo-Riemannian metrics. Examples of real-analytic, pseudo-Riemannian metrics of
signature (7, 2) on S3×S3×S3 with non-compact isometry group are constructed in her
paper, so Theorem 5.2 does not seem to extend to non-semisimple G. Remarkably, the
only reason D’Ambra’s proof does not extend to general pseudo-Riemannian metrics is
a very elementary result on linear isometries (see Lemma 2 below).

5.2 Gromov’s results on rigid geometric structures

An important aspect of D’Ambra’s proof is the use that it makes of Gromov’s theory
of rigid geometric structures. Many of these results work in great generality, including
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conformal geometry. So, we started investigating what remains from D’Ambra’s approach
in our case.

Remark that in dimension 2, because a closed surface with Euler characteristic 0 is
not simply connected, Theorem J is relevant in dimension at least 3, so the conformal
class defines a rigid geometric structure.

5.2.1 Gromov’s stratification theorem and D’Ambra’s trick

Recall that we take for definition of geometric structure on M an equivariant map
φ : Fr(M) → W , where W is a manifold acted upon by the structural group Dr of
the r-frame bundle. A very convenient property of Gromov’s rigid structures is that
if φ1 is rigid and φ2 is not, but both are of algebraic type, then their disjoint union
(φ1, φ2) : Fmax(r1,r2)(M) → W1 ×W2 is a rigid geometric structure of algebraic type.
A very interesting idea was to consider, on the simply connected Lorentzian manifold
she’s considering, a maximal family {X1, . . . , Xk} of pairwise commuting Killing vector
fields, and use that the disjoint union φ = (g,X1, . . . , Xk) of the metric and this family
of vector fields is rigid. The same can be done when g is replaced by its conformal class.

Because the family is chosen to be maximal abelian, the identity component of
Aut(M,φ) = {f ∈ Isom(M, g) | f∗Xi = Xi, i = 1, . . . , k} is the Lie subgroup
A < Isom(M, g) tangent to the abelian Lie algebra spanned by X1, . . . , Xk.

Realizing this maximal abelian subgroup A as the identity component of the auto-
morphism group of a rigid geometric structure as very strong consequences on its orbit
structure, precisely because of the analytic regularity and simple-connectedness.

The following result is [Gro88], § 3.4. and 3.5.

Theorem 5.3. Let (M,φ) be a compact, simply-connected manifold with an analytic
rigid geometric structure of algebraic type. Let G be its automorphisms group. Then,
there exists a stratification M = Ω1 ∪ · · · ∪ Ωk, with Ωi open and dense in ∪j>iΩj, and
for all i, a G-invariant map of constant rank φi : Ωi → Wi such that for all x ∈ Ωi, the
G-orbit of x coincides with the connected component of f−1(f(x)) that contains x.

Proof. Let us very briefly sketch the proof for (M,φ) a Cartan geometry of model space
(G,H) such that Adg(H) is algebraic (a detailed proof is given in [Mel11], Theorem
4.1). Theorem K below is valid over all of M by analyticity and compactness of M .
Consequently, the curvature map and its covariant derivatives up to order dimG give
rise to an H-equivariant map α : G → V such that for all b ∈ G and u ∈ TbG, (u.α)(b) = 0
if and only if there exists a local Killing field X of (M,G, ω) defined on a neighborhood
of b and such that X(b) = u. By analyticity and simple-connectedness, X extends to
a (complete) Killing field of the Cartan geometry. Therefore, level sets of α locally
coincide with G-orbits on the total space G. Finally, because the action of Adg(H) on
V is algebraic, Rosenlicht stratification theorem gives an algebraic stratification V =
V1 ∪ · · · ∪ Vk such that for all i, the projection pi : Vi → Vi/Adg(H) is a submersion
onto a smooth algebraic variety. Finally, taking Ωi := π(α−1(Vi)), where π denotes the
projection of the Cartan bundle, we get a constant rank map φi : Ωi → Vi/Adg(H), such
that φi ◦ π = pi ◦ α, and whose level sets coincide locally with G-orbits on M .
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Corollary 11. In the same context, we have the following:

1. G has finitely many connected components.

2. For all x ∈M , the stabilizer Gx has finitely many connected components.

3. For all x ∈M , there exists a compact G-orbit in the closure of G.x.

4. For all x ∈M , G.x is locally closed and the orbit closure G.x is semi-analytic and
locally connected.

A key feature, which fails to be true if analyticity is removed 2 , is the following classic
extension property of local Killing vector fields. This seems to be a major difficulty for
extending D’Ambra’s proof to non-analytic Lorentzian manifolds.

