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Antonio Cuevas - Universidad Autónoma de Madrid - Rapporteur
Michael Kohler - Universität Darmstadt - Rapporteur





Remerciements

Je souhaite tout d’abord remercier Mathilde Mougeot, Antonio Cuevas et Michael Kohler qui m’ont fait

l’honneur d’accepter de rapporter ce manuscrit d’HDR. Merci pour votre travail minutieux et vos commen-

taires enthousiastes. Thanks Antonio and Michael, your respectives works on the level set and regression

estimation have been really inspiring for me. Je tiens également à remercier chaleureusement Gérard Biau,
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mes co-auteurs et en particulier Elena et Rémi qui partagent ma vie professionnelle et personnelle depuis tant

d’années.
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General Introduction

These notes present an overview of my research in statistics, with some incursions in industrial collaboration,

since my PhD thesis [LaloëLaloë, 20092009]. In this PhD I focused on the area of statistical learning [LaloëLaloë, 20082008, 20102010],

in particular for functional data. I started at this moment to work with R. ServienR. Servien on the topics of level sets

(for the regression function [Laloë and ServienLaloë and Servien, 20132013]) and density estimation [Laloë and ServienLaloë and Servien, 20162016].

During my ATER year at the “Institut de Science Financière et d’Assurance” (ISFA), I started a collaboration

with E. Di BernardinoE. Di Bernardino who was interested by the level set estimation in order to define new risk measures. In

particular we succeeded to estimate the level sets of a multivariate distribution function and provided a multi-

dimensional extension of the Conditional Tailed Expectation [Di Bernardino et al.Di Bernardino et al., 20132013]. Next we considered a

combination of the estimation of the regression function and of the distribution level sets to provide an estimator

of a new risk measure : the Covariate Conditional Tailed Expectation (CCTE, [Di Bernardino et al.Di Bernardino et al., 20152015]). A

difficulty of this work was to deal with the non compactness of the setting for the estimation of the regression

function. This leaded me to work on a new estimator of the regression function [Chagny et al.Chagny et al., 20172017] (with

G. ChagnyG. Chagny and R. ServienR. Servien) to handle this non compact setting.

Another axis of my research concerns clustering and classification. In particular I started to study quantization

of functional data (and applications to clustering) during my PhD. I have since continued to work on this

subject, and in particular proposed in [Laloë and ServienLaloë and Servien, 20132013] a practical way to use the estimators proposed

in [LaloëLaloë, 20102010].

I also had at heart to have interactions with other disciplines. That leaded me to collaborations in halieutic

[Brehmer et al.Brehmer et al., 20112011] and neuroscience [Chevallier and LaloëChevallier and Laloë, 20152015] with J. ChevallierJ. Chevallier. I am also engaged with

F. MathyF. Mathy and P. Reynaud-BouretP. Reynaud-Bouret in the co-direction of a PhD on cognitive science.

Finally I had the chance to start an industrial collaboration with the start-up Option WayOption Way, on the complex area

of airfare prediction.

Without giving all the details (all the proofs and simulation studies are available in the corresponding articles,

mentioned at the beginning of each chapter), these notes provide some overview of my main topics of research.

To keep the presentation as clear as possible, many mathematical details have been left apart and most results

are presented in an informal way on simple examples rather than in their full generality. Rigorous results with

many discussions and examples can be found in the articles and precise references are given in the notes. I also

changed some notation to keep a coherent presentation in the manuscript.
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Part I

A journey in the estimation of level
sets
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Introduction

The estimation of level sets is widely studied in the literature. In particular the estimation of density level

sets has been studied in [BáılloBáıllo, 20032003, Báıllo et al.Báıllo et al., 20012001, Biau et al.Biau et al., 20072007, Butucea et al.Butucea et al., 20072007, CadreCadre, 20062006,

PolonikPolonik, 19951995, Rigollet and VertRigollet and Vert, 20092009, TsybakovTsybakov, 19971997]. This profusion of articles on the subject is due to the

various practical uses of level sets. As an example, in the context of environmental monitoring, [Rahimi et al.Rahimi et al.,

20042004] consider the estimation of level sets of quantities such as solar radiation, humidity, etc. In a different

category, [Bryan et al.Bryan et al., 20062006] want to determine the subset of a parameter space that represents “acceptable”

hypotheses. We also will see in this part that level set estimation can be a suitable tool to generalize univariate

risk measures (Value at Risk, Conditional Tailed Expectation) in multivariate settings. So far, the level set

estimation has mostly be done under compactness assumption on the level sets. In particular, the problem of

estimating general level sets under compactness assumptions has been discussed by [Cuevas et al.Cuevas et al., 20062006].

I worked at first on the level set estimation for regression functions [Laloë and ServienLaloë and Servien, 20132013]. More recently,

I considered with E. Di BernardinoE. Di Bernardino, V. Maume-DeschampsV. Maume-Deschamps, C. PrieurC. Prieur [Di Bernardino et al.Di Bernardino et al., 20132013] the level set

estimation of a cumulative distribution function (c.d.f.), to propose new risk measures. The main difference in

our setting is that the level set cannot supposed to be compact any more. Thus we had to find a way to deal

with this non compactness.

Then, with E. Di BernardinoE. Di Bernardino and R. ServienR. Servien, I studied the behaviour of the regression function on a level set

of the c.d.f. of the covariates [Di Bernardino et al.Di Bernardino et al., 20152015]. One problem is to construct an estimator of the

regression function, without assuming the compactness of the support of the covariates. This leads to a work

with G. ChagnyG. Chagny and R. ServienR. Servien proposing a warped kernel estimator of the regression function [Chagny et al.Chagny et al.,

20172017].

This part is organised as follows. Chapter 11 is devoted to the estimation of the level sets of the c.d.f. In Chapter

22, I define and estimate our two new risk measures. Chapter 33 details our warped estimator of the regression

function. Finally I end this part by several prospects and ongoing works.
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Chapter 1

Estimating the level sets

This chapter, related to the article [Di Bernardino et al.Di Bernardino et al., 20132013] I wrote in collaboration with E. Di BernardinoE. Di Bernardino,

V. Maume-DeschampsV. Maume-Deschamps and C. PrieurC. Prieur , is dedicated to the cumulative distribution function (c.d.f.) level set

estimation. I skip a previous work on the regression function level set estimation [Laloë and ServienLaloë and Servien, 20132013].

However I will discuss in the prospects a new development I recently started on the subject. Moreover, in order

to be consistent with Chapters 22 and 33, I consider here random variables defined on Rd+ (instead of R2
+ as in

[Di Bernardino et al.Di Bernardino et al., 20132013]). This generalization is straightforward.

1.1 Definitions, Notations and Assumptions

Note F the set of continuous c.d.f. Rd+ → [0, 1] and Consider (X, Y ) a random pair on Rd+ × R, with FX ∈ F
the c.d.f. of X. We are interested in estimating the level sets of this c.d.f., defined by

L(α) := {x ∈ Rd+ : FX(x) > α}, α ∈ (0, 1).

We set

{FX = α} = {x ∈ Rd+ : FX(x) = α},

and given T > 0, truncated versions

L(α)T = {x ∈ [0, T ]d : FX(x) ≥ α}, and {FX = α}T = {x ∈ [0, T ]d : FX(x) = α}.

As discussed in [Di Bernardino et al.Di Bernardino et al., 20132013] and in the following, this truncation is necessary in order to deal

with the non compactness of the considered level sets. Furthermore, for any A ⊂ Rd+ we denote by ∂A its

boundary. Note that we restrict ourselves to Rd+ for convenience but the following results are completely adapt-

able in Rd.

In the metric space (Rd+, d), where d stands for the Euclidean distance, we denote by B(x, ρ) the closed ball

centred on x and with positive radius ρ. Let B(S, ρ) =
⋃

x∈S B(x, ρ), with S a closed set of Rd+. For t > 0,

ζ > 0 and α ∈ (0, 1), define

E = B({x ∈ Rd+ : | FX(x)− α |≤ t}, ζ),

and, for a twice differentiable function FX,

mO = inf
x∈E
‖(∇FX)x‖, MH = sup

x∈E
‖(HFX)x‖,

7
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Estimating the level sets

where (∇FX)x is the gradient vector of FX evaluated at x and ‖(∇FX)x‖ its Euclidean norm, (HFX)x the

Hessian matrix evaluated in x and ‖(HFX)x‖ its matrix norm induced by the Euclidean norm.

We chose to study the consistency properties of an estimator Ln(α)T of L(α)T with respect to two different

distances.

The Hausdorff distance:

The Hausdorff distance corresponds to an intuitive notion of “physical proximity” between sets. However the

metric dH (see (1.11.1) and (1.21.2) below) is not always completely successful in capturing the shape properties: two

sets can be very close in dH and still have quite different shapes. In order to avoid these situations, following

[Cuevas and Rodŕıguez-CasalCuevas and Rodŕıguez-Casal, 20042004] and [Cuevas et al.Cuevas et al., 20062006], a way to reinforce the notion of visual proximity

between two sets provided by dH is to impose the proximity of the respective boundaries. Thus we will consider

dH(∂Ln(α)T , ∂L(α)T ).

For sake of completeness, we recall that if A1 and A2 are compact sets in (Rd+, d), the Hausdorff distance between

A1 and A2 is defined by

dH(A1, A2) = inf{ρ > 0 : A1 ⊂ B(A2, ρ), A2 ⊂ B(A1, ρ)}, (1.1)

or equivalently by

dH(A1, A2) = max

{
sup
x∈A1

inf
y∈A2

‖ x− y ‖, sup
x∈A2

inf
y∈A1

‖ x− y ‖
}
. (1.2)

The above expression is well-defined even when A1 and A2 are just closed (not necessarily compact) sets but

in this case the value dH(A1, A2) could be infinite. Then in our setting, in order to avoid these situations we

need a truncated version of Assumption (T ) in [Cuevas et al.Cuevas et al., 20062006]. More precisely we introduce the following

assumption:

H: There exist γ > 0 and A > 0 such that, if | t − c | ≤ γ then ∀ T > 0 such that {FX = c}T 6= ∅ and

{FX = t}T 6= ∅,

dH({FX = c}T , {FX = t}T ) ≤ A | t− c | .

Assumption H is satisfied under mild conditions. Proposition 1.1.11.1.1 below is a slight modification of Proposition

3.1 in the PhD Thesis of Rodŕıguez-Casal [Rodŕıguez-CasalRodŕıguez-Casal, 20032003] in order to deal with non-compact sets, and

is proved in [Di Bernardino et al.Di Bernardino et al., 20132013].

Proposition 1.1.1 Let α ∈ (0, 1). Let FX ∈ F be twice differentiable on Rd∗+ . Assume there exist r > 0, ζ > 0

such that mO > 0 and MH <∞. Then FX satisfies Assumption H, with A = 2
mO .

The L1 distance:

Another possibility is to consider the volume (in the Lebesgue measure sense) of the symmetric difference

between L(α)Tn and Ln(α)Tn :

dλ(Ln(α)T ,L(α)T ) = λ
(
LTn (α)∆LT (α)

)
= λ

[
Ln(α)T ∩ LT (α)) ∪ (LTn (α) ∩ L(α)

]
,

where λ stands for the Lebesgue measure on Rd and 4 for the symmetric difference.
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1.2 Plug-in estimation of the Level Sets

1.2 Plug-in estimation of the Level Sets

Given {Xi}ni=1 an i.i.d sample in Rd+, drawn from a c.d.f. FX, we denote by Fn(·) = Fn(X1,X2, . . . ,Xn, ·) an

estimator of FX based on {Xi}ni=1.

1.2.1 Hausdorff Distance

From now on we note, for n ∈ N∗,

‖FX − Fn‖∞ = sup
x∈Rd+

| FX(x)− Fn(x) |,

and for T > 0

‖FX − Fn‖T∞ = sup
x∈ [0,T ]d

| FX(x)− Fn(x) | .

The following result, proved in [Di Bernardino et al.Di Bernardino et al., 20132013] can be considered as an adapted version of Theorem

2 in [Cuevas et al.Cuevas et al., 20062006].

Theorem 1.2.1 Let α ∈ (0, 1). Let FX ∈ F be twice differentiable on Rd∗+ . Assume that there exist t > 0,

ζ > 0 such that mO > 0 and MH < ∞. Let T1 > 0 such that for all α′ : | α′ − α | ≤ t, ∂L(α′)T1 6= ∅. Let

(Tn)n∈N∗ be an increasing sequence of positive values. Assume that, for each n and for almost all samples of

size n, Fn is an upper semi-continuous function and that

‖FX − Fn‖∞ → 0, a.s. (1.3)

Then

dH(∂L(α)Tn , ∂Ln(α)Tn) = O(‖FX − Fn‖∞), a.s.

Remark 1.2.1 1. Theorem 1.2.11.2.1 is slightly different from its equivalent in [Di Bernardino et al.Di Bernardino et al., 20132013]

where Fn was supposed continuous. The weakening of this assumption requires a trivial modification

of the proof and allows the use of the empirical c.d.f. for Fn.

2. Theorem 1.2.11.2.1 provides an asymptotic result for a fixed level α. In particular following the proof in

[Di Bernardino et al.Di Bernardino et al., 20132013] we remark that, for n large enough,

dH(∂L(α)Tn , ∂Ln(α)Tn) ≤ 6A ‖FX − Fn‖Tn∞ , a.s.,

where A = 2
mO . Note that if α is close to one, then mO can be very close to 0. This leads to a large value

of the constant A, degrading the performances of the estimation.

1.2.2 L1 Consistency

The previous section was devoted to the consistency of Ln in terms of the Hausdorff distance. We consider now

another consistency criterion introduced in the previous section: the consistency of the volume (in the Lebesgue

measure sense) of the symmetric difference between L(α)Tn and Ln(α)Tn . Let us introduce the following as-

sumption:

A1 There exist positive increasing sequences (vn)n∈N∗ and (Tn)n∈N∗ such that

vn

∫
[0,Tn]d

| FX − Fn |p λ(dx)
P→

n→∞
0,

for some 1 ≤ p <∞.
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Estimating the level sets

We now establish our consistency result in terms of the volume of the symmetric difference. We can interpret

the following theorem as a generalization of Theorem 3 in [Cuevas et al.Cuevas et al., 20062006] in the case of non-compact level

sets. In addition, we provide also a convergence rate for the symmetric difference between L(α)Tn and Ln(α)Tn .

Theorem 1.2.2 Let α ∈ (0, 1). Let FX ∈ F be twice differentiable on Rd∗+ . Assume that there exist t > 0,

ζ > 0 such that mO > 0 and MH < ∞. Assume that for each n, with probability one, Fn is measurable.

Let (vn)n∈N∗ and (Tn)n∈N∗ positive increasing sequences such that Assumption A1 is satisfied and that for all

α′ : | α′ − α | ≤ t, ∂L(α′)T1 6= ∅. Then it holds that

pn dλ(L(α)Tn ,Ln(α)Tn)
P→

n→∞
0,

with pn an increasing positive sequence such that pn = o

(
v

1
p+1
n /T

(d−1)∗p
p+1

n

)
.

The proof and a discussion around an assumption concerning ‖FX − Fn‖∞ are given in [Di Bernardino et al.Di Bernardino et al.,

20132013]. Theorem 1.2.21.2.2 provides a convergence rate, which is closely related to the choice of the sequence Tn.

A sequence Tn whose divergence rate is large implies a convergence rate pn quite slow. An example using the

empirical c.d.f. (in the bivariate case) for Fn is also provided in [Di Bernardino et al.Di Bernardino et al., 20132013].

Conclusion

At this point, we dispose of an estimator for the level sets of a multivariate c.d.f. The empirical study we provided

in [Di Bernardino et al.Di Bernardino et al., 20132013] illustrates perfectly the rates of consistency of Theorem 1.2.21.2.2 and emphasizes the

key role of the choice of Tn. This choice remains a difficult and open problem. I will now present how we use

these level sets to define new risk measures.

10



Chapter 2

Introduction of new risk measures

In this chapter, related to two papers I wrote with E. Di BernardinoE. Di Bernardino, V. Maume-DeschampsV. Maume-Deschamps, C. PrieurC. Prieur and

R. ServienR. Servien [Di Bernardino et al.Di Bernardino et al., 20132013, 20152015], I introduce and estimate two new risk measures: the multivariate

Conditional Tailed Expectation (Section 2.12.1) and the Covariate Conditional Tailed expectation (Section 2.22.2).

As in the previous chapter I consider random variables defined on Rd+ (instead of R2
+ in [Di Bernardino et al.Di Bernardino et al.,

20132013]).

2.1 Multivariate Conditional Tailed Expectation (CTE)

From the usual definition in the univariate setting we know that the quantile function QX provides a point

which accumulates a probability α to the left tail and 1−α to the right tail. More precisely, given an univariate

continuous and strictly monotonic cumulative distribution function (c.d.f.) FX ,

QX(α) = F−1
X (α), ∀α ∈ (0, 1). (2.1)

The notion of univariate quantile function QX is used in risk theory to define an univariate measure of risk: the

Value-at-Risk (VaR). This measure is defined as

VaRα(X) = QX(α), ∀α ∈ (0, 1). (2.2)

Following the general ideas of [Embrechts and PuccettiEmbrechts and Puccetti, 20062006] and [Nappo and SpizzichinoNappo and Spizzichino, 20092009] an intuitive

generalization of the VaR measure in the case of a multidimensional c.d.f. FX is given by its α-quantile curves.

