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Abstract

Generalising Segal’s approach to 1-fold loop spaces, the homotopy theory of n-fold loop spaces is shown
to be equivalent to the homotopy theory of reduced Θn-spaces, where Θn is an iterated wreath product of
the simplex category Δ. A sequence of functors from Θn to Γ allows for an alternative description of the
Segal spectrum associated to a Γ -space. This yields a canonical reduced Θn-set model for each Eilenberg–
MacLane space. The number of (n+k)-dimensional cells of the resulting CW-complex of type K(Z/2Z, n)

is the kth generalised Fibonacci number of order n.
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0. Introduction

According to Segal [39], reduced Γ -spaces are models for infinite loop spaces. His construc-
tion is based on an iterative use of reduced simplicial spaces as models for 1-fold loop spaces.
The purpose of the present text is to interpolate between these two constructions, and to show
that the homotopy theory of n-fold loop spaces may be described inside the category of reduced
Θn-spaces, where Θn is a certain iterated wreath product of the simplex category Δ. The duals of
these operator categories have been introduced by Joyal [28] as a possible starting point for the

E-mail address: cberger@math.unice.fr.
0001-8708/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2006.12.006



C. Berger / Advances in Mathematics 213 (2007) 230–270 231
definition of weak higher categories. Therefore, our models for iterated loop spaces give some
evidence to Baez and Dolan’s [4] hypothesis that n-fold loop spaces are weak n-groupoids with
one 0-cell, one 1-cell, one 2-cell, . . . , and one (n − 1)-cell.

We begin our exposition with a possible characterisation of what it means to be a Quillen
model category [35] for n-fold loop spaces, where 1 � n � ∞. In the extremal cases n = 1 and
n = ∞, this may be compared with Thomason and May’s uniqueness results (cf. [34,42]) for
1-fold and infinite delooping machines. Our approach is based on a general definition of the
derived image of a right Quillen functor between model categories. The homotopy category of
n-fold loop spaces (respectively infinite loop spaces) is then by definition the derived image of
the n-fold loop functor Ωn : Top∗ → Top∗ (respectively of the right adjoint Ω∞ : Spt → Top∗
of the suspension spectrum functor). As motivating examples, we show that the categories of
reduced Δ- and Γ -spaces nicely fit into our framework, insofar as they are model categories for
the derived image of Ω1 and of Ω∞ respectively.

Our main result (Theorem 4.5) states that the category of reduced Θn-spaces is a model cate-
gory for the derived image of Ωn. This statement is, roughly speaking, equivalent to the following
property of reduced Θn-spaces X (cf. Lemma 1.10): whenever X is a cofibrant–fibrant reduced
Θn-space, the geometric realisation of X is an n-fold delooping of the underlying space of X.

Joyal [28] defines Θn to be the dual of the category Dn of finite combinatorial n-disks. Soon
after Joyal’s definition of Dn, Batanin and Street [9] have conjectured that Θn fully embeds in the
category of strict n-categories by means of certain n-categorical analogs of the finite ordinals;
this has been proved independently by Makkai and Zawadowsky [32, Theorem 5.10], and the
author [10, Proposition 2.2]. The resulting description of the operators in Θn is however just as
involved as Joyal’s description of the dual operators in Dn, since it relies on Batanin’s formula for
the free n-category generated by certain n-graphs ([6], [10, Definition 1.8]). We give here a new,
conceptually simple, description of Θn, together with a comparatively short proof of the duality
between Θn and Dn. Indeed, Θn will be identified with an iterated wreath product Δ � · · · � Δ

of the simplex category Δ. Many important properties of Θn follow now from the analogous
properties of Δ by induction on n.

There is a formally similar wreath product for Segal’s category Γ ; moreover, disjoint sum
induces a canonical functor α :Γ � Γ → Γ . Therefore, Segal’s functor γ :Δ → Γ induces a
whole sequence of assembly functors γn :Θn → Γ , inductively defined as composite functors

γn :Θn = Δ � Θn−1
γ �γn−1−−−−→ Γ � Γ

α−→ Γ . The assembly functor γn also occurs (in dual form)
in Batanin’s n-operadic approach [7] to n-fold loop spaces, where it gives rise to an adjunction
between n-operads and symmetric operads, the left adjoint of which sends contractible cofibrant
n-operads to cofibrant En-operads, cf. [8] and Remark 4.9.

Most importantly for us, the assembly functors γn relate the homotopy theories of reduced Γ -
spaces and of reduced Θn-spaces as follows: each reduced Γ -space A determines an endofunctor
A of the category of based spaces, together with a natural transformation of functors A(−) ∧
S1 → A(− ∧ S1). The Segal spectrum of A is by definition the spectrum (A(Sn))n�0, where
Sn denotes the n-dimensional sphere. Whenever A is a cofibrant–fibrant Γ -space with respect
to Bousfield and Friedlander’s stable model structure [17], the Segal spectrum of A is an Ω-
spectrum, i.e. A(Sn) is an n-fold delooping of A(S0). It turns out (see Corollary 3.17) that there
is a functorial homeomorphism between A(Sn) and the geometric realisation of the inverse image
γ ∗
n (A) of A; under these homeomorphisms, the structural maps of the Segal spectrum are induced

by suspension functors σn :Θn → Θn+1, already considered in [28]. The above-mentioned main
property of reduced Θn-spaces thus recovers Segal’s construction of Ω-spectra out of Γ -spaces.
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Reduced Θn-spaces may be compared with reduced n-simplicial spaces by means of an ex-
plicit functor Δ × · · · × Δ → Θn. This diagonal functor induces a Quillen equivalence with
respect to suitably chosen model structures (see Proposition 4.7) so that both reduced presheaf
categories are model categories for n-fold loop spaces. The reduced n-simplicial model is ob-
tained by a straightforward iteration of the Segal model for 1-fold loop spaces, and it is folklore
that this works out well, cf. Dunn [21] and Fiedorowicz–Vogt [24]. We construct also a Quillen
equivalence (see Proposition 4.8) between reduced Θn-spaces and (n − 1)-reduced simplicial
spaces. That the latter form a model category for n-fold loop spaces is the content of a widely
circulated preprint of Bousfield [16].