Proposition 5.2 ([Amo79]). Let P → M be a real-analytic, finite-type G-structure on
a simply connected manifold M . If X is a local Killing field (defined only on an open
subset), then X extends to a globally defined Killing field of Aut(P →M).

5.2.2 Integration of local isometries of Cartan geometries: an elemen-
tary proof of Frobenius’s theorem

Gromov’s stratification theorem can be proved in a simplified context, compared to his
very general A-rigid geometric structures. It is a consequence of Theorem K below, in
the case of a Cartan geometry with an additional structure, which is enough for the proof
of Theorem J.

I present here one of the main contributions of [Pec16] which gave an elementary
proof of the “Frobenius theorem” stated in [Gro88], §1. In this work of my PhD, the
target space W of the additional structure φ is assumed to be a quasi-projective variety
over R to authorize examples such as fields of k-planes (W being a Grassmanian), but
here I restrict to W simply being a vector space, which is what we need to understand
D’Ambra’s approach. Let (M,G, ω) be a Cartan geometry with model space (G,H) on
a manifold M , with Adg(H) algebraic. Let W be a vector space with an algebraic action
of Adg(H) and let φ : G →W be a P -equivariant map.

Definition 5.1. A local Killing vector field of (M,G, ω, φ) is a vector field X defined on
an open subset U of G, and such that LXω = 0 and LXφ = 0. A global Killing vector
field is a local Killing vector field defined on U = G.

Since ω trivializes the tangent bundle TG, the curvature 2-form Ω = dω+ 1
2 [ω, ω] gives

rise to a H-equivariant map κ : G → Hom(Λ2(g/h), g), called the curvature map. For the
same reason, given a vector space valued, H-equivariant map F : G → E, its differential
dF identifies, in the trivialization, with an H-equivariant map G → E ⊕ Hom(g, E).
The differenciation can therefore be iterated, and the result is still an equivariant map

2Pick for instance a smooth Riemannian metric on Rn which is flat on a small ball and generic (i.e.
with no local isometry at all) elsewhere.
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with values in a vector space, which gets bigger and bigger. For G = F1(M) the linear
frame bundle and ω defined by a linear connection form, tensors of type (r, s) on M are
equivariant maps from G to vector spaces ((Rn)∗)⊗r ⊗ (Rn)⊗s and this differentiation
corresponds to taking the covariant derivative.

In the same context, and for r > 1, we define E = Hom(Λ2(g/h), g) ⊕ W , κφ =
(κ, φ) : G → E and κrφ : G → E ⊕ Hom(g, E) ⊕ · · · ⊕ Hom(⊗rg, E) the H-equivariant
map obtained after having differentiated r times κφ.

Definition 5.2. For any r > 1 and b ∈ G, we call Killing generator of order r any
u ∈ TbG such that (u.κrφ)(b) = 0. We denote by Killrφ(b) ⊂ TbG the subspace of Killing
generators of order r of the disjoint union of the Cartan geometry (M,G, ω) and the
equivariant map φ.

Automatically, if X is a local Killing vector field defined on an open subset U of G,
then for any b ∈ U , X(b) is a Killing generator at any order r > 1. Frobenius’ theorem
gives the converse statement, for r = dimG, but in restriction to an open-dense subset,
called the integrability locus. The following is Theorem 4.19 of [Pec16].

Theorem K. Let (M,G, ω) be a Cartan geometry with model space (G,H), such that
Adg(H) is an algebraic subgroup of GL(g), and let φ : G → W be an equivariant map,
where W is a vector space with an action of Adg(H).