More precisely:

Definition 2.1.1 For α ∈ (0, 1) and FX ∈ F , the multidimensional Value-at-Risk at probability level α is the

boundary of its α-level set, i.e. VaRα(FX) = ∂L(α).

For details about a parametric formulation of the quantile curve ∂L(α) see [Belzunce et al.Belzunce et al., 20072007]. For details

about its properties see for instance [Fernández-Ponce and Suárez-LlorénsFernández-Ponce and Suárez-Lloréns, 20022002] (and references therein) and

[Nappo and SpizzichinoNappo and Spizzichino, 20092009].

Then, using an estimator Fn as in Section 1.21.2, we can define our plug-in estimator of the multivariate Value-

at-Risk by

VaRα(Fn) = ∂Ln(α), for α ∈ (0, 1).

Moreover, under assumptions of Theorem 1.2.11.2.1, we obtain a consistency result, with respect to the Hausdorff

distance, for the VaRα(Fn) on the quadrant Rd+ i.e.

dH(VaRα(FX)Tn ,VaRα(Fn)Tn) = O(‖FX − Fn‖∞), a.s.
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Introduction of new risk measures

As in the univariate case, the multi-dimensional VaR at a predetermined level α does not give any information

about the thickness of the upper tail of the c.d.f. This is a considerable shortcoming of VaR measure because

in practice we are not only concerned with frequency of the default but also with the severity of loss in case of

default. In other words we are interested to analyse the behaviour of X not only on the boundary but also in

the whole α-level set.

In dimension one, in order to overcome this problem, another risk measure has recently received growing

attention in insurance and finance literature: the Conditional Tail Expectation (CTE). Following [Artzner et al.Artzner et al.,

19991999] and [Dedu and CiumaraDedu and Ciumara, 20102010], for a continuous c.d.f. FX the CTE at level α is defined by

CTEα(X) = E[X |X ≥ VaRα(X) ],

where VaRα(X) is the univariate VaR in (2.22.2). For a comprehensive treatment and for references to the exten-

sive literature on VaRα(X) and CTEα(X) one may refer to [Denuit et al.Denuit et al., 20052005].

In [Di Bernardino et al.Di Bernardino et al., 20132013] we discussed the several bivariate generalizations of the classical univariate CTE

and we proposed a new one. I propose here the same generalization but in the d-dimensional case. This gener-

alization (from bivariate to multivariate CTE) is straightforward and I refer to [Di Bernardino et al.Di Bernardino et al., 20132013] for

the proofs of the theoretical results. Let us first introduce the following assumption:

A2: X = (X(1), . . . , X(d)) is a random vector on Rd+ fulfilling E((X(i))2) < ∞ ∀i = 1, . . . , d. The random

vector X has a λ-density function f such that
∫
f1+εdλ <∞, for some ε > 0.

Definition 2.1.2 Consider a random vector X satisfying Assumption A2, with associate distribution function

FX ∈ F . For α ∈ (0, 1), we define

1. the multivariate α-Conditional Tail Expectation

CTEα(X) = E[X|X ∈ L(α)] =
(
E[X(i)|X ∈ L(α)]

)
1≤i≤d

2. the estimated multivariate α-Conditional Tail Expectation

ĈTEα(X) =

∑n
j=1X

(i)
j 1{(Xj)∈Ln(α)}∑n

j=1 1{X(i)
j ∈Ln(α)}


1≤i≤d

(2.3)

An advantage of our CTEα(X) is that it does not use an aggregate (over the d elements of the vector) variable

(sum, min, max . . .) in order to analyse the multivariate risk’s issue. By contrast, using a geometric approach,

CTEα(X) rather deals with the simultaneous joint damages considering the multivariate dependence structure

of data in a specific risk’s area L(α). We also introduce truncated versions of the theoretical and estimated

CTEα:

CTETα(X) = E[X|X ∈ L(α)T ],

and

ĈTE
T

α(X) =

∑n
j=1X

(i)
j 1{(Xj)∈Ln(α)T }∑n

j=1 1{X(i)
j ∈Ln(α)T }


1≤i≤d

,

where L(α)T and Ln(α)T are the truncated versions of theoretical and estimated upper α-level set defined in

Chapter 11.
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2.2 Covariate Conditional Tailed Expectation (CCTE)

Theorem 2.1.1 Under Assumption A2, Assumptions of Theorem 1.2.21.2.2 and with the notation of Theorem

1.2.21.2.2, it holds that

βn
∣∣CTETnα (X)− ĈTE

Tn

α (X)
∣∣ P→
n→∞

0, (2.4)

where βn = min{ p
ε

2(1+ε)
n , an }, with ε > 0 satisfying Assumption A2 and an = o (

√
n).

The convergence in (2.42.4) must be interpreted as a componentwise convergence. In the case of a bounded density

function f(X,Y ) we obtain βn = min{√pn, an }. The special case where Fn is the empirical c.d.f. is discussed in

[Di Bernardino et al.Di Bernardino et al., 20132013]

Remark 2.1.1 It could be interesting to consider the convergence
∣∣CTEα(X)− ĈTE

Tn

α (X)
∣∣. We re-

mark that in this case the speed of convergence will also depend on the convergence rate to zero of∣∣ CTEα(X)− CTETnα (X)
∣∣ , then, in particular of P[(X) ∈ L(α) \ L(α)Tn ] for n → ∞. More precisely∣∣CTEα(X)− CTETnα (X)
∣∣ decays to zero at least with a convergence rate (P[

⋃
i(Xi ≥ Tn)])−1.

2.2 Covariate Conditional Tailed Expectation (CCTE)

In this section we are interested in another notion of risk studied in [Di Bernardino et al.Di Bernardino et al., 20152015]: the Covariate

Conditional Tailed Expectation (CCTE). The goal is to provide an indicator of the behaviour of a covariate Y

on the level sets of a d-dimensional vector of risk factors X. More precisely, adapting the multivariate CTE

defined in the previous section we define the Covariate Conditional Tailed Expectation by

CCTEα(X, Y ) := E[Y |X ∈ L(α)], with α ∈ (0, 1). (2.5)

In [Di Bernardino et al.Di Bernardino et al., 20152015] we first studied the Lp-consistency of the estimation of the regression function

r(x) = rY |X(x) = E[Y |X = x] on the level sets of FX. We will focus only here on the estimation of the CCTE

and its “truncated version”

CCTETα(X, Y ) := E[Y |X ∈ L(α)T ], for T > 0.

2.2.1 Covariable Y is measured

Let us first assume that the covariable is measured for all the data. Assume that we have an i.i.d. sample

{(Xi, Yi)}i=1,...,n. We introduce the following assumption:

A3 There exist three positive increasing sequences (v1,n)n∈N∗ and (Tn)n∈N∗ such that v1,n → ∞, Tn → ∞,

and

v1,n

∫
[0,Tn]d

| FX(x)− Fn(x) |p λ(dx)
P→ 0,

for some 1 ≤ p <∞.

We can now define our estimator for the CCTE and establish the consistency of this estimator with a convergence

rate.

Definition 2.2.1 Consider a random vector X with c.d.f. FX and a random variable Y . For α ∈ (0, 1), we

estimate CCTETα(X, Y ) by

ĈCTE
Tn

α,n(X, Y ) = En

[
Y |X ∈ Ln(α)Tn

]
,
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Introduction of new risk measures

where En denotes the empirical version of the expected value.

Theorem 2.2.1 Let α be in (0, 1). Let FX ∈ F be a twice differentiable c.d.f. on Rd∗+ with an associated density

f such that Assumption A2 is satisfied. Assume that there exist t > 0, ζ > 0 such that mO > 0 and MH <∞.

Let T1 > 0 such that for all α′ : | α′ − α | ≤ t, ∂L(α′)T1 6= ∅. Assume that for each n, Fn is measurable. Let

(v1,n)n∈N∗ and (Tn)n∈N∗ positive increasing sequences such that Assumption A3 is satisfied. We have

βn

∣∣∣∣ĈCTE
Tn

α,n(X, Y )− CCTETnα (X, Y )

∣∣∣∣ P−−−−→
n→∞

0,

with βn = min
(
p

ε
2(1+ε)
n , dn

)
, where pn = o

(
v

p
p+1

1,n /T
d+(d−1)p
p+1

n

)
and dn = o (

√
n).

Remark 2.2.1 Similarly to Remark 2.1.12.1.1, it could also be very interesting to consider the convergence∣∣ĈCTE
Tn

α,n(X, Y ) − CCTEα(X, Y )
∣∣. We remark that in this case the speed of convergence will also depend on

the convergence rate to zero of
∣∣CCTETnα (X, Y )− CCTEα(X, Y )

∣∣, then, in particular of P[X ∈ L(α) \L(α)Tn ],

for n → ∞. This could not be done without adding strong assumptions and careful developments and has not

been considered yet.

The particular case of the empirical c.d.f. has been studied in [Di Bernardino et al.Di Bernardino et al., 20152015].

2.2.2 Covariable Y is partially unknown

We deal now with a more difficult case. We suppose that the covariable Y cannot be measured for all the

individuals. It could happen if a measure of Y is very expensive or invasive (in some medical treatment, for

example). So we have two different i.i.d. samples: S1
N1

= {(Xi, Yi)}N1
i=1 and S2

N2
= {Xj}N2

j=1, with N2 potentially

much bigger than N1.

In this case we use S1
N1

to get an estimator rN1
of the regression function r. Then, we apply this estimator on

the sample S2
N2

in order to estimate the CCTE measure. To this aim we define:

Definition 2.2.2 Consider a random vector X with c.d.f. FX, a random variable Y and two i.i.d. samples

S1
N1

and S2
N2

. For α ∈ (0, 1), we define our estimator of the CCTE by

ĈCTE?
TN2

α,N1,N2
(X, Y ) = EN2

[
rN1

(X)|X ∈ LN2
(α)TN2

]
.

Before establishing a rate of consistency we need to introduce a new assumption:

A3′ There exist three positive increasing sequences (v1,n)n∈N∗ , (v2,n)n∈N∗ and (Tn)n∈N∗ such that v1,n →∞,

v2,n →∞, Tn →∞, and

v1,N1
‖rN1

− r‖p
P→ 0, v2,N2

∫
[0,TN2

]d
| FX(x)− FN2

(x) |p λ(dx)
P→ 0, for some 1 ≤ p <∞.

The following result proves the consistency of the estimator introduced in Definition 2.2.22.2.2.

Theorem 2.2.2 Let α be in (0, 1). Let FX ∈ F be a twice differentiable c.d.f. on Rd∗+ with an associated

density f such that Assumption A2 is satisfied. Assume that there exist t > 0, ζ > 0 such that mO > 0 and

MH < ∞. Let T1 > 0 such that for all α′ : | α′ − α | ≤ t, ∂L(α′)T1 6= ∅. Let (v1,n)n∈N∗ , (v2,n)n∈N∗ and

(Tn)n∈N∗ positive increasing sequences such that Assumption A3′ is satisfied. Assume that r is a continuous

and positive regression function such that E
[
r(X)2

]
<∞. We have

βN1,N2

∣∣∣∣ĈCTE?
TN2

α,N1,N2
(X, Y )− CCTE

TN2
α (X, Y )

∣∣∣∣ P→ 0, for N1, N2 →∞,
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with βN1,N2
= min

(
p

ε
2(1+ε)

N2
, cN1

, dN2

)
, pN2

= o

(
v

p
p+1

2,N2
/T

d+(d−1)p
p+1

n

)
, cN1

= o (E|rN1
(X)− r(X)|) and dN2

=

o
(√
N2

)
.

Note that, compared to Theorem 2.2.12.2.1, we have a supplementary term cN1
. This term controls the rate of conver-

gence of rN1
toward r. Again, the particular case of the empirical c.d.f. has been studied in [Di Bernardino et al.Di Bernardino et al.,

20152015]. Note that assumption A3′ implies to consider an estimator of the regression function that do not assume

a bounded support. The next chapter is devoted to the introduction of such an estimator.

Conclusion

Starting from the estimation of the level sets of a multivariate cumulative distribution function (see Chapter 11),

I presented two new risk measures: the CTE and CCTE. In both cases a plug-in estimator was provided and

studied. We provide an empirical study of the performance of our estimator of the CTE in [Di Bernardino et al.Di Bernardino et al.,

20132013]. It confirms the key role of Tn, specially for high values of α. We also provide an illustration on real

data. We present an equivalent empirical study for our estimator of the CCTE in [Di Bernardino et al.Di Bernardino et al., 20152015],

confirming the theoretical rates of consistency. In order to deal with the non compactness of the setting to

estimate the regression function, we used a kernel estimator provided by [Kohler et al.Kohler et al., 20092009]. Moreover we

perform an comparison with parametric and semi-parametric approaches, and establish the relevance of our

estimator in general cases. Finally we provide an application on a real data-set. The next chapter provides a

new and estimator of the regression function, suitable to our estimator of the CCTE.
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Chapter 3

Estimating the regression function

In this chapter, dedicated to the article I wrote with G. ChagnyG. Chagny and R. ServienR. Servien [Chagny et al.Chagny et al., 20172017], I use a

warping approach to propose a new estimator of the regression function in a non compact support design. The

goal was to propose an efficient estimator satisfying Assumption A3’ of the previous chapter.

3.1 Preliminary notions

Let (X, Y ) be a couple of random variables taking values on Rd × R such that

Y = r(X) + ε, (3.1)

with ε a centred real random variable with finite variance independent of X = (X1, . . . , Xd). Assume that we

have an independent identically distributed (i.i.d. in the sequel) sample (Xi, Yi)i=1...n distributed as (X, Y ).

The subject of the paper is the estimation of the multivariate regression function r(x) = E[Y |X = x] on a subset

A ⊂ Rd, with a warping device described below, that also requires the estimation of the dependence structure

between the coordinates of X.

Regression estimation is a classical problem in statistics, addressed in a significant number of research works

frequently based on non-parametric methods such as kernel estimators [NadarayaNadaraya, 19641964, WatsonWatson, 19641964], lo-

cal polynomial estimators [Fan and GijbelsFan and Gijbels, 19961996], orthogonal series or spline estimators [Antoniadis et al.Antoniadis et al.,

19971997, BaraudBaraud, 20022002, EfromovichEfromovich, 19991999, Golubev and NussbaumGolubev and Nussbaum, 19921992] and nearest neighbour-type estimators

[Guyader and HengartnerGuyader and Hengartner, 20132013, StuteStute, 19841984]. Among kernel methods, the most popular estimator is the well-

known Nadaraya-Watson estimator, defined for model (3.13.1) by

r̂NW (x) =

∑n
i=1 YiKh(x−Xi)∑n
i=1Kh(x−Xi)

, (3.2)

where h = t(h1, . . . , hd) is the bandwidth of the kernel K, Kh(x) = K1,h1(x1)K2,h2(x2) . . .Kd,hd(xd), with

Kl,hl(x) = Kl(x/hl)/hl for hl > 0, and Kl : R→ R such that
∫
RKl(x)dx = 1, l = 1, . . . , d.

A commonly shared assumption for regression analysis is that the support of X is a compact subset of Rd

[Furer and KohlerFurer and Kohler, 20152015, Guyader and HengartnerGuyader and Hengartner, 20132013, Györfi et al.Györfi et al., 20022002]. It could be very restrictive in

some situations such as for example the estimation of the regression function on the level sets of the cumula-

tive distribution function (c.d.f.) [Di Bernardino et al.Di Bernardino et al., 20152015]. To weaken this assumption, [Kohler et al.Kohler et al., 20092009]

assume some smoothness properties on the regression function. It requires that the partial derivatives of the

regression function r are k-Hölderian with a constant C (for further details see Definition 1 in [Kohler et al.Kohler et al.,

20092009]). So far, this estimator was the only one we found adapted to estimate our CCTE. With the “warping
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Estimating the regression function

trick” we intend to further weaken the assumptions on the regression function.

Warped estimators [Kerkyacharian and PicardKerkyacharian and Picard, 20042004, YangYang, 19811981] require very few assumptions on the support

of X. If we assume, for a sake of clarity, that d = 1, the warped method is based on the introduction of

the auxiliary function g = r ◦ F−1
X , where FX : x ∈ R 7→ P(X ≤ x) is the c.d.f. of the design X. First, an

estimator ĝ is proposed for g, and then, the regression r is estimated using ĝ ◦ F̂ , where F̂ is the empirical

c.d.f. of X. This strategy has already been applied in the regression setting using projection methods [ChagnyChagny,

20132013, Kerkyacharian and PicardKerkyacharian and Picard, 20042004, Pham NgocPham Ngoc, 20092009] but also for other estimation problems (conditional

density estimation, hazard rate estimation based on randomly right-censored data, and c.d.f. estimation from

current-status data, see e.g. [ChagnyChagny, 20152015, Chesneau and WillerChesneau and Willer, 20152015]). If the warping device permits to

weaken the assumptions on the design support, the warped estimators also depend on a unique bandwidth (for

d = 1), whereas the ratio form of the kernel estimator (3.23.2) requires the selection of two smoothing parameters

(one for the numerator, one for the denominator). In return, the c.d.f. FX of X has to be estimated, but this

can simply be done using its empirical counterpart. This does not deteriorate the optimal convergence rate,

since this estimator converges at a parametric rate. A data-driven selection of the unique bandwidth involved in

the resulting warped kernel estimator, in the spirit of [Goldenshluger and LepskiGoldenshluger and Lepski, 20112011] leads to non-asymptotic

risk bounds when d = 1 [ChagnyChagny, 20152015]. To our knowledge, this adaptive estimation has never been carried out

for a ratio regression estimator, the only reference on this subject being [Ngoc BienNgoc Bien, 20142014] who assumes that

the design X has a known uniform distribution.