There is a combinatorially interesting Θn-set for each Eilenberg–MacLane space, obtained
from the Γ -set for the corresponding Eilenberg–MacLane spectrum by taking the inverse im-
age with respect to γn. A counting lemma of Dolan [19] shows that the number of (n + k)-
dimensional cells of the resulting CW-complex of type K(Z/2Z, n) is a generalised Fibonacci
number, the classical one’s arising for n = 2. More specifically, for each finite abelian group π ,
the virtual Euler–Poincaré characteristic of the reduced Θn-set of type K(π,n) is the expected
one: the order of π or its inverse depending on whether n is even or odd.

The plan of this article is as follows:

Section 1 introduces the concept of the derived image of a right Quillen functor. We show that
the derived image is uniquely determined up to equivalence of categories; moreover, we establish
a rigidity result to the effect that any suitable Quillen adjunction between two models of the same
derived image is a Quillen equivalence.

Section 2 discusses the Segal models for 1-fold and infinite loop spaces from this model-
theoretical viewpoint. The material of this section is classical, and we do not claim any originality
for it. It is however pleasant to observe how nicely the existing literature fits into the language of
derived image-factorisations.

Reduced simplicial spaces recently occurred at several places (cf. Rezk [36] and Bergner
[12]) in the context of the so-called Segal categories. Our model structure on reduced simplicial
spaces is a localisation of the canonical injective model structure for reduced Segal categories;
this reflects the fact that the fibrant objects of any model for the derived image of the loop functor
have to be “group-complete.”

Concerning Γ -spaces we follow as closely as possible the original texts of Segal [39] and
Bousfield–Friedlander [17]; in particular, we use throughout the stable injective model structure
on Γ -spaces as defined by Bousfield and Friedlander. This implies that our cofibrancy condition
for Γ -spaces is somehow the weakest possible, but our fibrancy condition is stronger than Segal’s
condition of “speciality.”

Section 3 is central: we introduce the wreath products over Δ and Γ , and study the n-fold
wreath product Δ � · · · � Δ, which serves as definition for Θn. For consistency with the existing
literature, we show that the so defined Θn densely embeds in the category of strict n-categories;
Batanin’s [6] star-construction for level-trees makes this embedding explicit. We then show that
the presheaf topos on Θn is a classifying topos for Joyal’s [28] combinatorial n-disks, and deduce
the above-mentioned duality between Θn and Dn from the fact that all idempotents in Θn split. In
particular, this provides the category of Θn-spaces with a left exact geometric realisation functor,
already studied in [28] and [10]. We finally give an internal characterisation of the assembly
functor γn :Θn → Γ showing that the induced geometric morphism classifies the “generic n-
sphere” in Θn-sets.
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Section 4 establishes the main result of this article, namely that the category of reduced
Θn-spaces is a model for the derived image of the n-fold loop functor. We compare reduced
Θn-spaces with reduced n-simplicial spaces and with (n − 1)-reduced simplicial spaces, and
show (using the rigidity result of Section 1) that all three reduced presheaf categories carry
Quillen equivalent model structures. We describe the canonical reduced Θn-set for an Eilenberg–
MacLane space of type K(π,n) and determine its virtual Euler–Poincaré characteristic, as well
as the relationship with the generalised Fibonacci numbers of order n.

1. The derived image of a right Quillen functor

This section aims to give a sufficient set of axioms for a category to be called a model for the
category of n-fold loop spaces. In the literature, axiomatic approaches exist for 1-fold and infinite
loop spaces, cf. Thomason [42], Fiedorowicz [23], May–Thomason [34]; our approach is based
on the formalism of Quillen model structures. It turns out that we are looking for some kind of
“homotopical image-factorisation” of the n-fold loop functor. In order to make this precise, we
begin by defining what we mean by an honest image-factorisation of a functor. We apologise if
ever the adopted terminology is not well suited from a purely categorical viewpoint.

We call left-conservative (respectively right-conservative) any isomorphism-reflecting left
(respectively right) adjoint functor. The prototypical example of a left- (respectively right-) con-
servative functor is a comonadic (respectively monadic) functor.

We call reflection (respectively coreflection) any functor admitting a fully faithful right (re-
spectively left) adjoint. Equivalently, this means that the counit (respectively unit) of the ad-
junction is an isomorphism. The prototypical example of a (co)reflection is the adjoint of the
inclusion of a (co)reflective subcategory.

Definition 1.1. An image-factorisation of a right adjoint functor G is a factorisation of G into a
coreflection followed by a right-conservative functor.

Dually, a coimage-factorisation of a left adjoint functor F is a factorisation of F into a reflec-
tion followed by a left-conservative functor.

Let G :E ′ → E be a right adjoint functor and let

E ′ Ψ

M
Φ

U

E
L

be an image-factorisation of G. The intermediate category M will be called an image of G.
We shall usually abbreviate this image-factorisation by the triple (Φ,M,U). For two image-
factorisations (Φ1,M1,U1) and (Φ2,M2,U2) of G, we say that an adjunction d∗ :M1 � M2 :
d∗ is well-adapted whenever Φ1 ∼= Φ2d

∗ and U1d∗ ∼= U2. A well-adapted adjunction between
coimages is defined dually.

Lemma 1.2. Any two images of a right adjoint (respectively coimages of a left adjoint) functor
are equivalent as categories.
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Proof. Consider the following diagram of functors

E ′ Ψ ′

Ψ

M′

U ′
Φ ′

M

Φ

U
E

where the outer square commutes, Ψ,Ψ ′ are coreflections, U,U ′ are right-conservative, and
Φ,Φ ′ are left adjoint to Ψ,Ψ ′. We have a chain of natural isomorphisms:

UΨ Φ ′Ψ ′Φ = U ′Ψ ′Φ ′Ψ ′Φ ∼= U ′Ψ ′Φ = UΨ Φ ∼= U.