Then, there exists an open dense subset Ω ⊂M such that for any b ∈ G projecting to Ω
and any u ∈ Killrφ(b), there exists a local Killing vector field X defined on a neighborhood
of b and such that X(b) = u.

For (M,G, ω) real-analytic and M compact, there exists an integer r′ (depending a
priori on the geometric structure) such that the conclusion above is valid with Ω = M .

Proof. The proof reduces easily to the most elementary case: when the Cartan geome-
try is in fact the data of a global frame field (X1, . . . , Xn) of M , i.e. an {e}-structure.
Contrarily to Gromov’s approach which uses partial differential relations, the construc-
tion of X is significantly simplified and is performed by applying Frobenius’ integrability
theorem of involutive distributions of k-planes.

Starting with a Killing generator of order r, and considering Ω the open-dense subset
of M where the maps κφ, κ1

φ, . . . , κ
r
φ have locally constant rank, the idea is to build

locally the graph of X in Rn × Rn by showing that an n-dimensional distribution to
which it must be tangent is integrable when restricted to the subbundle of TM formed of
Killing generators of order r. The core of this is a technical property of Killing generators
very similar to an argument of Nomizu in Riemannian geometry ([Nom60]), which was
extended by Melnick to Cartan geometries in [Mel11].

In a similar vein, [Pec16] also extends to Cartan geometries a theorem of Singer
which was proved for Riemannian manifolds. In [Sin60], Singer gave necessary and
sufficient conditions to local homogeneity of a Riemannian manifold (Mn, g) in terms
of “constancy” of the Riemann curvature tensor R and its covariant derivatives ∇rR up
to order r 6 n(n−1)

2 .
The following result extends Singer’s theorem.
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Theorem L ([Pec16]). Let (M,G, ω) be a Cartan geometry modeled on (G,H) and
let r = dimH. If the maps κ, κ1, . . . , κr all have range in a single H-orbit, then the
Cartan geometry is locally homogeneous, i.e. its pseudo-group of local automorphisms
acts transitively.

Recall that a Riemannian metric onMn defines a Cartan geometry with model space
(O(n)nRn, O(n)) whose local automorphisms are local isometries of the metric. Hence,
Theorem L contains Singer’s original theorem and extends it naturally to other geome-
tries. This includes pseudo-Riemannian metrics, recovering an extension by Podesta-
Spiro, but also new situation such as a torsion free linear connection3 for which the same
statement as Singer’s works, but with order n2, since the corresponding model space is
(GLn(R) nRn,GLn(R)).

5.2.3 End of proof for the isometry group

We get back to the proof of Theorem 5.1 and (M, g) denotes a compact, simply-connected
manifold with an analytic Lorentzian metric. Recall that any connected maximal abelian
subgroup A < Isom(M, g) can be realized as the automorphims group of the disjoint
union g ∪ {X1, . . . , Xk}, where X1, . . . , Xk are Killing vector fields spanning the Lie
algebra of A.

As for any differentiable action, there exists an A-invariant, open-dense subset ΩA on
which A-orbits have locally constant dimension. A characteristic property of Lorentzian
signature is that in fact, A acts locally freely on this open subset. It follows from the
very elementary

Lemma 2. Let (V, q) be a real finite dimensional vector space endowed with a non-
degenerate quadratic form of signature (1, n − 1). Let W ⊂ V be a vector subspace and
f a linear isometry of V . If f acts trivially on both W and V/W , then f = id.

The geometric consequence is that given a Lorentzian manifold (N,h), a one-
parameter group of isometries {φt} and a foliation F of N , if φt fixes a point x ∈ N ,
preserves every leaf of F and acts trivially in restriction to Fx and trivially on the
transversal, then φt = id. Again, this is proper to Lorentzian geometry.