Nevertheless, the extension of the warped strategy to the multivariate framework is not trivial, and we propose to

deal with this problem here. The key question is to take into account the dependence between the multivariate

components of each Xi. We propose to tackle this problem by using copulas, that permit to describe the

dependence structure between random variables [Jaworski et al.Jaworski et al., 20102010, SklarSklar, 19591959]. The price to pay is the

additional estimation of the copula density of the design: the complete strategy requires the plug-in of such

estimator in the final warped regression estimator. The sequel is thus organized as follows. I explain in Section

3.23.2 how we extend the [YangYang, 19811981] estimator to the multivariate design framework. For sake of clarity, I first

concentrate on the simple toy case of known design distribution (Section 3.33.3): under mild assumptions, we

derive (i) a non-asymptotic oracle type inequality for an integrated criterion for a warped kernel estimator with

a data-driven bandwidth selected with a Lepski-type method, and (ii) an optimal convergence rate over possibly

anisotropic functional classes. Then, a kernel copula estimator that also adapts automatically to the unknown

smoothness of the design is exhibited and studied in Section 3.43.4. An oracle type inequality is then proved.

Finally, warped regression estimation with unknown copula density is the subject of Section 3.53.5: as expected,

the risk of the final estimator depends on the risks of both the copula estimator and the regression estimator

with known design density.

3.2 Multivariate warping strategy

If d = 1, the warping device is based on the transformation F (Xi) of the data Xi, i = 1, . . . , n. For d > 1,

a natural extension is to use Fl(Xl,i), for l = 1, . . . , d and i = 1, . . . , n, where Fl is the marginal c.d.f. of

Xl. Let us introduce F̃X : x = (xl)l=1,...,d ∈ Rd 7→ (F1(x1), . . . , Fd(xd)). Assume that F̃−1
X : u ∈ [0, 1]d 7→

(F−1
1 (u1), . . . , F−1

d (ud)) exists, and let

g = r ◦ F̃−1
X ,

in such a way that r = g◦ F̃X. If we consider that the marginal variables Xl of X are independent, the estimator
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3.3 The simple case of known design distribution

of [YangYang, 19811981] can immediately be adapted to the multivariate setting. We set

ĝ⊥⊥ : u 7→
n∑
i=1

YiKh(u− F̃X(Xi)) (3.3)

to estimate g, and it remains to compose by the empirical counterpart of F̃X to estimate r. However, a

dependence between the coordinates Xl,i of Xi generally appears. The usual model for this dependence use a

copula C [Jaworski et al.Jaworski et al., 20102010, SklarSklar, 19591959], and the c.d.f. FX of X can be written

FX(x) = C(F1(x1), . . . , Fd(xd)) = C(F̃X(x)).

Denoting the copula density by c, we have

c(u) =
∂dC

∂u1 . . . ∂ud
(u), u ∈ [0; 1]d,

and the density fX of X can be expressed as

fX(x) = c(F̃X(x))

d∏
l=1

fl(xl), x = (xl)l=1,...,d ∈ Rd,

where (fl)l=1,...,d are the marginal densities of X = (X1, . . . , Xd). It can then be proved that the previous

estimator given by (3.33.3) estimates cg and not g (see the computation (3.73.7) below). As a consequence, we

propose to set, as an estimator for g,

ĝh(u) =
1

nĉ(u)

n∑
i=1

YiKh(u− ̂̃FX(Xi)), u ∈ [0, 1]d,

where ĉ is an estimator of the copula density. We denote by
̂̃
FX : Rd → [0; 1]d the empirical multivariate

marginal c.d.f.:

̂̃
FX = (

̂̃
FX,1, . . . ,

̂̃
FX,d),

̂̃
FX,l(xl) =

1

n

n∑
i=1

1Xl,i≤xl , xl ∈ R, l ∈ {1, . . . , d}, (3.4)

and finally set

r̂h(x) = ĝh ◦
̂̃
FX(x) =

1

nĉ(
̂̃
FX(x))

n∑
i=1

YiKh(
̂̃
FX(x)− ̂̃FX(Xi)) (3.5)

to rebuild our target function r from the data. In the sequel, we denote by ‖ · ‖ the (unweighted) L2-norm on

L2(Rd) and, more generally, by ‖ · ‖Lp(Θ) the classical Lp-norm on a set Θ.

3.3 The simple case of known design distribution

3.3.1 Collection of kernel estimators

For the sake of clarity, we first consider the regression estimation problem with a known design distribution. In

this section, the copula density c and the marginal c.d.f. F̃X are consequently considered to be known. Thus,

(3.53.5) becomes

r̂h(x) = ĝh ◦ F̃X(x) =
1

nc(F̃X(x))

n∑
i=1

YiKh(F̃X(x)− F̃X(Xi)), (3.6)

where we denote ĝh(u) =
∑n
i=1 YiKh(u− F̃X(Xi))/(nc(u)), u ∈ [0, 1]d. The following computation enlights the

definitions (3.53.5) and (3.63.6) above. For any u ∈ [0, 1]d,
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Estimating the regression function

E[ĝh(u)] = E

[
Y Kh(u− F̃X(X))

c(u)

]
,

= E

[
r(X)Kh(u− F̃X(X))

c(u)

]
,

=
1

c(u)

∫
Rd
r(x)Kh(u− F̃X(x))c(F̃X(x))

d∏
l=1

fl(xl)dx,

=
1

c(u)

∫
[0,1]d

g(u′)Kh(u− u′)c(u′)du′,

=
Kh ? (cg1[0,1]d)

c
(u). (3.7)

where ? is the convolution product. For small h, the convolution product Kh ? (cg)1[0,1]d is supposed to be

closed to cg:this justifies that ĝh is suitable to estimate g, and r̂h suits well to recover the target r.

3.3.2 Risk of the estimator with fixed bandwidth

A global integrated criterion is considered to study the properties of our estimators. Let ‖.‖fX be the classical

L2-norm on the space of squared integrable functions with respect to the Lebesgue measure weighted by fX on

A: for any function t in this space,

‖t‖2fX =

∫
A

t2(x)fX(x)dx =

∫
F̃X(A)

t2 ◦ F̃−1
X (u)c(u)du.

The mean integrated squared risk of the estimator r̂h can thus be written

E‖r̂h − r‖2fX = E

∫
A

(r̂h(x)− r(x))
2
fX(x)dx = E

∫
F̃X(A)

(ĝh(u)− g(u))
2
c(u)du

and, using a classical bias-variance decomposition, we have E[‖r̂h − r‖2fX ] = B(h) + V (h), where

B(h) =

∫
F̃X(A)

c(u)

(
Kh ? (cg1[0,1]d)

c
(u)− g(u)

)2

du,

V (h) =

∫
F̃X(A)

c(u)

(
ĝh(u)−

Kh ? (cg1[0,1]d)

c
(u)

)2

du.

To obtain upper-bounds for these two terms, we introduce the following assumptions.

(Hc,low) The copula density is lower bounded: ∃mC > 0, ∀u ∈ [0, 1]d, c(u) ≥ mC .

(Hcg,β) The function cg1F̃X(A) belongs to an anisotropic Nikol’skĭı ball N2(β, L), with L > 0 and β =

(β1, . . . , βd) ∈ (R∗+)d [Nikol’skĭıNikol’skĭı, 19751975]. This is the set of functions f : Rd 7→ R such that f admits

derivatives with respect to xl up to the order bβlc (where bβlc denotes the largest integer less than βl),

and

(i) for all l ∈ {1, . . . , d}, ‖∂bβlcf/(∂xl)bβlc‖L2(Rd) ≤ L,

(ii) for all l ∈ {1, . . . , d} and t ∈ R,∫
Rd

∣∣∣∣ ∂bβlcf(∂xl)bβlc
(x1, . . . , xl−1, xl + t, xl+1, . . . , xd)−

∂bβlcf

(∂xl)bβlc
(x)

∣∣∣∣2 dx ≤ L2|t|2(βl−bβlc).

(HK,`) The kernel K is of order ` ∈ (R+)d, i.e.
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3.3 The simple case of known design distribution

(i) ∀l ∈ {1, . . . , d}, ∀k ∈ {1, . . . , `l},
∫
Rd x

k
lK(x)dx = 0.

(ii) ∀l ∈ {1, . . . , d},
∫
Rd(1 + xl)

`lK(x)dx <∞.

Note that Assumption (Hc,low) is verified for the Frank copula. In the the bivariate case, the Frank copula

(with parameter θ 6= 0) is defined by

C(u, v) = −1

θ
log

(
1 +

(exp(−θu)− 1)(exp(−θv)− 1)− 1

exp(−θ)− 1

)
.

For other copulas we always can restrict the estimation to a subset A ⊂ Rd to exclude problematic points

of F̃X(A) (see [Balakrishnan and LaiBalakrishnan and Lai, 20092009] for more details on other specific copula densities). Assumptions

(Hcg,β) and (HK,`) are classical for non-parametric multivariate kernel estimation [Comte and LacourComte and Lacour, 20132013,

Goldenshluger and LepskiGoldenshluger and Lepski, 20112011] to control the bias term B(h). Assumption (HK,`) is not restrictive since a

wide range of kernels could be chosen. In (Hcg,β), the index β measures the smoothness of the function cg. The

difficulty is that this smoothness assumption is made directly on cg, and not on the targeted function r. It is

for example satisfied if the two functions c and g separately belong to N2(β, L′) (L′ > 0), for β such that each

βl ≤ 1, l ∈ {1, . . . , d}. Furthermore, the fact that the assumption is carried by the auxiliary function g and not

r is classical in warped methods [ChagnyChagny, 20152015, Pham NgocPham Ngoc, 20092009]. Another solution is to consider weighted

spaces: lots of details can be found in [Kerkyacharian and PicardKerkyacharian and Picard, 20042004]. Using these assumptions we state the

following proposition.

Proposition 3.3.1 Assume (Hc,low), (Hcg,β) and (HK,`) for an index ` ∈ Rd+ such that `j ≥ bβjc. Then,

E[‖r̂h − r‖2fX ] ≤ 1

mc

(
L

d∑
l=1

h2βl
l + ‖K‖2E[Y 2

1 ]
1

nh1 . . . hd

)
.

This is a non-asymptotic bias-variance upper bound for the quadratic risk. The first term of the right-hand-side

of the inequality of Proposition 3.3.13.3.1 is an upper-bound for the bias term B(h). The second one bounds the

variance term. Another choice would have been to kept B(h) in the inequality (in this case, Assumptions

(Hcg,β) and (HK,l) are not required). But now we could immediately deduce the following convergence rate.

Corollary 3.3.1 Under the same assumptions as Proposition 3.3.13.3.1, there exists a bandwidth h(β) such that

E[‖r̂h(β) − r‖2fX ] = O
(
n
− 2β̄

2β̄+d

)
,

where β̄ is the harmonic mean of β1, . . . , βd: dβ̄−1 = β−1
1 + · · ·+ β−1

d .

Thus the usual convergence rate in multivariate non-parametric estimation can be achieved by our estimator,

provided that its bandwidth is carefully chosen. Here, the bandwidth h(β) that minimizes the upper-bound

of the inequality of Proposition 3.3.13.3.1 depends on the smoothness index of the function cg. The challenge of

adaptive estimation is to propose a data-driven choice that also leads to an estimator with the same optimal

convergence rate.

Remark 3.3.1 Note that Corollary 3.3.13.3.1 implies that our estimator satisfies Assumption A3’ of the previous

chapter.

3.3.3 Estimator selection

Let Hn ⊂ (R∗+)d a finite bandwidth collection. We set

B̂(h) = max
h′∈Hn

{∥∥∥∥Kh ? (cĝh′)

c
◦ F̃X − r̂h′

∥∥∥∥2

fX

− V̂ (h′)

}
+
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Estimating the regression function

with

V̂ (h) = κ

∑n
i=1 Y

2
i

m̂c

1

nh1 . . . hd
, (3.8)

where κ > 0 is a tuning constant and m̂c an estimator for mc. We define

ĥ = arg min
h∈Hn

{B̂(h) + V̂ (h)}, (3.9)

and the final estimator r̂ĥ. The criterion (3.93.9), inspired from [Goldenshluger and LepskiGoldenshluger and Lepski, 20112011], is known to

mimic the optimal “bias-variance” trade-off that has to be realized in a data-driven way. We also introduce

h̃ = arg minh∈Hn{B̃(h) + Ṽ (h)} with

B̃(h) = max
h′∈Hn


∥∥∥∥∥Kh ? (cĝh′1F̃X(A))

c
◦ F̃X − r̂h′

∥∥∥∥∥
2

fX

− Ṽ (h′)


+

and

Ṽ (h) = κ0
E[Y 2

1 ]

mc

1

nh1 . . . hd
, κ0 > 0.

We start with the study of the estimator r̂h̃. The collection Hn is chosen such that

∃α0 > 0, κ1 > 0,
∑

h∈Hn

1

h1 · · ·hd
≤ κ1n

α0 (3.10)

and ∀κ1 > 0,∃C0 > 0,
∑

h∈Hn

exp

(
− κ1

h1 · · ·hd

)
≤ C0.

These assumptions are very common to derive such estimators [ChagnyChagny, 20152015, Comte and LacourComte and Lacour, 20132013]. For

example, Hn = {k−1
1 · · · k

−1
d , kl ∈ {1, . . . , bn1/rc}, l = 1, . . . , d} satisfies them with α0 = 2d/r.

We also introduce additional assumptions:

(Hε) The noise ε is p+ 2 integrable, for some p > 2α0: E[|ε|2+p] <∞.

(Hc,high) The copula density is upper-bounded over [0, 1]d: ∃MC > 0, ∀u ∈ [0, 1]d, c(u) ≤MC .

The assumption (Hc,high) is quite restrictive. However, it will also be required for copula density estimation

(Section 3.43.4), and is classical for adaptive density estimation purpose. It is satisfied also by the Frank copula

density for example. Moreover, the same upper-bound is assumed in [Autin et al.Autin et al., 20102010]. It is then possible to

set the following upper bound.

Theorem 3.3.1 Assume that Hn satisfies (3.103.10) and assume also (Hε), (Hc,low) and (Hc,high). Then there

exist two constants c1 et c2 such that

E[‖r̂h̃ − r‖
2
fX ] ≤ c1 min

h∈Hn

{
1 + ‖K‖2L1([0,1]d)

mc

∥∥∥Kh ? (cg1F̃X(A))− cg
∥∥∥2

L2(F̃X(A))

+‖K‖2E[Y 2
1 ]

1

nmch1 . . . hd

}
+
c2
n
.

This result is an oracle-type inequality which assesses that the selected estimator performs as well as the best

estimator of the collection (r̂h)h∈Hn , up to multiplicative constants and a remainder term: it achieves the best

bias-variance trade-off (see Proposition 3.3.13.3.1). If we add Assumptions (Hcg,β) and (HK,`) (for an index ` ∈ Rd+
such that `j ≥ bβjc, j = 1, . . . , d) to the assumptions of Theorem 3.3.13.3.1, we obtain the same convergence rate as

the one of Corollary 3.3.13.3.1 for the estimator r̂h̃. The difference is that the smoothness index β is not required

to build r̂h̃: our selected estimator automatically adapts to the unknown smoothness of the function cg, as it is

stated in the following corollary.
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3.4 Copula density estimation

Corollary 3.3.2 Under the same assumptions as Theorem 3.3.13.3.1, if we also assume that (Hcg,β) and (HK,`)

are fulfilled for an index ` ∈ Rd+ such that `j ≥ bβjc, we have

E[‖r̂h̃ − r‖
2
fX ] = O

(
n
− 2β̄

2β̄+d

)
,

where β̄ is the harmonic mean of β1, . . . , βd: dβ̄−1 = β−1
1 + · · ·+ β−1

d .

To switch from r̂h̃ to r̂ĥ, it remains then to first replace the unknown expectation E[Y 2
1 ] by its empirical

counterpart 1
n

∑n
i=1 Y

2
i and to change Ṽ (h) in V̂ (h). This is quite classical, and can be done for example like

in Theorem 3.4 p.465 of [Brunel and ComteBrunel and Comte, 20052005]. The replacement of F̃X by its empirical counterpart is

discussed at the end of Section 3.53.5. Before that, the next section is devoted to the estimation of the copula

density.