Observe that the natural isomorphism U ′η′
Ψ ′Φ : U ′Ψ ′Φ ∼= U ′Ψ ′Φ ′Ψ ′Φ is inverse to the isomor-

phism U ′Ψ ′ε′
Φ : U ′Ψ ′Φ ′Ψ ′Φ ∼= U ′Ψ ′Φ , which may be identified with UΨ ε′

Φ : UΨ Φ ′Ψ ′Φ ∼=
UΨ Φ . Therefore, the composite isomorphism above belongs to the image of U , and since
U is conservative, this implies the existence of an isomorphism Ψ Φ ′Ψ ′Φ ∼= IdM. Similarly,
Ψ ′ΦΨ Φ ′ ∼= IdM′ . Therefore, Ψ ′Φ and Ψ Φ ′ define an equivalence of categories between M
and M′. The proof of the dual statement is dual. �

For the sequel, it will be important that the above uniqueness result can be complemented by
the following rigidity result.

Lemma 1.3. Any well-adapted adjunction between two (co)images of the same functor is an
adjoint equivalence.

Proof. With the notations of the preceding proof, let d∗ : M � M′ : d∗ be a well-adapted ad-
junction. Then it follows from U ∼= U ′d∗ that d∗ is right-conservative; moreover, since Φ is
isomorphic to Φ ′d∗, the right adjoint Ψ is isomorphic to d∗Ψ ′, so that for each object X of M,
the unit X → Ψ Φ(X) factors as a composite of units X → d∗d∗(X) → d∗Ψ ′Φ ′d∗(X). There-
fore, the right adjoint d∗ is not only conservative, but also a coreflection, and hence part of an
adjoint equivalence with quasi-inverse d∗. The proof of the dual statement is dual. �
Remark 1.4. (Co)image-factorisations appear naturally at different places in the literature; we
shall briefly recall two of them: Beck’s (co)monadicity theorem and the “canonical” factorisation
of a geometric morphism. Indeed, let F :E � E ′ : G be an adjunction, with unit η : IdE → GF ,
and counit ε : FG → IdE ′ , and denote the category of algebras for the monad GF by EGF .
There is a canonical comparison functor Ψ :E ′ → EGF :Y 	→ (GY,GεY ); in particular, G = UΨ

where U :EGF → E is the forgetful functor. By definition, G is monadic precisely when Ψ is an
equivalence of categories. The first of Beck’s conditions for monadicity (namely that G “creates”
coequalisers for reflexive pairs in E ′, for which the G-image has a split coequaliser in E) is
equivalent to the existence of a fully faithful left adjoint Φ of Ψ , i.e. to the condition that G =
UΨ is an image-factorisation in the sense of Definition 1.1, cf. the dual of [2, Lemma 1.1a–b].
The second condition for monadicity (namely that G is right-conservative) is then equivalent to
Ψ being right-conservative, but this merely expresses the fact that a coreflection is an equivalence
if and only if it is right-conservative. The discussion for Beck’s comonadicity theorem is dual.
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A geometric morphism between toposes is an adjoint pair φ∗ : E ′ � E : φ∗ such that the (left
adjoint) inverse image functor φ∗ is left exact (i.e. preserves finite limits). By definition, such a
geometric morphism is an embedding (respectively surjection) if φ∗ is a reflection (respectively
faithful), cf. MacLane–Moerdijk [31]. Observe that φ∗ is faithful if and only if it is conservative.
Indeed, any faithful functor reflects monos and epis, and any topos is “balanced” (iso = mono +
epi), so any faithful inverse image functor φ∗ is conservative; conversely, any conservative left
exact functor reflects finite limits, and so is faithful. Therefore, a geometric morphism φ∗ : E ′ �
E : φ∗ factors as surjection followed by an embedding if and only if φ∗ factors as a reflection
followed by a left-conservative functor, i.e. iff φ∗ admits a coimage-factorisation in the sense of
Definition 1.1. The existence of such a coimage-factorisation follows from Beck’s comonadicity
theorem like above, since the left exactness of φ∗ and the finite completeness of toposes give the
first of Beck’s conditions for free. The essential uniqueness can be deduced from Lemma 1.3.

General criteria for the existence of a coimage-factorisation have been given by Applegate–
Tierney [2] and Day [18]. The dual situation of an image-factorisation has been studied by
Adamek–Herrlich–Tholen [1].

We shall now define the homotopical analog of (co)image-factorisations in the framework of
Quillen’s closed model categories. For the convenience of the reader unfamiliar with this theory,
we give a short résumé of the main definitions. Excellent references on the subject include [22,
26,27,35]. As is nowadays usually the case, we shall omit the adjective ‘closed.’

A model category is a finitely complete and finitely cocomplete category, equipped with three
distinguished classes of morphisms, called respectively cofibrations, weak equivalences and fi-
brations. Usually, these morphisms are depicted by arrows of the form �,

∼−→,�; the following
four axioms have to be satisfied:

(M1) if any two among f,g and gf are weak equivalences, then so is the third;
(M2) cofibrations, weak equivalences and fibrations compose, contain all isomorphisms and are

closed under retract;
(M3) cofibrations (respectively trivial cofibrations) have the left lifting property with respect to

trivial fibrations (respectively fibrations);
(M4) any morphism factors as a cofibration followed by a trivial fibration, and as a trivial cofi-

bration followed by a fibration.