In the present situation, A being abelian, if a point x ∈ ΩA was fixed by a one param-
eter subgroup {φt} < A, then φt would act trivially on Tx(A.x) and on TxM/Tx(A.x).
By Lemma 2, dxφ

t = id, so φt = id because the metric is 1-rigid.
Now, A-acts locally freely on the open-dense Ω1 ∩ ΩA, where Ω1 is the first stratum

given by Theorem 5.3. By Corollary 11, the stabilizer of a point in Ω1 ∩ ΩA must
be finite. Desintegrating the invariant volume density defined by the metric along the
fibration φ1 : Ω1 →W , we obtain that Lebesgue-every orbit A.x has a finite A-invariant
measure. So finally, A itself has finite Haar measure, hence is a torus.

The conclusion is then a Lie theoretic property: A Lie group G all of whose maximal
abelian connected subgroups are tori is itself compact.

3This situation was partially covered by an article of Opozda in the analytic case, but additional
algebraic assumptions were required.
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5.3 The conformal case

The conformal case can be initiated similarly. We pick a maximal abelian subgroup
H < Conf(M, [g]) and want to prove compactness of H. All general properties of rigid
structures cited above are valid. Moreover, normal forms of conformal vector field near a
singularity of order 2 established in [FM13] allow to prove that H also acts locally freely
over an open-dense domain.

The missing ingredient is of course the H-invariant volume. It is possible4 that every
H-invariant measure on M is supported on the complement of the open-dense subset on
which H acts locally freely, so the final desintegration argument is no longer valid.

In a first attempt, we wanted to combine strong information on the dynamics of
maximal abelian subgroups provided by Theorem 5.3 and several results on normal forms
of conformal vector fields due to Frances and Melnick [FM13]. It was successful when the
maximal abelian subgroup H has no compact subgroup, but a difficult problem came up
when considering a mixed situation Tk ×R`.

It was counter-intuitive, because I had always perceived the presence of additional
symmetries as a simplification in a mathematical problem. Hence, being able to solve
the problem for the case H = R` but not Tk ×R` was a bit surprising.

The theoretical problem was that the information Gromov’s stratification theorem
provides is about the orbit structure of the whole automorphism group of a rigid analytic
structure (M,φ), but a priori smaller subgroups are not constrained and their orbits
could accumulate more complicatedly than what is predicted for Aut(M,φ)-orbits.

5.3.1 An instructive example of (S1 ×R)-action

Consider the Lorentzian Hopf manifold M = (R1,2 \ {0})/〈2 id〉. Let {ut} ⊂ O(1, 2)
be a unipotent one-parameter subgroup, and let S1 y M be the action induced by the
homothetic flow of R1,2. Combining both actions, we obtain a conformal action of the
cylinder H = S1×R on M . The latter is maximal abelian in the conformal group of M .

Of course, M is not simply-connected, but as a matter of fact, the H-action on M
satisfies all the conclusions of Theorem 5.3 and are arranged very similarly to an algebraic
action. The orbits of {ut} however do not. They all accumulate by spiraling to their
circles of fixed points, which are S1-orbits.

Hence, even though the action of this cylinder on this Hopf manifold satisfies all the
conclusions Gromov’s theory would have predicted if the manifold was simply-connected,
it does not follow logically from these properties that {ut} (or any copy of R in the
cylinder) behaves the same way. So additional ingredients were necessary.

5.3.2 Strategy of proof for Theorem J

Recall that we picked a maximal connected abelian subgroup H ' Tr × R` <
Conf(M, [g]). The proof splits mainly into two parts: in the first, we assume that H

4And it is very likely that such a phenomenon occurs in conformal dynamics. For instance in the
example of Section 5.3.1.
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admits fixed points, in the second we assume it does not. In both cases, we use repeat-
edly the following.

1. No open subset of (M, [g]) is conformally flat (analyticity and Proposition 5.1).

2. A conformal vector field of an analytic, non-conformally flat Lorentzian manifold
is locally linearizable near its singularities when they exist ([FM13]).

3. A compact simply-connected manifold does not admit real-analytic codimension 1
foliations (a theorem of Haefliger [Hae58]).

I sketch below the strategy in the simpler case H = S1 ×R.