3.4 Copula density estimation

The estimator defined by (3.53.5) involves an estimator ĉ of the copula density c that was assumed to be known in

the previous section. This section is devoted to the question of copula density estimation. An adaptive estimator

based on wavelets is defined in [Autin et al.Autin et al., 20102010] but, to be consistent with the previous kernel regression

estimator already chosen, we propose to use the kernel estimator defined by [FermanianFermanian, 20052005]. Consider

b = t(b1, . . . , bd) ∈ (R∗+)d a multivariate bandwidth, a kernel Wb(u) = W1,b1(u1)W2,b2(u2) . . .Wd,bd(ud), with

Wl,bl(u) = Wl(u/bl)/bl for bl > 0, and Wl : R→ R such that
∫ 1

0
Wl(u)du = 1, l ∈ {1, . . . , d}. Let us introduce

ĉb(u) =
1

n

n∑
i=1

Wb(u− ̂̃FX(Xi)), u ∈ [0, 1]. (3.11)

The estimator is very close to the classical kernel density estimator, up to the warping of the data through the

empirical c.d.f. Remark that if we replace the estimator
̂̃
FX in (3.113.11) by its target F̃X, like in the previous section,

then ĉb(u) is the density estimator of the random vector (F1(X1), . . . , Fd(Xd)), with uniformly distributed

marginal distributions. We easily obtain the following upper-bound for the risk of the copula density estimator

when the marginal distributions are known:

E
[
‖ĉb − c‖2L2([0,1]d)

]
≤ ‖Wb ? c− c‖2L2([0,1]d) +

‖W‖2L2([0,1]d)

nb1 · · · bd
. (3.12)

The results of [FermanianFermanian, 20052005] are asymptotic. Since our goal is to prove non-asymptotic adaptive upper-

bounds, the Goldenshluger-Lepski method allows us to select a bandwidth b̂ among a finite collection Bn ⊂
(R∗+)d. The collection Bn should satisfy

∃α1 > 0, κ2 > 0,
∑
b∈Bn

1

b1 · · · bd
≤ κ2n

α1 ,

and one of the following constraints

|Bn| ≤ ln(n), or ∀κ3 > 0, ∃C0 > 0,
∑
b∈Bn

exp

(
− κ3

b1 · · · bd

)
≤ C0, (3.13)

where |Bn| is the cardinal of the set Bn. These assumptions are similar to (3.103.10). Let

B̂c(b) = max
b′∈Bn

{
‖Wb ? ĉb′ − ĉb′‖2L2([0,1]d) − Vc(b

′)
}

+

with

Vc(b) = κc
‖W‖2L1([0,1]d)‖W‖

2
L2([0,1]d)

nb1 · · · bd
, κc > 0. (3.14)
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Like above for regression estimation, B̂c stands for an empirical counterpart of the bias term of the risk, and

Vc has the same order as the variance term (compare to (3.123.12)). An oracle-type inequality could be derived for

the final copula density estimator ĉb̂, with b̂ = arg minb∈Bn{B̂c(b) + Vc(b)}.

Proposition 3.4.1 Assume (Hc,high), and assume that the marginal c.d.f. of the vector X are known. Then,

there exist some non-negative constants c1 and c2 such that

E
[∥∥ĉb̂ − c∥∥2

L2([0,1]d)

]
≤ c1 min

b∈Bn

{
‖Wb ? c− c‖2L2([0,1]d) +

‖W‖2L2([0,1]d)

nb1 · · · bd

}
+
c2 ln(n)

n
.

Note that the L1-norm of the kernel does not appear in (3.123.12), but only in the variance term of the Goldenshluger-

Lepski method, namely (3.143.14), for technical reasons (more details on the proof in [Chagny et al.Chagny et al., 20172017]). The

logarithmic term in the upper-bound of the inequality can be avoided by assuming the second part of (3.133.13),

instead of |Bn| ≤ ln(n). Like the tuning constant κ in V̂ (see (3.83.8)), the constant κc in (3.143.14) has to be cali-

brated. The bound that we obtain in the proof is unfortunately not accurate (this is a consequence of numerous

technical upper bound, based on a concentration inequality), and cannot be used for practical purpose. The

tuning of this parameter is discussed in the simulation section of [Chagny et al.Chagny et al., 20172017].

Proposition 3.4.13.4.1 also permits to derive an adaptive convergence rate for our copula density estimator: if the

copula density c belongs to a Nikol’skĭı ball N2(α,L′) for L′ > 0 and α = t(α1, . . . , αd) ∈ (R∗+)d, and if

the kernel W is of order ` ∈ Rd+ such that `j ≥ bαjc for j = 1, . . . , d, (see Assumption (HK,`)), then ĉb̂
automatically achieves the convergence rate n−

2ᾱ
2ᾱ+d where ᾱ is the harmonic mean of the components of α.

Following [Autin et al.Autin et al., 20102010], this is also the lower bound for the minimax risk, and thus our estimators is

minimax optimal (with no additional logarithm factor, comparing to Corollary 4.1 of [Autin et al.Autin et al., 20102010]).

3.5 Plug-in regression estimate

Now we consider the general case of unknown copula density c to estimate the regression function r. The idea

is to plug the kernel estimator ĉb (defined by (3.113.11)) of c in (3.63.6) for a well-chosen bandwidth b. We consider

the case of fixed bandwidth, both for the regression and the copula estimators. Let us plug in r̂h the estimator

ĉb: for any b,h > 0, under Assumption (Hc,low),

r̂h,b(x) =
1

nĉb(F̃X(x))

n∑
i=1

YiKh(F̃X(x)− F̃X(Xi))1ĉb(F̃X(x))≥mc/2, x ∈ A. (3.15)

This means that r̂h,b(x) = ((c × ĝh)/ĉb) ◦ F̃X(x)1ĉb(F̃X(x))≥mc/2. To make the estimator fully computable,

one needs to know the lower bound mc of the copula: in practice it is possible to replace it by a lower bound

of an estimator. To avoid making the proofs more technical and cumbersome, and since the minimum of

classical copula density are very small (see the example of the Franck copula used for the simulation study in

[Chagny et al.Chagny et al., 20172017]), we choose to not consider the problem from a theoretical point of view. We obtain the

following upper-bound for our ratio estimator. Its risk has the order of magnitude of the worst risk between

the risk of r̂h and ĉb.

Proposition 3.5.1 Assume (Hc,low) and (Hc,high). Then,

E[‖r̂h,b − r‖2fX ] ≤ 4Mc

m2
c

{ 2McE[‖r̂h − r‖2fX ]

+(2‖g‖2
L∞(F̃X(A))

+ ‖g‖2
L2(F̃X(A))

)E
[
‖ĉb − c‖2L2([0,1]d)

]}
.

24



3.5 Plug-in regression estimate

The result is not surprising, and we cannot expect to obtain a sharper bound for the plug-in estimator. We

thus have to add smoothness assumptions both on the regression function and on the copula density to derive

the convergence rate of the plug-in estimator.

Finally, to obtain a fully computable estimator, one needs to replace the c.d.f. F̃X by its empirical counterpart

introduced in (3.43.4). The switch is not a problem: the idea is that the empirical c.d.f. converges at a parametric

rate, that does not deteriorate our slower non-parametric decrease of the risk. The multivariate setting does

not change anything for the substitution compare to the univariate case. The scheme of the switching can

now be considered as classical, since it has been widely detailed both by [Kerkyacharian and PicardKerkyacharian and Picard, 20042004] and

[ChagnyChagny, 20152015].

Conclusion

In this chapter a new estimator of the regression function is given. This estimator does not require a bounded

support for X. In the complete simulation study we provided in [Chagny et al.Chagny et al., 20172017], we illustrate the fact

that a plug-in estimation of the marginals does not seem to to affect the quality of the estimation and establish

the relevance of the bandwidth selection for the copula estimator. We also see that our estimator performs

better than the classical Nadaraya-Watson one. Finally, we compare our estimator to the one proposed by

[Kohler et al.Kohler et al., 20092009] (that is the one we used to estimate the CCTE in Chapter 22). We obtain better results

but for regression functions that not necessarily satisfies the required theoretical assumptions of smoothness. A

remaining work is to use this estimator to compute the CCTE estimator presented in Chapter 22.
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Conclusion and prospects

In this first part, I presented some of my contributions in the area of level sets estimation and associated risk

measures. However many questions remain.

Normality Regression Level Sets

As said in the introduction, I studied during my PhD the problem of estimating regression level sets. In partic-

ular we proposed in [Laloë and ServienLaloë and Servien, 20132013] a plug-in estimator and proved its consistency.

In [Mason and PolonikMason and Polonik, 20092009] a similar estimator of the density level sets is studied. Here is their set-up. Let

X1, X2, . . . be i.i.d. with density function f , and consider the kernel density estimator of f based on a sample

X1, . . . , Xn,

fn(x) =
1

nhn

n∑
i=1

K

(
x−Xi

h
1/d
n

)
, x ∈ Rd,

where K is a kernel and hn > 0 is a bandwidth parameter. Define the α level set of f and its plug-in estimator

by

Lf (α) = {x : f(x) ≥ α} and Lf,n(α) = {x : fn(x) ≥ α}.

Let G be a positive measure dominated by Lebesgue measure λ. Their interest is to establish the asymptotic

normality of λ(Lf,n(α)4Lf (α)). Their main result states that under suitable regularity conditions, there exists

a constant 0 < σ2
G <∞ such that

(n/hn)1/4{λ(Lf,n(α)4Lf (α))} → σGZ

as n→∞, where Z denotes a standard normal random variable.

It should be possible to obtain similar results for the level sets of the regression function, and maybe for the

level sets of the c.d.f. I am now supervising a Master’s internship on this subject.

Ultimately, I’m interested by the approach of [Cuevas et al.Cuevas et al., 20062006]. In this article the authors consider the prob-

lem of estimating general level sets (regardless to the function of interest: density, regression, distribution,...).

Under mild condition on the interest function g they derive consistency results for the estimator of the level sets.

As an example, given an estimator gn of g, they obtain that for the Hausdorff distance, the rate of consistency

is of the same order as ‖gn − g‖∞. Following this philosophy I would like to get the necessary assumptions on

the interest function to obtain asymptotic normality for kernel plug-in estimators of general level sets. It could

be a nice start for a PhD subject.
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Generalizations of the CCTE

In a recent work, [Di Bernardino et al.Di Bernardino et al., 20182018] consider the problem of estimating extreme risk region and provide

an out-sample method to estimate the directional multivariate quantiles recently introduced in [Torres et al.Torres et al.,

20152015, 20172017]. There are here two major interests. First the inclusion of a direction parameter allows to analyse

the observations from several interesting perspectives. Second the authors consider the case of very high levels α.

Following this approach, I would like to use the approach proposed in [Di Bernardino et al.Di Bernardino et al., 20182018] in order to

provide an estimation of the CCTE (Section 2.22.2) for very high levels. I also think it would be interesting to

consider an alternative (and complementary) approach to deal with the problem of the direction for the level

sets by replacing the c.d.f. by a depth function [TukeyTukey, 19741974]. This would provide an estimated cost associated

to high level of risks regardless to a specified direction.

Extreme CCTE

The idea here is to characterize the points of L(α) at very high levels, using the heuristic ideas of the bivari-

ate quantile parametrization given in [Dehaan and HuangDehaan and Huang, 19951995] extended to a general multivariate context

by [Di Bernardino et al.Di Bernardino et al., 20182018]. Therefore, we will have to adopt conditions from Extreme Value Theory. In

particular we will have to impose assumptions on the right tail of X:

Given the marginal cumulative distributions Fi (i = 1, . . . , d), consider the tail quantile functions Ui =
(

1
1−Fi

)←
(where ← denotes the left-continuous inverse). We assume as usual in financial or non-life insurance settings

that each Xi follows a distribution with heavy right tail: for each 1 ≤ i ≤ d there exists γi > 0 such that for

x > 0,

lim
t→∞

Ui(tx)

Ui(x)
= xγi .

This ensure that the marginal c.d.f. of the Xi belongs to the domain of attraction of a non-degenerate function

Gi. Hopefully we could then follow the estimation procedure proposed in [Di Bernardino et al.Di Bernardino et al., 20182018] to esti-

mate the γi and then the Gi. Moreover we will have to add an assumption on the domain of attraction of the

joint law of X. From this it would not be difficult to consistently estimate the level sets.

To get an estimation of the CCTE we also will have to impose (in addition to the assumption on X mentioned

above) assumptions on the right-upper tail dependence of (X, Y ). Roughly speaking, considering applications

in financial or non-life insurance settings, we expect that high values of Y correspond to high values of the Xi.

More precisely we will have to suppose that for all (x, y) ∈ [0,∞)d+1 the following limit exists:

lim
t→∞

tP(1− Fi(Xi) ≤ xi/t, 1− FY (Y ) ≤ y/t) := R(x, y),

R determining the stable tail dependence function (see [Beirlant et al.Beirlant et al., 20042004, Drees and HuangDrees and Huang, 19981998]). We also

will have to think about an assumption linking the joint law of X and Y

From a real-life applications point of view the possibility to extrapolate out-sample is a crucial point. For this

reason this extreme CCTE can be applied to several environmental and economic problems. I am working on

this subject with E. Di BernardinoE. Di Bernardino, R. ServienR. Servien and R. Torres.

CCTE using depth level sets

An interesting point in [Di Bernardino et al.Di Bernardino et al., 20182018] is the inclusion of a direction parameter. Indeed in our defi-
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3.5 Plug-in regression estimate

nition of the CCTE we only consider the canonical direction. Another way to consider risks in several direction

is to replace the c.d.f. by a function who’s definition is not based on any direction: a statistical depth.

In 1975, John Tukey proposed a multivariate median which is the “deepest” point in a given data cloud in

Rd [TukeyTukey, 19741974]. Since then, this idea has proved extremely fruitful. A rich statistical methodology based on

data depth has been developed [Chebana and OuardaChebana and Ouarda, 20112011, Cuevas and FraimanCuevas and Fraiman, 20092009, MoslerMosler, 20022002]. General

notions of data depth have been introduced as well as many special ones. These notions vary regarding their

computability and robustness and their sensitivity to reflect asymmetric shapes of the data. According to their

different properties they fit to particular applications. The upper level sets of a depth statistic provide a family

of set-valued statistics, named depth-trimmed or central regions. They describe the distribution regarding its

location, scale and shape. The most central region serves as a median. The notion of depth has been extended

from data clouds, that is empirical distributions, to general probability distributions on Rd, thus allowing for

laws of large numbers and consistency results.

Formally, for a random variable X with distribution P , a depth function is a function D: (z, X) 7→ D(z|X) ,

that satisfies the following restrictions:

D1 Translation invariant: D(z + b|X + b) = D(z|X) for all b ∈ E.

D2 Linear invariant: D(Az|AX) = D(z|X) for every bijective linear transformation A : E → E.

D3 Null at infinity: lim
‖z‖→∞

D(z|X) = 0.

D4 Monotone on rays: If a point z∗ has maximal depth, that is D(z∗|X) = max
z∈E

D(z|X) , then for any r in

the unit sphere of E the function α 7→ D(z∗ + αr|X) decreases, in the weak sense, with α > 0.

D5 Upper semi-continuous: The level sets LD(α) = {z ∈ E : D(z|X) ≥ α} are closed for all α.

It appears that depths function could be perfectly suitable tools to redefine our CCTE. Indeed a depth function

D orders data by their degree of centrality. Given a sample, it provides a centre-outward order statistic. The

depth induces an outlyingness function Rd → [0,∞[ by

Out(z|X) =
1

D(z|X)
− 1,

which is zero at the centre and infinite at infinity. Studying the level-sets LOut(α) of this outlyingness function

instead of those of the c.d.f. will naturally leads us to define a CCTE independent to a specified direction.

I just started to work on this idea but so far I am convinced that the plug-in estimation procedure of the level

sets presented in our article [Di Bernardino et al.Di Bernardino et al., 20132013] can be adapted with this notion of Depth. Moreover

after discussions with R. DielR. Diel we also started to consider the estimation of depth-based level sets on functional

spaces. The tricky part is the extension of the definition of differentiability notions for a depth calculated on a

functional space.

Warped regression estimation

The aim of Chapter 33 was to extend the “warping” device to a multivariate framework, through the study of

regression kernel estimation. When the design distribution is known, the extension of the method can be done

and similar results as the ones obtained in the univariate framework (non-asymptotic risk bound and optimal
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Estimating the regression function

convergence rate) are proved: compare for example Theorem 3.3.13.3.1 and Corollary 3.3.23.3.2 to Theorem 1 and Corol-

lary 1 of [ChagnyChagny, 20152015]. When the design distribution is unknown, the challenge is to cope with the possible

dependence structure between the coordinates of the design, and the extension can be done only through the

additional estimation of the copula density. This can be done separately in an adaptive way, also with kernel

estimators.