Here, a trivial (co)fibration means a (co)fibration which is also a weak equivalence. An object X

of E is called cofibrant (respectively fibrant) if the unique morphism from an inital object of E
to X (respectively from X to a terminal object of E) is a cofibration (respectively fibration). For
a general object X, a cofibrant replacement consists of a cofibrant object cE (X) together with a
weak equivalence cE (X)

∼−→ X, while a fibrant replacement consists of a fibrant object fE (X)

together with a weak equivalence X
∼−→ fE (X). Axiom (M4) implies the existence of cofibrant

and fibrant replacements for any object X.
A fibrant (respectively cofibrant) replacement functor for E is an endofunctor fE (respec-

tively cE ) of E endowed with a natural transformation idE → fE (respectively cE → idE ) which
is pointwise a fibrant (respectively cofibrant) replacement. The existence of such replacement
functors is not a formal consequence of Quillen’s axioms; one way to obtain such replacement
functors is to require functoriality of the factorisations in (M4); functorial factorisations exist for
instance in any cofibrantly generated model category, which will always be the case for us, cf.
Section 1.12.
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There is a well defined homotopy relation ∼ on the set E(X,Y ) of morphisms from X to Y ,
whenever X is cofibrant and Y is fibrant. This leads to the following definition of the homotopy
category Ho(E): both categories E and Ho(E) have the same objects, and for each pair of objects,
we have

Ho(E)(X,Y ) = E
(
cE (X),fE (Y )

)
/∼.

This definition does not depend (up to canonical bijection) on the choice of the replacements;
moreover, homotopy classes compose in such a way that passage to the homotopy class defines
a functor γE :E → Ho(E). The functor γE is initial among functors out of E turning weak equiv-
alences into isomorphisms; moreover, a morphism in E is a weak equivalence if and only if its
image under γE is an isomorphism in Ho(E); the homotopy category Ho(E) is thus an explicit
model of the “localisation” of E with respect to the class of weak equivalences, cf. Gabriel and
Zisman [25].

A Quillen adjunction F : E � E ′ : G between model categories is an adjunction between the
underlying categories with the property that the left adjoint F preserves cofibrations and the
right adjoint G preserves fibrations. This implies (cf. [26, 7.7/8.5]) that F also preserves trivial
cofibrations as well as weak equivalences between cofibrant objects, and G also preserves trivial
fibrations as well as weak equivalences between fibrant objects. Usually, the left (respectively
right) adjoint of a Quillen adjunction is called a left (respectively right) Quillen functor.

The left derived functor LF : Ho(E) → Ho(E ′) is induced by the universal property of Ho(E)

applied to the composite functor γE ′ ◦ F ◦ cE , where cE is a cofibrant replacement functor. The
right derived functor RG : Ho(E ′) → Ho(E) is induced by the universal property of Ho(E ′) ap-
plied to γE ◦G◦fE ′ , where fE ′ is a fibrant replacement functor. The derived functors of a Quillen
adjunction define a derived adjunction LF : Ho(E) � Ho(E ′) : RG between the homotopy cat-
egories. A Quillen adjunction is called a Quillen equivalence if this derived adjunction is an
equivalence of categories.

The derived adjunction may be represented by means of the following binatural bijections,
where X is a cofibrant object of E , and Y a fibrant object of E ′:

Ho(E)
(
(LF)(X),Y

) ∼= E
(
F(X),Y

)
/∼∼= E

(
X,G(Y )

)
/∼∼= Ho(E)

(
X, (RG)(Y )

)
.

The unit at X of the derived adjunction is thus represented by the adjoint of any fibrant replace-
ment F(X)

∼−→ fE ′(F (X)); this adjoint X → G(fE ′(F (X))) will be called a homotopy-unit;
dually, the adjoint F(cE (G(Y ))) → Y of any cofibrant replacement cE (G(Y ))

∼−→ G(Y) will be
called a homotopy-counit, since it represents the counit at Y of the derived adjunction. Observe
that homotopy (co)units are only defined for cofibrant objects of E and fibrant objects of E ′;
nevertheless, the homotopy-(co)units represent up to isomorphism all (co)units of the derived
adjunction, since the cofibrant objects of E and fibrant objects of E ′ represent up to isomorphism
all objects of Ho(E) and Ho(E ′).

A left Quillen functor F :E → E ′ will be called homotopy-left-conservative whenever a mor-
phism f between cofibrant objects of E is a weak equivalence in E if and only if F(f ) is a
weak equivalence in E ′. Dually, a right Quillen functor G :E ′ → E will be called homotopy-
right-conservative whenever a morphism g between fibrant objects of E ′ is a weak equivalence
in E ′ if and only if G(g) is a weak equivalence in E .

A left Quillen functor will be called a homotopy-reflection if all homotopy-counits of the
Quillen adjunction are weak equivalences. Dually, a right Quillen functor will be called a
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homotopy-coreflection if all homotopy-units of the Quillen adjunction are weak equivalences.
Dugger [20] uses the more suggestive term homotopy-surjection for homotopy-reflections. The
preceding considerations immediately imply

Lemma 1.5. A left Quillen functor is homotopy-left-conservative (respectively a homotopy-
reflection) if and only if its left derived functor is left-conservative (respectively a reflection).
A right Quillen functor is homotopy-right-conservative (respectively a homotopy-coreflection) if
and only if its right derived functor is right-conservative (respectively a coreflection).

The following criteria for a Quillen adjunction to be a Quillen equivalence are just homotopy
versions of well known criteria for an adjunction to be an equivalence.

Lemma 1.6. For a Quillen adjunction F : E � E ′ : G the following five conditions are equivalent,
cf. [27, 1.3.12/13/16]:

(a) the Quillen adjunction is a Quillen equivalence;
(b) for any cofibrant object X of E and any fibrant object Y of E ′, a morphism F(X) → Y is a

weak equivalence in E ′ if and only if the adjoint morphism X → G(Y) is a weak equivalence
in E ;

(c) all homotopy-units and homotopy-counits are weak equivalences;
(d) F is a homotopy-left-conservative homotopy-reflection;
(e) G is a homotopy-right-conservative homotopy-coreflection.

Definition 1.7. A derived image of a right Quillen functor G : E ′ → E is the homotopy category
Ho(M) associated to any factorisation of G into a homotopy-coreflection E ′ → M followed by
a homotopy-right-conservative functor M → E . A derived coimage of a left Quillen functor is
defined dually.