Presence of fixed point By Corollary 11, every H-orbit has a compact H-orbit in
its closure. If a non-closed H-orbit contains a fixed point in its closure, then we are
essentially reduced to the case H ' R. By 2., the H action is locally linearizable near
any of its fixed points, and falls into two categories:

• eitherH is locally conjugate to A×L acting onR1,n−1, where A ⊂ R>0×O(1, n−1)
is an R-split one parameter subgroup, and L ⊂ O(1, n − 1) is a copy of S1 in the
maximal compact subgroup ;

• or H is locally conjugate to U × L acting on R1,n−1, where U < O(1, n − 1) is
a unipotent one parameter subgroup, and L ⊂ O(1, n − 1) is a copy of S1 in the
maximal compact subgroup ;

In both cases, there are points near the singularity fixed by S1 but not byR. TheirH-
orbit coincides with the R-orbit, so necessarily contain a singularity of the corresponding
flow in their closure by Corollary 11, which again is either of hyperbolic linear or unipotent
linear. This orbit is a connected component of a fiber f−1(f(x)), for f : Ui → Wi given
in the stratification theorem. We then prove that it cannot be unipotent thanks to
the last point of Corollary 11, and that if it is hyperbolic either an open subset must
be conformally flat, or there exists a non-singular, globally defined, isotropic conformal
vector field X whose orthogonal distribution X⊥ is integrable. The first case contradicts
1., and the second case contradicts 3.

Absence of fixed point. The next, more technical situation deals with the case of
an H-action without fixed point. We know that H-orbits always contain closed H-
orbits in their closure, so this implies that S1 acts locally freely and that for a certain
decomposition H = S1×R, an H-orbit converges to a circle S1.y which is fixed pointwise
by the R-action. These fixed points are either all linear unipotent or all linear hyperbolic.
The delicate situation is when they are all unipotent, i.e. when we the local picture near
the S1-orbit is very similar to the example of Section 5.3.1.

The origin of the difficulty resides notably in the fact that in the Hopf manifold case,
the dynamics of the unipotent one-parameter subgroup {ut} near any of its singularity is
“locally volume preserving” but globally essential. By this, I mean that it is not possible
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to see its essentiality by looking at the local picture of the conformal vector field near its
singularities, but rather by considering the whole spiraling dynamics around the circle of
fixed points, which always escape local linearization boxes of the flow.

The idea was then to consider times (tn) → +∞ such that φtn(x) → y and analyse
the dynamics of gn := φtn near S1.y. The interpretation of [g] in terms of Cartan
geometry allows to reduce this question to that of the algebraic description of a sequence
{pn} ⊂ P < O(2, n), where P denotes the maximal parabolic isomorphic to the stabilizer
of a null-line. This sequence is called the holonomy sequence of {gn} at y, a notion
introduced by Frances in [Fra12]. Using the information we have on the H-orbit at y,
technical algebraic considerations led to three possible asymptotic for pk via its Cartan
decomposition KA+K.

Dynamical foliations by hypersurfaces overs an open-dense subset, end of
proof. In each case, it follows that over an open-dense subset Ω, the curvature map
κ : G → E takes values in certain sub-modules, an observation which allowed to prove
the integrability over Ω of a dynamical distribution associated with {gn} called the ap-
proximately stable distribution. This gives rise to an analytic foliation by degenerate
hypersurfaces over the open-dense subset Ω, and paves the way for a final contradiction
by considering 1-dimensional H-orbits accumulated by leaves of the foliation.

5.3.3 Application of these methods to broader contexts

In [FM21], Frances and Melnick proved the Lorentzian Lichnerowicz conjecture in the
3-dimensional case, under an analyticity assumption. Precisely, if (M3, [g]) is a compact
3-manifold with an analytic Lorentzian conformal class, and if the identity component
Conf(M, [g])0 does not preserve any conformal metric, then (M, [g]) is conformally flat.
Their proof relates to the approach exposed above. They use similarly the stratification
of Autloc-orbits for the rigid structure defined by the disjoint union of [g] and an essential
conformal vector field X, though these are not necessarily orbits of the full automorphism
group. Nonetheless, they arrive to a special case where the local action integrates into a
glocal action of a cylinder S1 ×R. Most of the arguments above are then applied.
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