The copula density kernel estimator satisfies an oracle type inequality. The challenge is thus now to study the

warped kernel regression estimate that involve the adaptive copula density estimator. Section 3.53.5 paves the

way of this future study: the risk of the regression estimator with fixed bandwidth and after plug in of the

copula estimator (also with fixed bandwidth) is computed. As expected it depends both on the risk of the

estimator with known marginal distribution and on the risk of the copula estimator. The convergence rate

of the resulting estimator is the worst of these two risks. The next step, which we have not studied yet, is

to propose a bandwidth selection rule for the regression estimate computed with the copula density adaptive

estimate (that is with selected bandwidth). It requires to replace the copula density c in the GL estimation of

the bias term of the risk (see 3.10) by ĉb̂. The difficulties are numerous, owing first to the problem of dependence

(the regression estimator AND copula estimator AND selected bandwidth depends on the design {Xi}1≤i≤n): it

makes difficult to isolate the risk of the copula adaptive estimator from the risk of the regression estimator with

known marginal distribution. A natural idea is to imagine that we have at our disposal an additional sample of

the design, independent from the data. We can perhaps then conduct the study in the spirit of [Bertin et al.Bertin et al.,

20162016], who deal with similar questions for conditional density estimators (that involve the plug-in of marginal

density estimators). But additional difficulties are probably due to the regression framework: even with the

warping device, we are brought back to the initial problem of the Nadaraya kernel estimator. We have to select

simultaneously two multiple bandwidths (one for the regression estimate, one for the copula density estimate),

and to my knowledge, this have never been done yet in the multivariate regression framework.
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Introduction

In this second part, I focus on the general topic of statistical learning. I started to study this topic during my

PhD with two principal contributions. First I studied the problem of the estimation of a regression function in

a functional setting [LaloëLaloë, 20082008]. Second I considered the problem of clustering using quantization in Banach

spaces [LaloëLaloë, 20102010].

After that I continued to be interested by the subject in a more applied way. First I started a collaboration with

P. BrehmerP. Brehmer, P. FernandesP. Fernandes and J. GuillardJ. Guillard and applied my clustering procedure on real data [Brehmer et al.Brehmer et al.,

20112011]. The idea was to propose a way to identify fish school species using sonar recordings (a fish school is a

set of fishes staying together for social reasons and swimming in the same direction). This work is not detailed

in this manuscript

Second I proposed with R. ServienR. Servien an efficient adaptation of the clustering algorithm presented in [LaloëLaloë, 20102010],

in order to lower its high complexity (Chapter 11 of this second part).

Finally, together with F. DelarueF. Delarue and R. DielR. Diel, I started an industrial collaboration with the start-up Option WayOption Way

on the topic of airfare prediction (Chapter 22 of this second part).
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Chapter 1

X Alter

In this chapter, related to the article I wrote with R. ServienR. Servien [Laloë and ServienLaloë and Servien, 20132013], I present a practical

extension of my PhD work (and more specifically to [LaloëLaloë, 20102010]). The Idea is to combine the X-means method

proposed by [Pelleg and MoorePelleg and Moore, 20002000] to the Alter algorithm I proposed in [LaloëLaloë, 20102010].

Introduction

Clustering consists in partitioning a data set into subsets (or clusters), so that the data in each subset share

some common trait. Proximity is determined according to some distance measure. For a thorough introduction

to the subject, we refer to the book [Kaufman and RousseeuwKaufman and Rousseeuw, 19901990]. The origin of clustering goes back to

several decades ago, when some biologists and sociologists began to search for automatics methods to build

different groups with their data. Today, clustering is used in many fields. For example, in medical imaging, it

can be used to differentiate between types of tissue and blood in a three dimensional image. Market researchers

use it to partition the general population of consumers into market segments and to better understand the

relationships between different groups of consumers/potential customers. There are also many different appli-

cations in artificial intelligence, sociology, medical research, or political sciences.

The K-means clustering is the most popular method [Hartigan and WongHartigan and Wong, 19791979, MacQueenMacQueen, 19671967]. Its attrac-

tiveness lies in its simplicity and its fast execution. It has however two main drawbacks. On the one hand, the

number of clusters K has to be supplied by the user. Thus, different ways to determine K have been studied

in the literature [Li et al.Li et al., 20082008, Pham et al.Pham et al., 20052005]. On the other hand, the algorithm strongly depends on

the initialization and can easily converge to a local minimum. [Pelleg and MoorePelleg and Moore, 20002000] offer a solution for the

first problem with a building-block algorithm called X-means which quickly estimates K. After each run of

2-means, local decisions are done whether subsets of the current centroid should be splitted or not. The splitting

decision is done by computing the Bayesian Information Criterion (BIC). In a different approach, I proposed

in [LaloëLaloë, 20102010] a consistent algorithm to address the second problem, called Alter algorithm, which also needs

the specification of K. This algorithm search an optimal set of centres among the data set and does not need

an initialization. Moreover it is proved to converge to a global optimum.

Our purpose here is to combine the X-means and the Alter algorithm in order to overcome the drawbacks of

both algorithms. The complexity of the Alter algorithm decreases and an automatic selection of the number of

clusters is simultaneously performed. Moreover, the convergence properties of the Alter algorithm will overcome

the local optimality problem of the X-means algorithm, inherited from the K-means one.
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The Chapter is organized as follows: the different algorithms are presented in Section 1.11.1. Performances of

X-Alter, X-means and other methods are compared in Section 1.21.2.

1.1 Methodology

1.1.1 The Alter algorithm

Let us summary the Alter algorithm. All the theoretical results presented in this section come from a previous

work I performed during my PhD [LaloëLaloë, 20102010]. The method is based on quantization. It is a commonly used

technique in signal compression [Graf and LuschgyGraf and Luschgy, 20002000, LinderLinder, 20022002]. Consider (H, ‖.‖) a normed space. We

let X be a H-valued random variable with distribution µ such as E‖X‖ <∞.

Given a set C of points in Hk, any Borel function q : H → C is called a quantizer. The set C is called a codebook,

and the error made by replacing X by q(X) is measured by the distortion:

D(µ, q) = E ‖X − q(X)‖ =

∫
H
‖x− q(x)‖µ(dx).

I choosed to consider a distortion based on the L1 distance for robustness properties. We will discuss it in the

simulations. Note that D(µ, q) <∞ since E‖X‖ <∞. For a given k, the aim is to minimize D(µ, .) among the

set Qk of all possible k-quantizers. The optimal distortion is then defined by

D∗k(µ) = inf
q∈Qk

D(µ, q).

When it exists, a quantizer q∗ satisfying D(µ, q∗) = D∗k(µ) is said to be an optimal quantizer.

As detailed in [LaloëLaloë, 20102010], a quantizer is characterized by its codebook C = {yi}ki=1 and a partition of H in

cells Si = {x ∈ H : q(x) = yi}, i = 1, . . . , k via the rule

q(x) = yi ⇐⇒ x ∈ Si.

Moreover I proved in [LaloëLaloë, 20102010] that for a given codebook the optimal partition is the nearest neighbour one.

So we can consider only nearest neighbour quantizers, which means that a quantizer q will be characterized by

its codebook C = {yi}ki=1 and the rule

q(x) = yi ⇐⇒ ∀1 ≤ j ≤ k, j 6= i, ‖x− yi‖ ≤ ‖x− yj‖.

Thus, a quantizer can be defined by its codebook only. Moreover the aim is to minimize the distortion among

all possible nearest neighbour quantizers.

However, in practice, the distribution µ of the observations is unknown, and we only have at hand n indepen-

dent observations X1, . . . , Xn with the same distribution than X. The goal is then to minimize the empirical

distortion:
1

n

n∑
i=1

‖Xi − q(Xi)‖.

As said before, I choosed to consider the L1-based distortion to obtain more robust estimators (see [KempermanKemperman,

19871987]). Then, clustering is done by regrouping the observations that have the same image by q. More precisely,

we define a cluster C by C = {Xi : q(Xi) = x̂C}, x̂C being the representative of cluster C.
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I stated the theoretical results (consistency and rate of consistency) in [LaloëLaloë, 20102010]. In particular the rate

of consistency is closely related to the metric entropy of the data space. However, the minimization of the

empirical distortion is not possible in practice and that is why I proposed an alternative: the Alter algorithm.

The idea is to select an optimal codebook among the data set. More precisely the outline of the algorithm is:

1. List all possible codebooks , i.e., all possible K-tuples of data;

2. Compute the empirical distortion associated to the first codebook. Each observation Xi is associated with

its closed centre;

3. For each successive codebook, compute the associated empirical distortion. Each time a codebook has an

associated empirical distortion smaller than the previous smallest one, store the codebook;

4. Return the codebook that has the smallest distortion.

Again, theoretical results of consistency and rate of consistency are available in [LaloëLaloë, 20102010]. In particular

I stated that the convergence rate is of the same order than the theoretical method described above (mini-

mization of the empirical distortion over all possible quantizers). Moreover, this algorithm does not depend on

initial conditions (unlike the K-means algorithm) and it converges to the optimal distortion. Unfortunately its

complexity is O(nK+1) and it is impossible to use it for high values of n or K.

1.1.2 The X-Means algorithm

In a different approach, [Pelleg and MoorePelleg and Moore, 20002000] define the X-means algorithm which is adapted from the K-

means one. The idea is to perform successive run of K-means, making local decisions about which cluster of the

current partition should be splitted in order to improve the data fit. The splitting decision is done by computing

the BIC criterion. This new approach proposes an efficient solution to one major drawbacks of K-means: the

choice of the number of clusters K. Moreover, X-means has a low computational cost. But results suffer from

the non-convergence property of the K-means algorithm. The outline of this algorithm is:

1. Perform 2-means. This gives us clustering C;

2. Evaluate the relevance of the classification C with a BIC Criterion: if the BIC criterion calculated with

one cluster is greater than the one calculated with two clusters, validate the discrimination in two clusters;

3. Iterate step one and two in each cluster of C. Keep going until there is no more relevant discrimination.

1.1.3 The X-Alter Algorithm

Following the idea of X-means, a recursive use of Alter with K = 2 can simultaneously allow us to combine

both advantages of these two methods: estimation of K / low computational cost for X-means and convergence

/ parameter-free character for Alter. We also add an aggregation step at the end of our algorithm to prevent

the creation of too many clusters.

Note that no parameter is needed by the algorithm. Though, the user can specify a range in which the true

K reasonably lies if he wishes to (this is [2,+∞[ if one had no information). More precisely, the outline of the

algorithm is the following:

1. Perform Alter with K = 2. This gives us clustering C;
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2. Evaluate the relevance of the classification C (Figure 1.11.1) with a BIC Criterion;

3. Iterate step one and two in each cell of C (Figure 1.21.2). Keep going until there is no more relevant

discrimination (Figure 1.31.3);

4. Final step of aggregation (Figure 1.41.4). For each pair of clusters we compute the difference DIFF1,2 =

BIC(K = 1)−BIC(K = 2). Then, according to the decreasing values of DIFF1,2 aggregation can be

considered if DIFF1,2 > 0. After each aggregation we actualise the DIFF1,2 values involving the clusters

just aggregated.

The algorithm starts by performing Alter with K = 2 centres. At this point, a model selection criterion (BIC,

detailed below) is performed on all the data set. Using this criterion, we check the suitability of the discrimi-

nation by comparing BIC(K = 1) and BIC(K = 2). In another way, the criterion asks if the model with the

two clusters is better than the one with only one. If the answer is yes, the iterative procedure occurs in the two

subsets.

The structure improvement operation begins by splitting each cluster into two sub-clusters. The procedure is

local on that the sub-clusters are fighting each other only for the points in the parent’s cluster. Up to there,

the only difference with X-means is that we use Alter instead of 2-means because the consistent property of

Alter must improve results. Finally, when all regions are asleep and no more clusters are needed, the aggrega-

tive step starts to prevent the creation of too many clusters or the presence of splitted clusters (as in Figure 1.21.2).

The complexity of this algorithm in the worst case scenario (that is when it creates n clusters with one data

set) is O(n4), which is less than the initial Alter algorithm. However, the computational cost is still higher than

for X-mean and can be a problem for massive data sets.

The BIC criterion

We use here the same criterion than in [Pelleg and MoorePelleg and Moore, 20002000], that is the formula from [Kass and WassermanKass and Wasserman,

19951995]. It evaluates the relevance of the classification C with

BIC(C) = l − p

2
log n

where l is the log-likelihood of the data according to the clustering C and taken at the maximum likelihood

point, and p is the number of parameters in C. The number of free parameters p is simply the sum of K − 1

cluster affectation probabilities, d ∗K centroids coordinates, and one variance estimate. Note that we suppose

here that in each cluster, the data are normally distributed around the centre. We will see in the empirical

study that it performs well on real data.
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Figure 1.1: First iteration of X-Alter. The discrimination in 2 clusters (Step 1) is validated by BIC criterion
(Step 2). In each cluster, observations are represented by a different symbol.

Figure 1.2: Second iteration of X-Alter: the sub-classification is done in the two relevant clusters (Step 1).
Sub-classifications are validated by BIC (Step 2) so we obtain four clusters.
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Figure 1.3: No relevant sub-classification in the left cluster according to BIC. In the three other clusters, we
obtain the same rejection of sub-classification (Step 3).

Figure 1.4: Final discrimination. The two middle clusters have been aggregated in Step 4.
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1.2 Empirical results

In this section, an empirical study is performed to show the relevance of our method. We confront our method

to various simulated data sets, but also on classical real data sets. We consider three criterion: the number

of detected clusters, the Adjusted Rand Index (A.R.I.) [Hubert and ArabieHubert and Arabie, 19851985, RandRand, 19711971] and the Dunn

index [DunnDunn, 19741974, Handl et al.Handl et al., 20052005]. The Rand Index is a measure of the similarity between two clusters.

A problem with the Rand index is that the expected value of the Rand index of two random partitions does

not take a constant value (say zero). So, [Hubert and ArabieHubert and Arabie, 19851985] defined the A.R.I. which is the corrected-

for-chance version of the Rand index. Studies have shown the need and usefulness of the adjusted measures

[Nguyen et al.Nguyen et al., 20092009]. The more similar (respectively dissimilars) the clusters are , the closer to 1 (respectively

0) the A.R.I. is. On another way, the Dunn Index measures the “compactness” of the clusters and is a sort of

the worst case indicator. The goal is to identify sets of clusters that are compact, with a small variance between

individuals in the same cluster, and well separated, where the centres of different clusters are sufficiently far

apart, as compared to the within cluster variance. Higher is the Dunn Index, better the clustering is. For more

details on this classical cluster validation indexes we refer the reader to [DunnDunn, 19741974, Handl et al.Handl et al., 20052005].

Pelleg and Moore show that X-means performs better and faster than repeatedly using accelerated K-means for

different values of K. So, we compare our X-Alter algorithm to X-means and to X-means with the aggregation

step, called X-means-R. That is we obtain a clustering using X-means and we compute the aggregation proce-

dure (Step 4 on Section 1.1.31.1.3) on this clustering. It allows us to assess the usefulness and the computational

time of the aggregation step.

1.2.1 Simulated data

We choose to consider here functional data. We consider two configurations:

First configuration:

First, we generate three clusters of functions defined on [0, 1] (and discretized 20 times). A data is a func-

tion generated around one of the three generative functions (
√
x, x and x2), perturbed by a common term

cos(10x+ π/2− 10)/5. Moreover, each data is noised with a vector composed by twenty Gaussian law N (0, σ)

where the value of σ is selected for each data using σ ∼ N (0.1, 0.02). Figure 1.51.5 shows examples of some of

the functions that we want to classify. Three clusters of size randomly chosen between 15 and 25 are simulated

300 times. Results are presented in Table 1.11.1 (time is given in seconds) and show that our method gives better

results, mostly on the search of the number of clusters.

Second configuration:

Second, we consider a slightly more difficult case. We construct this configuration on the same model than the

first, but based on functions
√
x, x3/4 and x which are closer than the previous ones as we can see in Figure

1.61.6. Results are gathered in Table 1.21.2. Again, we see that our method retrieves more often the correct number

of clusters. Note that if the complexity of our algorithm is larger than the X-means one, it is still much smaller

than the Alter one. Moreover Alter does not estimate the number of clusters.
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Figure 1.5: Example of functions. Functions based on
√
x are on dashed lines, ones based on x are on solid

lines and ones based on x2 are on dotted lines.

Table 1.1: Results for the three algorithms on the functional data.
Algorithm % of correct number of clusters A.R.I. Dunn Time
X-means 81 0.88 0.63 2.0
X-means-R 85 0.88 0.63 3.5
X-Alter 95 0.89 0.63 27.6
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Figure 1.6: Example of functions. Functions based on
√
x are on dashed lines, ones based on x are on solid

lines and ones based on x3/4 are on dotted lines.

Table 1.2: Results for the three algorithms on the functional data.

Algorithm % of correct number of clusters A.R.I. Dunn Time

X-means 26 0.75 0.43 2.4
X-means-R 31 0.75 0.46 3.2
X-Alter 40 0.77 0.46 28.7
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Robustness study

In this paragraph, we illustrate the robustness properties of the L1 distance. We consider as a starting point

the first functional configuration above used in Figure 1.51.5. To obtain noisy data we use the following protocol:

we add a value x ∈ [−0.30;−0.15]∪ [0.15; 0.30] to a ∈ [10; 25] percent of points (randomly chosen) of b ∈ [10; 25]

percent of data (randomly chosen). An example is given in Figure 1.71.7. We repeat this 300 times and give

averaged results in Table 1.31.3.

Figure 1.7: Example of the results of the perturbation of
√
x+cos(10x+π/2−10)/5. Affected (by the previously

described protocol) functions are on dashed lines.

Table 1.3: Results for the three algorithms on the perturbed functional data sets.

Algorithm % of correct number of clusters A.R.I. Dunn Time
X-means 77 0.87 0.52 2.6
X-means-R 79 0.87 0.52 3.8
X-Alter 95 0.88 0.53 29.4

The relevance of the L1-based distance error, which is much more robust to extreme values, is shown here.