Lemmas 1.2 and 1.5 immediately imply the following uniqueness result:

Proposition 1.8. Any two derived images (respectively coimages) of a right (respectively left)
Quillen functor are equivalent as categories.

This uniqueness result is not optimal insofar as there is no indication whether the stated equiv-
alence of homotopy categories is induced by a Quillen equivalence, or at least by a finite chain of
Quillen equivalences. It is however unclear whether such a stronger uniqueness holds in general
without further constraint on the factorisation.

A model category M like in the definition above will also be called a model for the derived
image of G. Such a model is thus given by a triple (Φ,M,U) such that Φ :M → E has a
right adjoint homotopy-coreflection Ψ :E → M, the functor U :M → E ′ is homotopy-right-
conservative, and the composite functor UΨ is G.

A Quillen adjunction d∗ : M1 � M2 : d∗ between two models (Φ1,M1,U1) and
(Φ2,M2,U2) of the derived image of G will be called well-adapted if Φ1 ∼= Φ2d

∗ and
U1d∗ ∼= U2.

Lemmas 1.3 and 1.5 immediately imply the following rigidity result:
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Proposition 1.9. Any well-adapted Quillen adjunction between models for the derived image of
the same functor is a Quillen equivalence.

We shall say that (Φ,M,U) is a good model whenever Φ preserves cofibrant–fibrant objects;
this is for instance always the case if every object of E is fibrant. Good models have the advantage
over general models that the homotopy-unit condition can be rephrased in a nice way; namely,
for a good model (Φ,M,U), a homotopy-unit at a cofibrant object X of M is given by the
composite

X
∼� fM(X) → Ψ Φ

(
fM(X)

)
of a fibrant replacement in M with the ordinary unit of the adjunction. Therefore, the condition
that the homotopy-units are weak equivalences is equivalent (for good models) to the condition
that the ordinary units are weak equivalences at cofibrant–fibrant objects. Since U is homotopy-
right-conservative, the latter condition is equivalent to the condition that the canonical map

U(X) → GΦ(X),

induced by the unit of the Φ–Ψ -adjunction, is a weak equivalence for each cofibrant–fibrant
object X of M. In practise, it is this last condition which is most easily verified.

Explicitly, a model for the derived image of the n-fold loop functor (for short: a model for
n-fold loop spaces) consists of a triangle of Quillen adjunctions

Top∗
Ψ

Ωn

M
Φ

U

Top∗

Σn
L

with commuting inner (respectively outer) triangle of right (respectively left adjoints) such that
U is homotopy-right-conservative, and such that the homotopy-units of the Φ–Ψ -adjunction are
weak equivalences. We shall call U the underlying-space functor and Φ the n-fold delooping
functor of M.

On the category Top of compactly generated spaces, we use Quillen’s model structure [35]
with weak homotopy equivalences as weak equivalences and Serre fibrations as fibrations. The
class of cofibrations contains the relative CW -complexes. An explicit generating set for cofi-
brations (respectively trivial cofibrations) is the set of sphere-inclusions Sn−1 ↪→ Bn, n � 0
(respectively of ball-inclusions Bn−1 ↪→ Bn, n > 0). The category Top∗ of based objects in Top
inherits a cofibrantly generated model structure from Top for which the Σn–Ωn adjunction is
a Quillen adjunction. Indeed, this model structure is obtained from Proposition 1.12.1 applied
to the adjunction (−)+ : Top � Top∗ : U , the left adjoint of which simply adds a disjoint base-
point. In particular, the generating (trivial) cofibrations for the model structure on Top∗ are the
sets {Sn−1+ ↪→ Bn+ | n � 0} and {Bn−1+ ↪→ Bn+ | n > 0}.

Since every object is fibrant in Top∗, any model is good; therefore,
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Lemma 1.10. With the notations above, (Φ,M,U) is a model for n-fold loop spaces if and only
if the underlying-space functor U :M → Top∗ is homotopy-right-conservative, and the unit of
the Φ–Ψ -adjunction induces a weak equivalence U(X)

∼−→ ΩnΦ(X) for each cofibrant–fibrant
object X of M.

Similarly, a model for the derived image of Ω∞ (for short: a model for infinite loop spaces)
consists of a triangle of Quillen adjunctions

Spt
Ψ

Ω∞

M
Φ

U

Top∗

Σ∞
L

with commuting inner (respectively outer) triangle of right (respectively left adjoints) such that
U is homotopy-right-conservative, and such that the homotopy-units of the Φ–Ψ -adjunction are
weak equivalences. We shall call U the underlying-space functor and Φ the delooping functor
of M.

We use the stable model category Spt of topological spectra as defined by Bousfield and Fried-
lander [17, 2.1/5]. In particular, a spectrum E = (En)n�0 means a sequence of based compactly
generated spaces En, equipped with structural maps En ∧ S1 → En+1. The suspension spectrum
functor Σ∞ : Top∗ → Spt is defined by (Σ∞X)n = X ∧ Sn with the obvious structural maps;
its right adjoint Ω∞ is given by Ω∞E = E0.

A spectrum E is called an Ω-spectrum if the adjoints En → ΩEn+1 of the structural
maps are weak equivalences. There is an endofunctor T : Spt → Spt converting spectra into
Ω-spectra; explicitly, T (E)n = lim−→ kΩ

kEn+k . A map of spectra f :E → F is called a stable
equivalence if the induced map of Ω-spectra T (f ) :T (E) → T (F ) yields a weak equivalence
T (f )n :T (E)n → T (F )n in Top∗ for each n � 0. A map of spectra f :E → F is called a
stable fibration if, for each n � 0, fn :En → Fn is a fibration in Top∗, and the induced map
En → ΩEn+1 ×ΩFn+1 Fn is a weak equivalence in Top∗. The stable model structure on Spt has
the stable equivalences as weak equivalences and the stable fibrations as fibrations. Our descrip-
tion of the stable fibrations differs from the original one, but Schwede [38, A3] shows that the
two definitions are equivalent, and that the stable model category comes equipped with canonical
generating sets for cofibrations and trivial cofibrations. The description of the latter also implies
that the Σ∞–Ω∞-adjunction is a Quillen adjunction.

Since in the stable model category Spt, the fibrant objects are precisely the Ω-spectra, we have
to be a little more careful in analysing homotopy-units than for n-fold loop spaces. However, we
shall see that in the case of interest for us, the delooping functor Φ sends cofibrant–fibrant objects
to Ω-spectra. Thus, it is enough to state

Lemma 1.11. With the notations above, (Φ,M,U) is a good model for infinite loop spaces
if and only if the underlying-space functor U :M → Top∗ is homotopy-right-conservative, the
delooping functor Φ :M → Spt sends cofibrant–fibrant objects to Ω-spectra, and the unit of the



240 C. Berger / Advances in Mathematics 213 (2007) 230–270
Φ–Ψ -adjunction induces a weak equivalence U(X)
∼−→ Ω∞Φ(X) for each cofibrant–fibrant

object X of M.

1.12. Transfer and localisation of cofibrantly generated model structures

We briefly recall two methods of defining model structures out of existing ones: transfer and
localisation; a thorough discussion may be found in the book of Hirschhorn, to which we also
refer for the omitted proofs, cf. [26, Theorem 11.3.1–2].

The important concept is that of a cofibrantly generated model category E . This means that
E is cocomplete, and that there exists a set I (respectively J ) of cofibrations (respectively triv-
ial cofibrations) which determines the class of trivial fibrations (respectively fibrations) by the
appropriate lifting condition. Moreover, these sets are assumed to permit Quillen’s small object
argument, i.e., the domains of the morphisms in I (respectively J ) have to be small with respect
to sequential colimits of morphisms obtained from I (respectively J ) by arbitrary pushout.

Proposition 1.12.1. Let F : E � E ′ : G be an adjunction with left adjoint F and right adjoint G.
Assume that E is a cofibrantly generated model category with generating sets I and J , and that
E ′ is cocomplete and finitely complete.

If the sets F(I) and F(J ) permit Quillen’s small object argument and G takes any sequential
colimit of pushouts of morphisms in F(J ) to a weak equivalence in E , then E ′ has a model struc-
ture, cofibrantly generated by F(I) and F(J ), for which the weak equivalences (respectively
fibrations) are the morphisms sent to weak equivalences (respectively fibrations) in E under G.

Remark 1.12.2. The hypothesis for transfer is in particular fulfilled if G preserves colimits, and
GF preserves cofibrations and trivial cofibrations.

Definition 1.12.3. A localising system L for a model category E consists of a class of mor-
phisms L, called locally trivial or local equivalences, such that

(1) any weak equivalence is a local equivalence;
(2) local equivalences satisfy axioms (M1) and (M2) of a model category;
(3) locally trivial cofibrations are closed under pushout and sequential colimit.

A localising system L is complete if there exists a set S of locally trivial cofibrations such that

(4) the domains of the elements of S are small with respect to sequential colimits of cofibrations;
(5) any locally trivial S-fibration is a trivial fibration, where S-fibrations are those fibrations

which have the right lifting property with respect to S.

Proposition 1.12.4. Let E be a cofibrantly generated model category with complete localising
system (L,S). There exists a cofibrantly generated model category ES with same underlying
category and same class of cofibrations as E , the so-called left Bousfield localisation of E with
respect to L, whose weak equivalences are the local equivalences, and whose fibrations are the
S-fibrations.

In particular, the class of local equivalences coincides with the class of so-called S-
local equivalences, i.e. those f :X → Y which induce a bijection HoE (f,Z) : HoE (Y,Z)

∼−→
HoE (X,Z) for each S-fibrant object Z.



C. Berger / Advances in Mathematics 213 (2007) 230–270 241
Remark 1.12.5. Since E and ES have the same class of cofibrations, the identity functor E → ES

is a left Quillen functor and the identity functor ES → E is a right Quillen functor. Moreover,
morphisms between S-fibrant objects are local equivalences (respectively S-fibrations) if and
only they are weak equivalences (respectively fibrations). In particular, the identity functor ES →
E is homotopy-right-conservative.

The definition of an S-local equivalence only depends on S and the initial model category E so
that the axioms of a complete localising system (L,S) could have been phrased entirely in terms
of S. Indeed, important existence theorems of Bousfield, Smith and Hirschhorn give general
conditions under which the class LS of S-local equivalences for any given set of cofibrations S

is part of a complete localising system. For instance, if E is left proper and cellular or accessible
(see Hirschhorn [26] for the precise definitions), then there is a suitable “saturation” �S of S, for
which (LS,�S) is a complete localising system in the sense of Definition 1.12.3.

In the literature, Proposition 1.12.4 is often used without explicit mention. For instance, the
stable model structure on Spt is obtained this way by localisation of a strict model structure with
levelwise weak equivalences, cf. Schwede [38, A3]. Other examples may be found in [37], or in
[10, Chapter 4].

2. The Segal models for 1-fold and infinite loop spaces

In this section we present the Segal models for 1-fold and infinite loop spaces (namely reduced
Δ- and reduced Γ -spaces) using the language of Section 1.

2.1. Reduced simplicial spaces

The simplex category Δ is the category of finite non-empty ordinals [m] = {0, . . . ,m},
m � 0, and order-preserving maps. There is a well known embedding Δ− :Δ ↪→ Top send-
ing the ordinal [m] to the standard euclidean m-simplex Δm. The induced realisation functor
TopΔop → Top, defined by left Kan extension X 	→ X ⊗Δ Δ−, will be denoted by the symbol
|−|Δ.