Indeed, if we compare to the results gathered in Table 1.11.1 we still find the correct number of clusters 95% of

the time while X-means and X-means-R do not (a loss of respectively 4% and 6%).

1.2.2 Real data

In this section, we confront our method to two conventional data sets from the UCI Machine Learning Repository

[Frank and AsuncionFrank and Asuncion, 20102010]: the wine and iris ones. In this case, we do not know if the spherical Gaussian

assumption of the BIC criterion is verified. We compare our method to the X-means algorithm but also to the

K-means algorithm with K known to be 3 (the real number of clusters here). So, 3-means have a significant

advantage over others methods by knowing the number of clusters. In these two real cases, as suggested in
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the description of the data sets, we centre and standardize each variable before performing clustering. Since

K-means, X-means and X-means-R depends on the initialisation, we give averaged results (over 50 running)

for these methods.

Wine data set

We consider first the wine data set. We have 178 instances and 13 variables found in each of the three types of

wines. These data are the results of a chemical analysis of wines grown in the same region in Italy but derived

from three different cultivars. In a classification context, this is a well posed problem with “well behaved” class

structures. The results for the 4 methods are presented in Table 1.41.4. We can see that our method retrieves the

real number of clusters, and that we get the same adjusted rand index than 3-means and slightly less than the

2 others. On the other hand, we do not have a good Dunn Index because one extreme instance is bad classified.

We can also compare X-Alter to other methods used on this data set and listed on the UCI Machine Learning

[Frank and AsuncionFrank and Asuncion, 20102010]. For example, we better estimate the number of clusters than [Dy and BrodleyDy and Brodley,

20042004] with their different methods.

Table 1.4: Results for the wine data set.
Algorithm Number of clusters A.R.I. Dunn
X-means 8.67 (var=6.92) 0.78 (var=0.03) 0.162 (var=2.10−4)
X-means-R 8.54 (var=6.01) 0.78 (var=0.03) 0.165 (var=10−4)

3-means - 0.76 (var=0.03) 0.163 (var=0.0002)
X-Alter 3 0.76 0.142

Iris data set

We consider now the Iris data set. We have 150 instances and 4 variables of 3 classes of 50 instances each, where

each class refers to a type of iris plant. One class is linearly separable from the other two; the latter are not

linearly separable from each other which makes it more difficult to classify. The results are gathered in Table 1.51.5.

Table 1.5: Results for Iris data set.
Algorithm Number of clusters A.R.I. Dunn
X-means 13.7 (var=6.2) 0.46 (var=0.07) 0.0405 (var=6.10−5)
X-means-R 8 (var=1.56) 0.57 (var=0.03) 0.0398 (var=0)

3-means - 0.46 (var=0.0036) 0.04 (var=0)
X-Alter 6 1 0.402

It appears that our method do not find the real number of clusters but gets closer to it than others. While

Adjusted Rand Index were previously very close for all methods, X-Alter is here significantly better and can

not be improved. Indeed, as we consider here the Adjusted Rand Index (and not the Rand Index), it does

not mean that our classification is perfect. However the high value of the A.R.I. informs us that the great

majority of iris plant are well-classified, the 3 additional clusters are in fact very small and do not affect the

A.R.I and the global quality of the obtained clustering. In [Dy and BrodleyDy and Brodley, 20042004], the estimation of the number

of clusters is slightly better but the quality of our clustering seems (as we don’t use the same criterion) to be

better. Moreover, we observe the interest of the aggregation step in X-means-R and it seems to appear that

the spherical Gaussian assumption required for the BIC is acceptable for some real data sets.
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1.2 Empirical results

Finally, we see that in all cases (simulated or real data sets) our method performs better than others to estimate

the number of clusters. This confirms that we avoid the local convergence of X-means, which is inherited from

K-means. Furthermore, according to Adjusted Rand Index and to Dunn Index, quality of clustering is either

equal or significantly better than other methods.

Conclusion

I presented in this chapter a simple new algorithm to perform clustering. The main advantage of this method is

that it is parameter-free. So, it can be easily used without an expertise knowledge of the data. This algorithm

combines Alter and X-means algorithm to obtain of qualities of both algorithms (respectively the convergence

and the automatic selection of the number of clusters). Moreover, we avoid the main drawbacks of these two

methods: the high complexity for Alter and the dependence on initials conditions for X-means. A confrontation

on both simulated and real data sets showed the relevance of this method.
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Chapter 2

Airfare prediction

I present in this chapter the results of an industrial collaboration with the start-up “Option Way”“Option Way” on Airfare

prediction. Since I am subject to a confidentiality agreement I cannot give details of the developed procedure.

However I will try to give the general idea of the project and some efficiency results. I would like to thank Ali

Sofiane who worked on this project as an engineer.

Introduction

Option Way is a French start-up specialized in Airfare prediction, with the objective to share benefits with

customers. The start-up is born in 2012 on the following simple statement: the ticket prices vary constantly

according to the Yield Management of the airlines. How can we use this to the travellers benefits? As an exam-

ple, Figure 2.12.1 shows the variation of the daily minimal prices (by company), starting four months before the

take off, of all direct round trip Paris - New York on fixed dates. We can see that prices can decrease at any time.

Figure 2.1: Trajectories of the daily minimal prices observed on a direct round trip Paris -New York

In order to allow the traveller to benefit from the price decrease, Option Way first proposed an “option strat-

egy”: the traveller agrees to buy his/her ticket at a given price (lower than the current price). Option way

tracks the daily prices and buys the ticket as soon as it reaches this price. The main issue is to evaluate the

probability of success. However, in this scenario the traveller is taking the risk to never get the ticket. Marketing

studies showed that a majority of customers will not accept such a risk. Thus Option Way is interested in a

new concept: the guaranteed option. The idea is to sell a plane ticket with a price lower than the actual price,
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knowing that with a great probability there will be a corresponding price decrease. This time it is the company

who takes the risk to pay the ticket at an higher price than the one proposed to the customer.

On this basis, we started a collaboration between Option Way and a group of researchers of the probability and

statistics team of J.A. Dieudonné Laboratory (F. DelarueF. Delarue, R. DielR. Diel and myself). This collaboration is partly

funded by “BPIFrance”“BPIFrance” via the 2nd edition of the “Concours d’Innovation Numérique”. This allowed us to hire

a research engineer (Sofiane Ali), who worked with us on the project.

As said in the preamble, a confidentiality agreement prevents me from giving much details on the statistical

procedure but I will provide general considerations about the method and the data preprocessing (Section 2.12.1).

I will finish by a presentation of some results of our evaluation process (Section 2.22.2).

2.1 Presentation of the method

Our final objective is to predict the minimal price of a flight, or a group of flights, on a given period. To do so

we dispose of the customers criteria and a data base gathering daily records of prices of previous flights. We

have focused on the flights between Paris and New-York with travel from week-end to week-end.

In order to avoid availabilities issues on a precise flight (availability which we are not able to infer), the customer

can only precise if he accepts low cost companies or not. Finally, the customer can only specify a wide time

slot for his departure. Thus we always consider the minimum price on at least 10 flights. In what follows the

term “travel” define the set of flights corresponding to a customer request.

2.1.1 General idea of our algorithm

At first we considered a two step algorithm:

1. Perform an unsupervised clustering on the historical travel lists of prices in order to define a certain

number of classes of optimal prices (optimal meaning the minimal price ever reached for a given travel);

2. Given this classification, use a supervised approach in order to map the customers criteria to a class of

minimal prices.

The first tests were encouraging but a precise look at the past minimal prices on travels shows that the unsuper-

vised creation of classes of optimal prices, only based on historical travel list of prices, is a little artificial. Thus

we decided to switch to a regression approach instead of a classification approach. That is we want to directly

predict the minimal price coming for a customer request, using the past observed minimal prices associated

to the travel criteria. To do so we choose to use a random forest based algorithm [BreimanBreiman, 20012001]. The most

important part of our work was to define the most efficient inputs to extract or compute from the database and

from external variables.

2.1.2 Data preprocessing

The original database contains lists of successive prices of previous flights, with associated flights criteria (time

slot, dates, departure and arrival location, company etc.). Figure 2.22.2 shows an example of some prices tra-

jectories associated to a travel (from the historical database). Since our goal is to predict the future minimal

price for a given travel, we perform a preprocessing and create a new database containing lists of daily minimal

prices associated to a travel. Each list contains the minimal price of all the flights composing a travel, and is
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2.2 Evaluation of our algorithm

associated to the criteria of the travel (time of departure, allowed companies, . . .). Figure 2.32.3 shows the example

of the list of such minimal prices associated to a travel presented in Figure 2.22.2.
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Figure 2.2: Examples of prices trajectories for one travel, up to 120 days before departure.
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Figure 2.3: Trajectory of the daily minimal prices observed on a travel, from 120 to days before departure.

In addition, we add a certain number of variables to model the market condition and the time before departure.

Without going deeper into the details of the preprocessing and the extraction of suitable informations, I provide

in the next section a comparison between our final algorithm and a naive version using the basic informations

extracted from the request customer and the database (day of departure, current price).

2.2 Evaluation of our algorithm

In this section, I show the results of our algorithm on historical data. We consider direct round trip between

Paris and New-York, from week-end to week-end. The period of the evaluation starts on January 2017 and ends

on January 2018. On this period we simulate the use of our algorithm. That is for each week end on period and

each travel we run our algorithm to predict the minimal incoming price. Based on the prediction, we propose

or not a guaranteed option and assume that all options are sold. A travel is given by a time of departure and
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return (morning, afternoon, evening) and a class of companies (low-cost or not low-cost). The prediction are

actualised on a daily basis. The indicators used to evaluate the quality of our algorithm are the following:

• #AO is the number of available options (that is the travels for which the minimal incoming price is lower

than the current price, only known because we test our algorithm on a past period);

• #GO is the number of guaranteed options we sold in the period;

• αGO represent the proportion of successful guaranteed options (that is we succeed to buy under the

proposed price);

• Loss is the total of (financial) losses on the period;

• Gain is the total of (financial) gains on the period;

• GLRatio is the ratio Gain over Loss (the higher the better);

• Benefits is the benefit on the period;

• µE is the mean economy (over all the guaranteed options) for the customer (expressed in percentage of

reduction).

At this time we apply a very simple rule to exercise the option: we buy the travel as soon as the price goes

under the option price. Moreover we apply a stop rule: whatever happens we buy the tickets 16 days before

the departure at the latest. Moreover, in order to address the problem of availability, it was decided by the

company to propose only one option at a time for a given travel. That is once an option is sold, we wait that

it succeed (that is that we actually bought the ticket) before selling a new one (this explains the weak ratio
#GO

#AO
). Besides we compare our algorithm to a naive version using the basic informations extracted from the

request customer (time of departure, low-cost or not, . . .) and the database. The results are gathered in Table

2.22.2 below. We see on this test that we have a GLRratio at almost 6, which means that our gains are almost six

times superior than our losses. Moreover we see that the mean economy provided to the customer is 8% of the

initial price. This is very satisfying since marketing studies have shown that customers begin to be interested

with reduction of at least 5%. These results were welcomed by Option Way, who intends to sell this product in

the coming months. We also see the importance of our work on the preprocessing of the data, and the definition

of efficient (in the sense that they improve αGO, the GLRario and the Benefits) indicators.

Table 2.1: Evaluation of our algorithm
Indicator #AO #GO αGO Loss Gain GLRatio Benefits µE

Final algorithm 14580 1838 0.97 8734 146321 16.8 137587 8%
Naive version 14580 3909 0.87 142852 213990 1.5 71138 10%

Conclusion

I presented in this chapter the results of the collaboration with the start-up Option Way. We succeed to propose

an efficient algorithm to anticipate price decreasing, which will allow to start a commercial phase. However

some problems remains open, such as the anticipation of the availability of a flight or travel.
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Conclusion and prospects

X Alter

I have presented in Chapter 11 a practical development to the method proposed in [LaloëLaloë, 20102010]. However, if the

X-Alter algorithm is far less complex than the Alter one, it is still too important for the method to be applied

on really big data sets. I proposed in my PhD [LaloëLaloë, 20092009] an accelerated version of Alter called Alter-Fast.

The principle was simple: instead of performing Alter on the whole data set we can use it on several (very)

small subset. Thus each run of Alter gives a quantizer and we take finally the best one. This process clearly

helps to save computational time but at the price of a significant loss of efficiency. So as a future work, it could

be interesting to look for another way to accelerate Alter while preserving (as much as possible) its properties

of convergence.

Airfare prediction

As presented in Chapter 22, we have an algorithm able to predict a future minimal price of a travel, which

open the possibility to sell option with a substantial reduction comparing to a current price. However a certain

number of problems remains unanswered.

Buying strategy

Now that we can propose options with reduced prices, we have to think about the best manner to exercise it.

In fact we have two problem to solve:

First, we have to imagine a way to determine the maximal delay we allow ourselves before exercising an option.

One idea is to use historical data to evaluate the evolution of the probability that an option will succeed. This

idea has to be specified but it seems that it could provide us a good indicator of the moment when the proba-

bility that we can successfully exercise an option becomes too weak. Using this kind of indicator we will then

have to think about a way to minimize our losses.

Second, we want to propose a method to optimally exercise the option. Indeed we think that our actual

strategy (exercising the option as soon as the price goes under the option price) is far from optimal. One idea

is to dynamically use our algorithm to actualize our prediction and maximize the benefits. This point is of

most importance for Option Way. Indeed their main source of profits will come from the difference between the

option price and the exercise price.
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Risk evaluation

In order to evaluate the required liquidity of the company we need to provide an indicator of exposure to the

risk. Our first idea is to evaluate the worst scenario: given an ongoing option we consider the maximal price

that we could have to pay if we exercise the option at the worst moment. The distribution of such individual

exposures is illustrated in Figure 2.42.4.

Exposure (maximal price - option price)

Figure 2.4: Distribution of the maximal individual exposures.

We also are interested in a global exposure at a given time, which can be the sum of the exposure of all ongoing

options. Obviously this overestimate our exposure since such a scenario in which we will exercise all our options

at the worst moment will never occur in practice. Moreover, in order to predict a future exposure, we also

adapted our algorithm to predict the maximal incoming price. Figure 2.52.5 represents the “real” and “predicted”

exposure.

Figure 2.5: Real and predicted exposure

This indicator (which is a simple adaptation of our algorithm) is a good starting point but overestimate too

much our exposure. Thus we have to improve it before considering a practical use by the company.

Finally, we have two more prospects in mind. First, if the company wants to start by selling options on round

trips between Paris and New-York, a short term objective is to open other destinations. Second, we have to

find a way to estimate the availability of a travel (basically the remaining free places in the plane) in order to

sell more than one option at a time (for a given travel).
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Neuroscience

59





Chapter 1

Pattern detection

This chapter, related to [Chevallier and LaloëChevallier and Laloë, 20152015], is devoted to a collaboration with J. ChevallierJ. Chevallier in the

area of Neuroscience. The idea is to propose a statistical tool to detect synchronisation between the activity of

different neurons.

Introduction

The communication between neurons relies on their capacity to generate characteristic electric pulses called

action potentials. These action potentials are usually assumed to be identical stereotyped events. Their time of

occurrence (called spike) is considered as the relevant information. That is why the study of spike frequencies

(firing rates) of neurons plays a key role in the comprehension of the information transmission in the brain

[AbelesAbeles, 19821982, Gerstein and PerkelGerstein and Perkel, 19691969, ShinomotoShinomoto, 20102010]. Such neuronal signals are recorded from awake

behaving animals by insertion of electrodes into the cortex to record the extracellular signals. Potential spike

events are extracted from these signals by threshold detection and, by spike sorting algorithms, sorted into the

spike signals of the individual single neurons. After this preprocessing, we dispose of sequences of spikes (called

spike trains).

The analysis of spike trains has been an area of very active research for many years [Brown et al.Brown et al., 20042004].

Although the rules underlying the information processing in the brain are still under burning debate, the de-

tection of correlated firing between neurons is the objective of many studies in the recent years [Dong et al.Dong et al.,

20082008, Pillow et al.Pillow et al., 20082008, Roy et al.Roy et al., 20072007]. This synchronization phenomenon may take an important role in

the recognition of sensory stimulus. In this chapter, the issue of detecting dependence patterns between si-

multaneously recorded spike trains is addressed. Despite the fact that some studies used to consider neurons

as independent entities [BarlowBarlow, 19721972], many theoretical works consider the possibility that neurons can co-

ordinate their activities [HebbHebb, 19491949, PalmPalm, 19901990, SakuraiSakurai, 19991999, von der Malsburgvon der Malsburg, 19811981]. The understanding

of this synchronization phenomenon [SingerSinger, 19931993] required the development of specific descriptive analysis

methods of spike-timing over the last decades: cross-correlogram [Perkel et al.Perkel et al., 19671967], gravitational clustering

[Gerstein et al.Gerstein et al., 19851985] or Joint PeriStimulus Time Histogram (JPSTH, [Aertsen et al.Aertsen et al., 19891989]). Following the idea

that the influence of a neuron over others (whether exciting or inhibiting) results in the presence (or absence)

of coincidence patterns, Grün and collaborators developed one of the most popular and efficient method used

this last decade [GrünGrün, 19961996, Grün et al.Grün et al., 19991999]: the Unitary Events (UE) analysis method and the correspond-

ing independence test, which detects where dependence lies by assessing p-values (a UE is a spike synchrony

that recurs more often than expected by chance). This method is based on a binned coincidence count that is

unfortunately known to suffer a loss in synchrony detection, but this flaw has been corrected by the multiple

shift coincidence count [Grün et al.Grün et al., 19991999].
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In order to deal with continuous time processes, a new method (Multiple Tests based on a Gaussian Approxima-

tion of the Unitary Events Method, MTGAUE), based on a generalization of this count, the delayed coincidence

count, has recently been proposed for two parallel neurons (Section 3.1 of [Tuleau-Malot et al.Tuleau-Malot et al., 20142014]). The re-

sults presented here are in the lineage of this newest method and are applied on continuous point processes

(random set of points which are modelling spike trains). Testing independence between real valued random

variables is a well known problem, and various techniques have been developed, from the classical chi-square

test to re-sampling methods for example. The interested reader may look at [Lehmann and RomanoLehmann and Romano, 20052005].

Some of these methods and more general surrogate data methods have been applied on binned coincidence

count, since the binned process transforms the spike train in vectors of finite dimension. However, the case of

point processes that are not preprocessed needs other tools and remains to study. Although the binned method

can deal with several neurons (six simultaneously recorded neurons are analysed in [Grün et al.Grün et al., 20022002]), both

of the improvements (Multiple Shift and MTGAUE) can only consider pairs of neurons. Thus, our goal is to

generalize the method introduced in [Tuleau-Malot et al.Tuleau-Malot et al., 20142014] for more than two neurons. Unlike MTGAUE,

our test is not designed to be performed on multiple time windows. However it can be multiple with respect to

the different possible patterns composed from n ≥ 2 neurons (see Section 1.3.31.3.3).

In Section 1.11.1, I introduce the different notions of coincidence we consider. In Section 1.21.2, a test is established

and the asymptotic control of its false positive rate is proven. In Section 1.31.3 the relevance of our method

when our main theoretical assumptions are weakened is empirically tested. Finally I present in Section 1.41.4 an

application of our test on real data.

1.1 Notions of coincidence and the classical UE methods

In order to detect synchronizations between the involved neurons, different notions of coincidence can be consid-

ered. Informally, there is a coincidence between neurons when they each emit a spike more or less simultaneously.

This notion has already been used in UE methods [Grün et al.Grün et al., 20022002] and is based on the following idea: a real

dependency between n ≥ 2 neurons should be characterized by an unusually large (or low) number of coinci-

dence [Grammont and RiehleGrammont and Riehle, 20032003, GrünGrün, 19961996, Tuleau-Malot et al.Tuleau-Malot et al., 20142014].

1.1.1 Two notions of coincidence

The UE method considers discretized spike trains at a resolution ` of typically 1 or 0.1 millisecond. Therefore,

in the discrete-time framework, each trial consists of a set of n spike trains (one for each recorded neuron), each

spike train being represented by a sequence of 0 and 1 of length S. Since it is quite unlikely that two spikes occur

at exactly the same time at this resolution `, spike trains are binned and clipped at a coarser level. More precisely

for a fixed bin size ∆ = d` (d being an integer), a new sequence of length S/d of 0 and 1 is associated to each spike

train (1 if at least one spike occurs in the corresponding bin, 0 otherwise). For more precise informations on the

binning procedure and the link with point processes we refer the interested reader to [Tuleau-Malot et al.Tuleau-Malot et al., 20142014].

A constellation or pattern is a vector of size n of 0 and 1 (see Figure 1.11.1). Of course, there are 2n different con-

stellations. The UE statistic associated to some constellation w consists in counting the number of occurrences

of such w in the set of S/d vectors of size n. However, as shown in Figure 1.11.1, this method largely depends on

the bin choice and it has been proven in [Grün et al.Grün et al., 19991999] that this can lead in the case n = 2 to up to 60%

of loss in detection when ∆ is of the order of the range of interaction.
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B : Discretization of spike trains

C : Delayed coincidence count

Bin 1 2 3 . . . S/d

Neuron 1 1 1 0 . . . 0 1

Neuron 2 0 1 0 . . . 1 1

Neuron 3 0 1 0 . . . 0 1

Neuron 4 0 0 1 . . . 1 1

{1} {1,2,3} {4} . . . {2,4} {1,2,3,4}
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4) 5) 6)

(S/d)-1

Figure 1.1: In A, 4 parallel binary processes of length S are displayed. At each time step, the constellation and its
corresponding subset of {1, 2, 3, 4} are given. For instance, the constellation associated to the first bins is the vector
(1, 0, 0, 0) and the corresponding subset is {1}. In B, illustration of the UE method with two different choices of bins of
the same size (the results are different, for example the constellation full of 1s is present in the second case and not in
the first one). In C, an illustration of the six first steps in the dynamical computation of the delayed coincidence count.
Here, there are 3 parallel time point processes. We consider the full pattern, i.e. L = {1, 2, 3}. The grey rectangle
represents the sliding time window of length δ. The bold lines denote the coincidence patterns counted at each step and
the grey dashed ones denote the coincidence pattern which have been counted in one the previous steps. At each of
steps 1,2 and 3, exactly one coincidence is counted. At steps 4 and 5, no coincidence is detected. And, at step 6, two
coincidences are counted.

Then, we focus on another coincidence count that deals with continuous data. This notion of delayed coincidence

count is pretty natural and was used in [Borgelt and Picado-MuinoBorgelt and Picado-Muino, 20132013, Muiño and BorgeltMuiño and Borgelt, 20142014] in a simpli-

fied formalism. For sake of simplicity, we use the same formalism of point processes as in [Tuleau-Malot et al.Tuleau-Malot et al.,

20142014]: Considering N1, . . . , Nn, some point processes on [a, b], and L ⊂ {1, . . . , n} a set of indices of cardinal

L ≥ 2, the delayed coincidence count XL (of delay δ < (b − a)/2) over the neurons of subset L in the time

window [a, b] is given by

XL = XL (δ) =
∑

(x1,...,xL)∈
∏
l∈L Nl

1∣∣∣∣ max
i∈{1,...,L}

xi− min
i∈{1,...,L}

xi

∣∣∣∣≤δ. (1.1)

This delayed coincidence count can be explained in the following way (see Figure 1.11.1):

• Fix some duration parameter δ which is the equivalent of the bin size ∆;

• Count how many times each neuron in L spikes almost at the same time, modulo the delay δ.
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1.1.2 Original UE method

The notion of constellation is closely linked to the binning procedure and is not relevant in the continuous time

framework. In this work, we fix some subset of neurons, denoted L , and count how many times the neurons

of L admit nearly simultaneous activity. However, there is a canonical correspondence between constellations

and set of indices (see Figure 1.11.1). Then, in order to harmonize the notations between both methods, let us

denote L (w) the set of indices corresponding to the constellation w.

To detect dependency between neurons, two estimators of the expected coincidence count are compared. The

first one is the empirical mean m̄w of the number of occurrences of a given constellation w through M trials,

m̄w =
1

M

M∑
k=1

m(k)
w ,

where m
(k)
w is the number of occurrences of w during the kth trial. This estimator is consistent (that is, converges

towards the expected value of the number of occurrences) even with dependency between the spike trains. The

second one is consistent only under the independence hypothesis, and is given by

m̂g,w =
S

d

∏
l∈L (w)

p̂l
∏

k/∈L (w)

(1− p̂k), (1.2)

where p̂i is the empirical probability of finding a spike in a bin of neuron i.

This enables the construction of the test described in [GrünGrün, 19961996, Grün et al.Grün et al., 20022002] and based on the com-

parison between the statistic Mm̄w and a quantile of the Poisson distribution P(Mm̂g,w) where M is the

number of trials. Most of the time only tests by upper values are computed. However, following the study

of [Tuleau-Malot et al.Tuleau-Malot et al., 20142014], we have decided to focus on symmetric tests. Hence, the symmetric test based

on the UE method rejects the independence hypothesis when m̄w is too different from m̂g,w. However, such a

test necessarily makes mistakes. For example, a false positive corresponds to an incorrect rejection of the null

hypothesis. Hence, an a priori upper bound on the false positive rate, that is the significance level (or just

level), must be given in order to construct a decision rule. The symmetric independence test with level α based

on the UE method is governed by the following rule: if

Mm̄w ≥ q1−α/2 or Mm̄w ≤ qα/2,

where qx is the x-quantile of the Poisson distribution P(Mm̂g,w), then the independence hypothesis is rejected.

The UE method is applied under the hypothesis that the discrete processes modelling the spike trains of neurons

are Bernoulli processes. The equivalent in the “continuous” framework is the Poisson process (as it can be seen

in [Tuleau-Malot et al.Tuleau-Malot et al., 20142014]). This leads to a different estimator of the expected coincidence count and a

different test which are defined properly in the next section.

1.2 Study of the delayed coincidence count

Once the notion of coincidence is defined with respect to continuous data (Equation (1.11.1)) , mathematical tools

can be used to construct the desired independence test. The procedure is to provide the expected value and

variance of the variable XL in function of the firing rates. These computations classically imply a Gaussian

approximation with respect to i.i.d trials. Unfortunately the firing rates are usually unknown. Thus the final

step is to replace the firing rates by their estimator to compute the estimated expected value and variance. This
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plug-in procedure is known to change the underlying distribution. As in [Tuleau-Malot et al.Tuleau-Malot et al., 20142014], the delta

method provides the exact nature of this change.

In the continuous framework, a sample is composed of M observations of N1, · · · , Nn which are the point

processes associated to the spike trains of n neurons on a window [a, b]. The goal is to answer the following

question:

Given L a subset of {1, . . . , n}, are the processes Nl, l ∈ L independent?

To do this, a statistical test comparing the two hypotheses{
(H0) The processes Nl, l ∈ L are independent;

(H1) The processes Nl, l ∈ L are not independent;

is proposed.

In this section our test and its asymptotic relevance are introduced. First, let us present and discuss our main

assumptions which are the same as in [Tuleau-Malot et al.Tuleau-Malot et al., 20142014].

A1 N1, . . . , Nn are Poisson processes.

This assumption can be resumed to an assumption of independence of a point process with respect to itself over

the time, as Bernoulli processes in discrete settings.

A2 The Poisson processes N1, . . . , Nn are homogeneous on [a, b].

Assumption A2 may also appear very restrictive, but Bernoulli processes considered in [Grün et al.Grün et al., 19991999,

20022002] have the same drawback. Moreover, if necessary, one can partition [a, b] in smaller intervals on which A2

is satisfied. For more precise informations on Poisson processes we refer the interested reader to [KingmanKingman, 19931993].

These assumptions are necessary in this work in order to obtain an explicit form for the expected number of

coincidences (and its variance). Note that there exist some surrogate methods in the literature for which there

is no need of a model on the data (see [GrünGrün, 20092009, Louis et al.Louis et al., 2010a2010a] for a review). In particular two kind

of methods are commonly used: dithering methods (involving random shifts of individual spikes [Louis et al.Louis et al.,

2010b2010b, Stark and AbelesStark and Abeles, 20092009], or random shifts of patterns of spikes [Harrison and GemanHarrison and Geman, 20092009]), and trial-

shuffling methods [Pipa and GrünPipa and Grün, 20032003, Pipa et al.Pipa et al., 20032003]. However, they are based on binned coincidence

count, and there is no equivalent, up to our knowledge, with a delayed coincidence count, due to serious compu-

tational issues. Alternative works have also been done in the Bayesian paradigm [Archer et al.Archer et al., 20132013]. However,

as announced in the introduction, we empirically show in Section 1.31.3 that the assumptions can be weakened.

In particular, point processes admitting refractory periods can be taken into account. Thus, a nice perspective

of this work could be to derive theoretical results with these weakened assumptions.

1.2.1 Asymptotic properties

In order to build our independence test, one needs to understand the behaviour of the number of coincidence

XL under the independence hypothesis H0. In particular, the expected value and the variance of XL are

computed here. In a general point processes framework, these computations are impossible. This is why some

restrictive assumptions are needed, such as A1, A2, or the independence of the processes, as done in the original

UE method where independent Bernoulli processes have been considered.
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Theorem 1.2.1 Let L and XL be defined as previously. Assume assumptions A1 and A2 and denote by

λ1, . . . , λn the respective intensities of N1, . . . , Nn. Under hypothesis H0, the expected value and the variance of

the number of coincidences XL are given by:

m0,L := E [XL ] =

(∏
l∈L

λl

)
I(L, 0)

and

Var(XL ) = m0,L +

L−1∑
k=1

 ∑
J⊂L
#J=k

∏
j∈J

λ2
j

∏
l/∈J

λl

 I(L, k),

where the I(L, k) are given by Proposition 1.2.11.2.1 below.

The proof, given in [Chevallier and LaloëChevallier and Laloë, 20152015], relies on the calculus of the moments of a sum over a Poisson

Process and is . The integral I(L, k) can be seen as the contribution of a subset of k neurons to the number of

coincidences between the L neurons.

Proposition 1.2.1 For b > a ≥ 0 and 0 < δ < b− a, define for every k in {0, . . . , L}

I(L, k) =

∫
[a,b]L−k

 ∫
[a,b]k

1∣∣∣∣ max
i∈{1,...,L}

xi− min
i∈{1,...,L}

xi

∣∣∣∣≤δ dx1 . . . dxk


2

dxk+1 . . . dxL,

where the convention
∫

[a,b]0
f (x) dx = f (x) is set. Then, for L ≥ 2, and k in {0, . . . , L− 1},

• I (L,L) = L2 (b− a)
2
δ2L−2 − 2L (L− 1) (b− a) δ2L−1 + (L− 1)

2
δ2L,

• I (L, k) = f (L, k) (b− a) δL+k−1 − h (L, k) δL+k,

where f (L, k) =
k (k + 1) + L (L+ 1)

L− k + 1
,

and h (L, k) =
−k3 + k2(2 + L) + k(5 + 2L− L2) + L3 + 2L2 − L− 2

(L− k + 2)(L− k + 1)
.

Once the behaviour of XL underH0 is known, the method to construct an independence test is straight-forward.

Suppose that M independent and identically distributed (i.i.d.) trials are given. Denote N
(k)
i the spike train

corresponding to the neuron i during the kth trial. As for the UE method, the idea is to compare two estimates

of the expectation of XL . The first one is the empirical mean of XL :

m̄L =
1

M

M∑
k=1

X
(k)
L , (1.3)

where X
(k)
L is the delayed coincidence count during the kth trial. This estimate converges even if the processes

are not independent. More precisely the following asymptotic result is given by the Central Limit Theorem

√
M (m̄L − E [XL ])

D−→
M→∞

N (0,Var(XL )) ,

where
D−→ denotes the convergence of distribution and N (µ, σ2) denotes the Gaussian distribution with mean

µ and variance σ2.

The second estimate is given by Theorem 1.2.11.2.1. Indeed, under H0 the following equality holds

E [XL ] = m0,L =

(∏
l∈L

λl

)
I(L, 0).
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Replacing each spiking intensity λl by

λ̂l :=
1

M(b− a)

M∑
k=1

N
(k)
l ([a, b]) ,

where N
(k)
l ([a, b]) denotes the number of spikes in [a, b] for neuron l during the kth trial, gives the following

estimator,

m̂0,L =

(∏
l∈L

λ̂l

)
I (L, 0) . (1.4)

Note that m̄L is always consistent (that is, converges towards the true parameter) whereas m̂0,L is consistent

only under H0. This leads to the following independence test: the independence assumption is rejected when

the difference between m̄L and m̂0,L is too large. More precisely, Theorem 1.2.21.2.2 gives the asymptotic behaviour

of
√
M (m̄L − m̂0,L ) under H0.

Theorem 1.2.2 Under the notations and assumptions of Theorem 1.2.11.2.1, and under H0, the following affirma-

tions are true

• The following convergence of distribution holds:

√
M (m̄L − m̂0,L )

D−→
M→∞

N
(
0, σ2

)
,

with

σ2 = Var(XL )− (b− a)−1E [XL ]
2

(∑
l∈L

λ−1
l

)
.

• Moreover, σ2 can be estimated by

σ̂2 = v̂ (XL )− (b− a)−1I(L,L)
∏
l∈L

λ̂2
l

(∑
l∈L

λ̂−1
l

)
,

where

v̂(XL ) = m̂0,L +

L−1∑
k=1

 ∑
J⊂L
#J=k

∏
j∈J

λ̂2
j

∏
l/∈J

λ̂l

 I(L, k),

and the following convergence of distribution holds:

√
M

(m̄L − m̂0,L )√
σ̂2

D→ N (0, 1) .

The proof of this theorem relies on a standard application of the delta method [Casella and BergerCasella and Berger, 20022002] and

is given in [Chevallier and LaloëChevallier and Laloë, 20152015]. Note that the results obtained in Theorems 1.2.11.2.1 and 1.2.21.2.2 are true for

more general delayed coincidence counts. However when one considers more general ways to count coincidences

the integrals I(L, k) are harder to compute.

1.2.2 Independence test

The results obtained in Theorem 1.2.21.2.2 allow us to straightforwardly build a test for detecting a dependency

between neurons:
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Definition 1.2.1 (The GAUE test) For α in ]0, 1[, denote zα the α-quantile of the standard Gaussian dis-

tribution N (0, 1). Then the symmetric test of level α rejects H0 when m̄ and m̂0,L are too different, that is

when ∣∣∣∣√M (m̄L − m̂0,L )√
σ̂2

∣∣∣∣ > z1−α/2.