A simplicial space X :Δop → Top is reduced if X([0]) is the one-point space. The category
of reduced simplicial spaces is denoted by TopΔop

red . The right adjoint of |−|Δ : TopΔop

red → Top∗ is
the Segal loop functor ΩSeg : Top∗ → TopΔop

red , defined by ΩSeg(X)([m]) = Top((Δm, sk0Δm),

(X,∗)) with the usual topology; in particular, ΩSeg(X)([1]) = Ω(X). The underlying space of a
reduced simplicial space is U(Y ) = Y([1]). This defines the following commutative triangle of
adjunctions:

Top
ΩSeg

Ω

TopΔop

red

|−|Δ

U

Top∗.

Σ
L (1)
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In order to specify a class of reduced simplicial spaces for which the realisation functor is a
delooping, Segal [39] introduces the following three conditions:

(a) for each m � 1, the canonical map X([m]) → X([1]) ×X([0]) · · · ×X([0]) X([1]) induced by
the “outer face” operators [0] ⇒ [1] → [m] is a weak equivalence;

(b) X is “group-like”;
(c) X is “good.”

A simplicial operator φ : [k] → [m] is an outer face operator if φ(i + 1) = φ(i) + 1 for i =
0, . . . , k−1. Condition (a) implies that the set of path-components π0(X([1])) carries a canonical
monoid structure. By condition (b), this monoid has to be a group. Condition (c) means that X

belongs to a class of simplicial spaces, for which the realisation functor |−|Δ takes pointwise
weak equivalences to weak equivalences.

Segal’s key proposition [39, Proposition 1.5] states that for reduced simplicial spaces X sat-
isfying (a), (b), (c), the canonical map U(X) → Ω(|X|Δ) is a weak equivalence. Therefore,
according to Lemma 1.10, in order to show that reduced simplicial spaces form a model category
for 1-fold loop spaces, it suffices to find a model structure for which U is homotopy-right-
conservative, and for which the cofibrant–fibrant objects satisfy conditions (a), (b), (c) above.
Theorem 2.4 below provides such a model structure and actually reproves to some extent Segal’s
key proposition.

Since Δ is a Reedy category, cf. [26,27] and Section 3.13, there is a canonical Reedy model
structure on simplicial spaces: the weak equivalences are the pointwise weak equivalences, and
the fibrations are the Reedy-fibrations, i.e. those natural transformations X → Y for which the
so-called “matching” maps

X
([m]) → Y

([m]) ×Y(∂Δ[m]) X
(
∂Δ[m])

are fibrations in Top for all [m]. As usual, ∂Δ[m] denotes the boundary of the representable
presheaf Δ[m] = Δ(−, [m]) (i.e. the union of all proper faces of Δ[m]), and X(∂Δ[m]) is short-
hand notation for the inverse limit lim←− ([k]→[m])∈∂Δ[m]X([k]).

A morphism of simplicial spaces f :X → Y will be called a realisation weak equivalence if
the left derived functor of the realisation functor takes f to an isomorphism in Ho(Top).

Following [37, Definition 3.3], a Reedy-fibration of simplicial spaces f :X → Y will
be called equifibered if, for each injective simplicial operator [k] → [m], the induced map
X([m]) → Y([m]) ×Y([k]) X([k]) is a weak equivalence.

The following theorem is a special case of Theorem 3.6(1) of Rezk, Schwede and Shipley [37].
It is a quite direct application of Proposition 1.12.4 and uses in an essential way a fundamental
lemma of V. Puppe concerning the compatibility of the realisation functor with homotopy pull-
backs, cf. [37, Proposition 4.4].

Theorem 2.2. The Reedy model category of simplicial spaces admits a left Bousfield localisation
with respect to realisation weak equivalences, the fibrations of which are precisely the equifibered
Reedy-fibrations.

Definition 2.3. A Reedy-fibration of simplicial spaces f :X → Y is called a Segal-fibration if
the following two conditions hold:
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(a) for each m � 1, the induced map X([m]) → Y([m]) ×Y(Gm) X(Gm) is a weak equivalence,
where Gm is the simplicial subset of Δ[m] defined by

Gm =
⋃

φ∈Δ([1],[m])|φ(1)=φ(0)+1

φ
(
Δ[1]);

(b) the induced map PX → PY ×Y X is an equifibered Reedy-fibration of simplicial spaces,
where PX → X (respectively PY → Y ) denotes the canonical “path-fibration” of X (re-
spectively Y ).

The canonical “path-fibration” is defined as follows: (PX)([n]) = X([n + 1]) with simpli-
cial structure given by forgetting the last face- and degeneracy operators of X. These last face
operators induce a morphism PX → X (which is however a Reedy-fibration only for Reedy-
fibrant X), while the last degeneracy operators induce a combinatorial deformation-retraction of
PX onto X([0]).

For any reduced simplicial space X, conditions (a) and (b) for a Segal-fibration X → ∗ trans-
late into Segal’s conditions (a) and (b). In particular, a reduced Reedy-fibrant simplicial space X,
which satisfies Segal’s condition (a), is group-like if and only if its path-fibration PX → X is
equifibered; this fact has already been exploited by Segal, cf. his proof of [39, Proposition 1.5–6].

For any Reedy-fibration X → Y , the induced map PX → PY ×Y X is again a Reedy-
fibration; if the former is equifibered, then so is the latter; therefore, condition (b) of a Segal-
fibration is automatically fulfilled for equifibered Reedy-fibrations; however, condition (b) of a
Segal-fibration f is much weaker than f being an equifibered Reedy-fibration. For instance,
an equifibered Reedy-fibration between reduced simplicial spaces is necessarily a trivial Reedy-
fibration, which is not the case for Segal-fibrations.

Theorem 2.4. Pointwise weak equivalences and Reedy-fibrations induce a cofibrantly generated
model structure on reduced simplicial spaces. This model category admits a left Bousfield local-
isation with respect to realisation weak equivalences, the fibrations of which are precisely the
Segal-fibrations.

The localised model category of reduced simplicial spaces is a model for 1-fold loop spaces.