Note that once a subset is rejected by our test, one can determine if the dependency is rather excitatory or

inhibitory according to the sign of m̄L − m̂0,L . If m̄L − m̂0,L > 0 (respectively < 0) then the dependency is

rather excitatory (respectively inhibitory).

The result of a test may be wrong in two distinct manners. On the one hand, a false positive is an error in

which the test is incorrectly rejecting the null hypothesis. On the other hand, a false negative is an error in

which the test is incorrectly accepting the null hypothesis. The false positive (respectively negative) rate is the

test’s probability that a false positive (resp. negative) occurs. Usually, a theoretical control is given only for the

false positive rate which is considered as the worst error. The following corollary is an immediate consequence

of Theorem 1.2.21.2.2 and states the appropriateness of the GAUE test.

Corollary 1.2.1 Under assumptions of Theorem 1.2.21.2.2, the test of level α presented in Definition 1.2.11.2.1 is

asymptotically of false positive rate α. That is, the false positive rate of the test tends to α when the sample

size M tends to infinity.

1.3 Empirical study: Non-Poissonian framework

In this section, a more neurobiologically realistic framework than the Poisson one is considered (a similar

simulation study under the Poisson framework is proposed in [Chevallier and LaloëChevallier and Laloë, 20152015]). Indeed, it is in-

teresting to see if our test is still reliable when the Poisson framework is not valid anymore. Our test is con-

fronted to multivariate Hawkes processes, which can be simulated thanks to Ogata’s thinning method [OgataOgata,

19811981] inspired by [Lewis and ShedlerLewis and Shedler, 19791979]. The use of Hawkes processes in neurobiology was first intro-

duced in [Chornoboy et al.Chornoboy et al., 19881988]. With the development of simultaneous neuron recordings there is a recent

trend in favour of Hawkes processes for modelling spike trains [Krumin et al.Krumin et al., 20102010, Pernice et al.Pernice et al., 20112011, 20122012,

Pillow et al.Pillow et al., 20082008, Tuleau-Malot et al.Tuleau-Malot et al., 20142014]. Furthermore, Hawkes processes have passed some goodness-of-fit

tests on real data [Reynaud-Bouret et al.Reynaud-Bouret et al., 20142014]. In this model, interaction between two neurons can be easily

and in a more realistic way inserted. Note that the homogeneous Poisson process is a particular case of Hawkes

processes, with no interaction between neurons.

A counting process N is characterized by its conditional intensity λt which is related with the local probability

of finding a new point given the past. Informally, the quantity λtdt gives the probability that a new point on

N appears in [t, t + dt] given the past. The process
(
N i
)
i=1...n

is a multivariate Hawkes process if there exist

some functions (hij)i,j=1...n (called interaction functions) and some positive constants (µi)i=1...n (spontaneous

intensities) such that, for all j = 1, . . . , n, λj given by

λjt = max

(
0, µj +

n∑
i=1

∫
s<t

hij (t− s) N i (ds)

)
is the intensity of the point process N j , where N i(ds) is the point measure associated to N i, that is

N i(ds) =
∑
T∈Ni δT (ds) where δT is the Dirac measure at point T .

The functions hij represent the influence of neuron i over neuron j in terms of spiking intensity. This influence

can be either exciting (h ≥ 0) or inhibiting (h ≤ 0). For example, suppose that hij = β1[0,x]. If β > 0
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(respectively β < 0) then the apparition of a spike on N i increases (respectively decreases) the probability to

have a spike on N j during a short period of time (namely x): neuron i excites (respectively inhibits) neuron j.

The processes N i for i = 1, . . . , n are independent if and only if hij = 0 for all i 6= j.

Note also that the self-interaction functions hjj can model refractory periods, making the Hawkes model more

realistic than Poisson processes, even in the independence case. In particular when hjj = −µj1[0,x] , all the

other interaction functions being null, the n-dimensional process is composed by n independent Poisson pro-

cesses with dead time x, modelling strict refractory periods of length x [Reimer et al.Reimer et al., 20122012].

All the following tests are computed according to the Framework F1 below:

• the trial duration of b− a is randomly selected (uniform distribution) between 0.2 and 0.4s;

• the n = 4 neurons are simulated with spontaneous intensity µ1, . . . , µ4 randomly selected
(uniform distribution) between 8 and 20Hz;

• the non-positive auto interaction functions are given by hi,i = −µi1[0,0.003s];

• the set of tested neurons is given by L = {1, 2, 3, 4};


F1

Note that a parameter scan is available in [Chevallier and LaloëChevallier and Laloë, 20152015].

1.3.1 Illustration of the level

Before all, one wants to know if Theorem 1.2.21.2.2 and Corollary 1.2.11.2.1 are still reliable for Hawkes processes. Thus

Figure 1.21.2.A shows the evolution of the Kolmogorov distance KS(FM,1000, F ) between the empirical distribution

function over the 1000 repetition FM,1000 and the standard Gaussian distribution function F :

KS(FM,1000, F ) = sup
x
|FM,1000(x)− F (x)|.

Then we look at the Kolmogorov distance between the empirical distribution function of the p-values and the

uniform distribution function to see if one can trust the level of the different tests (Figure 1.21.2.B). Finally, Figure

1.21.2.C presents the sorted p-values in function of their normalized rank (for M = 50). We see that our test is

rather conservative whereas the UE test rejects too many cases.
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Figure 1.2: Under Framework F1 (Independence assumption). Figure A. Evolution of the Kolmogorov
distance (in function of the number of trials) averaged on 1000 simulations between the empirical distribution
function of the test statistics and the standard Gaussian distribution function. Figure B. Evolution of the
Kolmogorov distance averaged on 1000 simulations between the empirical distribution function of the p-values
and the uniform distribution function with respect to the number of trials. The plain line stands for our test
and the dashed line for the original UE one. Figure C. Graphs of the sorted 1000 p-values (for 50 trials) in
function of their normalized rank under H0. The plain line stands for our test, the dashed line for the original
UE one and the dotted line for the uniform distribution function.
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1.3.2 Illustration of the true positive rate

As said previously, it is more realistic to introduce dependency between Hawkes processes than Poisson processes.

Still considering Framework F1, interaction functions hi,j = β1[0,0.005s], β being randomly selected between

20 and 30 Hz, are added. More precisely, we add five interaction functions: h1,3, h2,3, h1,4, h2,4 and h3,4

(summarized in Figure 1.31.3). Moreover, the auto interactions are updated to preserve strict refractory periods :

hi,i = −(µi +mi.β)1[0,0.003s], where mi is the number of neurons exciting neuron i (for example, m4 = 3). This

new framework (F1 completed by the five interaction function) is referred as Framework F2.

4

2

3

1

Figure 1.3: Local independence graph. An arrow means a non null interaction function. Blue arrow means
inhibition and red arrow means excitation.

As previously we first provide an illustration of the true positive rate of the two tests, associated to a theoretical

level of 5%, in function of M (Figure 1.41.4.A). Then Figure 1.41.4.B represents the p-values in function of their

normalized rank, for M = 50. The difference between the true positive rates is smaller than in the Poissonian

Case.
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Figure 1.4: Under Framework F2 (Dependence assumption, see Figure 1.31.3). Figure A. Illustration of the
true positive rate of the test, for a theoretical test level of 5%. The curves represent the evolution, with respect
to the number of trials, of the true positive rate (averaged on 1000 simulations). The plain line stands for our
test and the dashed line for the original UE one. Figure B. Graphs of the sorted 1000 p-values for 50 trials.
The plain line stands for our test, the dashed line for the original UE one and the dotted line for the uniform
distribution function.

1.3.3 Multiple pattern test

In the original MTGAUE method, a multiple testing procedure is applied with respect to 1900 sliding time

windows. In our framework, we cannot guarantee the relevance of the multiple test with this high order of

multiplicity (due to the default of the Gaussian approximation and, more precisely, to the excess of very small

p-values). However, we are able to propose a multiple testing procedure with respect to the different possible

patterns. For example, with four neurons there are eleven different possible patterns, which gives a much lower

order of multiplicity. So, the multiple test over all the eleven sub-pattern of two, three or four neurons is
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1.3 Empirical study: Non-Poissonian framework

presented here.

In multiple testing, the notion of false positive rate is not relevant. The closest notion might be the Family-

Wise Error Rate (FWER) which is the probability to wrongly reject at least one of the tests. This error

rate can be controlled using Bonferroni’s method but it is too restrictive, in particular when the number

K of tests involved is too large. One popular way to deal with multiple testing is the Benjamini-Hochberg

procedure [Benjamini and HochbergBenjamini and Hochberg, 19951995] which ensures a control of the False Discovery Rate (FDR). False

discoveries cannot be avoided but it is not a problem if the ratio of Fp (the number of false positives detections)

divided by R (the total number of rejects) is controlled. Therefore, the FDR is mathematically defined by

FDR = E [Fp/R 1R>0] . The following procedure, due to Benjamini and Hochberg ensures a small FDR over K

tests:

1. Fix a level q (q = 5% for example);

2. Denote by (P1, . . . , PK) the p-values obtained for all considered tests;

3. Order them in increasing order and denote the increasing vector (P(1), . . . , P(K));

4. Note k0 the largest k such that P(k) ≤ kq/K;

5. Then, reject all the tests corresponding to p-values smaller than P(k0).

The theoretical result of [Benjamini and HochbergBenjamini and Hochberg, 19951995] ensures that if the p-values are upper bounded by a

uniform distribution and independently distributed under the null hypothesis, then the procedure guarantees a

FDR less than q. The main drawback of this procedure in our case is that one needs to compute p-values that

are very small when K is large. For example, if K ≥ 50 and q = 5%, the upper bound given by kq/K can be

smaller than 0.001 and the empirical frequency of very small p-values is greater than expected and therefore

the uniform upper bound of the p-values is not guaranteed in our case. However, only 11 tests are considered

here and the procedure still returns reliable results. We perform 1000 simulations and count how many times

each test rejects the independence. The results, obtained for M = 50, are presented in Figure 1.51.5.

{3,4} {2,4} {1,4} {2,3} {1,3} {1,2} {2,3,4} {1,3,4} {1,2,4} {1,2,3} {1,2,3,4}
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Figure 1.5: Under Framework F2 (Dependence assumption, see Figure 1.31.3). Frequency of dependence detections
(1000 simulations) for each pattern. Grey for our test, white for the original UE method.
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Pattern detection

The results show that our test detects all patterns except {1, 2}. This is consistent with the considered framework

(F2) since we simulate connections between all pairs of neurons except {1, 2}. The U.E. test essentially detects

the patterns {2, 3, 4}, {1, 3, 4}, {1, 2, 3, 4} and to a lesser extent {1, 2, 4} and {1, 2, 3}. Moreover, it misses all

the pairs.

1.4 Illustration on real data

We apply our method on real data and show results in agreement with classical knowledge on those data.

1.4.1 Description of the data

The data set considered here is the same as in [Tuleau-Malot et al.Tuleau-Malot et al., 20142014] and previous experimental studies

[Grammont and RiehleGrammont and Riehle, 20032003, Riehle et al.Riehle et al., 20002000, 20062006]. The following description of the experiment is copied

from Section 4.1 of [Tuleau-Malot et al.Tuleau-Malot et al., 20142014]. These data were collected on a 5-year-old male Rhesus monkey

who was trained to perform a delayed multi-directional pointing task. The animal sat in a primate chair in

front of a vertical panel on which seven touch-sensitive light-emitting diodes were mounted, one in the centre

and six placed equidistantly (60 degrees apart) on a circle around it. The monkey had to initiate a trial by

touching and then holding with the left hand the central target. After a fix delay of 500ms, the preparatory

signal (PS) was presented by illuminating one of the six peripheral targets in green. After a delay of either

600ms (with probability 0.3) or 1200ms (with probability 0.7), it turned red, serving as the response signal

and pointing target. Signals recorded from up to seven micro-electrodes (quartz insulated platinum-tungsten

electrodes, impedance: 2-5MΩ at 1000Hz) were amplified and band-pass filtered from 300Hz to 10kHz. Using a

window discriminator, spikes from only one single neuron per electrode were then isolated. Neuronal data along

with behavioural events (occurrences of signals and performance of the animal) were stored on a PC for off-line

analysis with a time resolution of 10kHz. The idea of the analysis is to detect some conspicuous patterns of

coincident spike activity appearing during the response signal in the case of a long delay (1200ms). Therefore,

we only consider trials where the response signal is indeed occurring after a long delay.

1.4.2 The test

We have at hand the following data: spike trains associated to four neurons (35 trials by neurons). We consider

two sub windows: one between 300ms and 500ms (i.e. before the preparatory signal), the other between 1100ms

and 1300ms (i.e. around the expected signal). Our idea is that more synchronisation should be detected during

the second window. Moreover, we do not only want to test if the four considered neurons are independent (that

is perform our test on the complete pattern {1, 2, 3, 4}). Indeed one can be interested in knowing if neurons in

some sub-patterns (for example {1, 2} or {1, 3, 4} are independent. That is why we use the multiple pattern

test procedure defined at the end of Section 1.31.3 to test all the eleven subsets (of at least two neurons) of the

four considered neurons are tested. Thus we use the Benjamini-Hochberg procedure (presented in the previous

section) for K = 22 tests. Moreover, we took several values for the delay δ between 0.01s and 0.025s and the

results remained stable.

The results are presented in Figure 1.61.6. Note that we saw in section 1.31.3 that our test is too conservative even

for small number of trials. This ensures that the theoretical level of our test can be trusted. We see that

synchronizations between the subsets {3, 4} and {1, 3, 4} appear in the second window. These results suggest

that neurons 1, 3 and 4 belong to a neuronal assembly which is formed around the expected signal. This is

in agreement with more quantitative results on those data [Grammont and RiehleGrammont and Riehle, 20032003, Tuleau-Malot et al.Tuleau-Malot et al.,

20142014].
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1.4 Illustration on real data
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Figure 1.6: Evolution of the synchronization between neurons. The lines indicate the subset for which our test
detects dependence. Here we detect an excess of coincidences between neurons {1, 3, 4} and {3, 4}

Conclusion and prospects

Pattern detection

I presented in this chapter a generalization of the delayed coincidence count performed in [Tuleau-Malot et al.Tuleau-Malot et al.,

20142014] to more than two neurons. This delayed coincidence count leads to an independence test for point pro-

cesses which are commonly used to model spike trains.

Under the hypothesis that the point processes are homogeneous Poisson processes, the expectation and variance

of the delayed coincidence count can be computed (Theorem 1.2.11.2.1), and then a test with prescribed asymptotic

level is built (Theorem 1.2.21.2.2). A simulation study allows us to confirm our theoretical results and to state the

empirical validity of our test with a relaxed Poisson assumption. Indeed, we considered Hawkes processes which

are a more realistic model of spike trains. The simulation study gives good results, even for small sample size.

This allows us to use our test on real data, in order to highlight the emergence of a neuronal assembly involved

at some particular time of the experiment.

We achieved the full generalization of the single test procedure introduced in [Tuleau-Malot et al.Tuleau-Malot et al., 20142014]. How-

ever, we could not achieve the multiple time windows testing procedure mainly because of the default of Gaussian

approximation concerning extreme values of the test statistics. More precisely, very small p-values are not dis-

tributed as expected. In particular when the sample size M is moderate (M = 50), our test returns too many

very small p-values. In [Tuleau-Malot et al.Tuleau-Malot et al., 20142014], the MTGAUE method is applied simultaneously on 1900

sliding windows. In the present work, in order to apply multiple testing both with respect to the sliding time

windows and the subsets, the total number of tests is even larger. Indeed, for each sliding window, there are

2n − n − 1 tests to perform, where n is the number of recorded neurons. This would lead to extremely small

p-values, for which our test is less reliable.

Even if our test remains empirically reliable under a non Poissonian framework, it could be therefore of interest

to explore surrogate data method such as trial-shuffling [Pipa et al.Pipa et al., 20032003]. A very recent work based on per-

mutation approach for delayed coincidence count with n = 2 neurons [Albert et al.Albert et al., 20152015] is a first step in this

direction but needs to be generalized to more than 2 neurons.

Ongoing PhD in Cognitive science I am also interested in other levels of cognition. On this spirit I am

currently co-supervising (with a psychologist : F. MathyF. Mathy and P. Reynaud-BouretP. Reynaud-Bouret) the PhD of Giulia Mezzadri.
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Pattern detection

In cognitive psychology, the literature showed that the manipulated ordering of stimuli seems to determine the

efficiency of a learning session for a human being [Kornell and BjorkKornell and Bjork, 20082008, Mathy and FeldmanMathy and Feldman, 20092009]. The

goal of this PhD is to model in detail the temporal effect of the presenting order. In a more general way, our

goal is there to understand how a human being learns a classification rule.

A first step is to define the proper distance between the presented stimuli (taking into account the order of

presentation) allowing to efficiently test the initial assumption on the importance of the presentation order.

Then we could be able to generalize the General Context Model (GCM) developed by [NosofskyNosofsky, 19861986] to

include the presentation order in the model. Finally, goodness-of-fit test should be developed to establish the

relevance of our model.
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