Proof. The Reedy model structure on TopΔop

∗ induces by transfer a Reedy model structure
on TopΔop

red since reduced simplicial spaces form a bireflective subcategory of based simplicial
spaces, and Remark 1.12.2 applies. The class of realisation weak equivalences is a localising
system in the sense of Definition 1.12.3. Moreover, Segal-fibrations can be characterised (among
Reedy-fibrations) by a right lifting property with respect to a set S of realisation trivial cofibra-
tions which satisfy condition (4) of 1.12.3 (this is clear for condition (a) of a Segal-fibration, and
requires some combinatorics for condition (b)).

In order to apply Proposition 1.12.4, it remains to be shown that realisation-trivial Segal-
fibrations f :X → Y are trivial Reedy-fibrations. The induced map Ωf :ΩX → ΩY on the
fiber of the “path-fibrations” is an equifibered Reedy-fibration by condition (b) of a Segal-
fibration. Since f is a realisation weak equivalence, and the realisation functor is left exact,
the induced map PX → PY ×Y X is a realisation-trivial equifibered Reedy-fibration, and
hence a trivial Reedy-fibration by Theorem 2.2. Therefore, Ωf is a trivial Reedy-fibration, and
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X([1]) = (ΩX)([0]) → (ΩY)([0]) = Y([1]) is a trivial fibration in Top. By condition (a) of a
Segal-fibration, the commutative square

X([m]) Y ([m])

X([1]) × · · · × X([1]) Y ([1]) × · · · × Y([1])
(2)

is homotopy cartesian, so that f is a pointwise weak equivalence, and hence a trivial Reedy-
fibration as required. Therefore, the asserted Bousfield localisation with respect to realisation
weak equivalences exists.

For Segal-fibrant objects X, Y , the vertical arrows of diagram (2) are trivial fibrations so that
the underlying-space functor U : TopΔop

red → Top∗ is homotopy-right-conservative; moreover, the
canonical map φ :U(X) → Ω|X|Δ composed with the weak equivalence Ω|X|Δ → |ΩX|Δ
coincides with the canonical map i0 : (ΩX)([0]) → |ΩX|Δ under the identification U(X) =
X([1]) = (ΩX)([0]). For Segal-fibrant X, the simplicial space ΩX is equifibered-fibrant, and
therefore homotopically constant (all simplicial operators act as weak equivalences). If X is also
Reedy-cofibrant, then ΩX is pointwise cofibrant, which suffices to show that i0, and hence φ, is
a weak equivalence. By Lemma 1.10, this proves that the localised model category of reduced
simplicial spaces is a model for 1-fold loop spaces. �
Remark 2.5. Rezk [36] and Bergner [12] study related model structures on simplicial spaces.
In both articles, only condition (a) of a Segal-fibration is taken into consideration; this leads
to a different localisation of the pointwise model structure with a class of local equivalences
which is strictly smaller than the class of realisation weak equivalences; the importance of this
intermediate class comes from its relationship with the so-called Dwyer–Kan equivalences of
simplicially enriched categories. Rezk’s concept of a complete Segal-fibration is complementary
to condition (b) of a Segal-fibration, in the following sense: a Reedy-fibration, which satisfies
condition (a) of a Segal-fibration, is equifibered if and only if it satisfies at once condition (b) of
a Segal-fibration and Rezk’s completeness condition, cf. [36, 6.6].

It is an interesting problem to determine which properties of the monoidal model category
Top and the cosimplicial object Δ−

Top : Δ → Top are responsible for the validity of Theorem 2.4.
To be more precise, let E be an internal model category (i.e. a cartesian closed category which
is a monoidal model category with cofibrant unit for the cartesian product, cf. [27]) such that the
functor |−|Δ : EΔop → E induced by the cosimplicial object Δ−

E :Δ → E is left exact. All the
constructions of this section make then sense and it is natural to ask under which conditions the
commutative triangle of Quillen adjunctions

E∗
ΩSeg

Ω

EΔop

red

|−|Δ

U

E∗

Σ
L (3)
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is a model for the derived image of the loop functor in E∗.
The proof of Theorem 2.4 is quite formal and uses only two further properties which are

specific to Top. The first property is Theorem 2.2 which can be condensed into the follow-
ing realisation axiom of Rezk–Schwede–Shipley [37]: Reedy-fibrations in EΔop

which are at
once equifibered and realisation weak equivalences should be trivial Reedy-fibrations. The sec-
ond property is the fibrancy of all objects which allows us to deal with homotopy cartesian
squares and to rephrase the homotopy-coreflection property of the Segal loop functor. This sec-
ond property of Top can be weakened without any change in the proof of Theorem 2.4, by
requiring that E is right proper and that the following fibration axiom holds: the realisation func-
tor |−|Δ :EΔop

red → E∗ should take any cofibrant Segal-fibrant reduced simplicial object of E to
a cofibrant–fibrant object of E∗. Later (cf. Remark 4.6), we shall use the following preservation
property of the Segal construction: for any right proper internal model category E having a flat
cosimplicial object and fulfilling realisation and fibration axioms, the localised model category
of reduced simplicial objects in E is again a right proper internal model category having a flat
cosimplicial object and fulfilling realisation and fibration axioms.

2.6. Reduced Γ -spaces

Segal’s category Γ is the category of finite sets n = {1, . . . , n} (where 0 denotes the empty set)
with operators m → n given by ordered m-tuples of pairwise disjoint subsets of n. Composition
is defined by

(
k

(M1,...,Mk)−−−−−−−→ m
(N1,...,Nm)−−−−−−−→ n

)
=

(
k

(
⋃

j1∈M1
Nj1 ,...,

⋃
jk∈Mk

Njk
)−−−−−−−−−−−−−−−−−→ n

)
.

A Γ -space is a presheaf X :Γ op → Top. For us, a Γ -space is always supposed to be reduced,
i.e. X(0) = ∗. The underlying-space of a Γ -space X is U(X) = X(1). We briefly recall Segal’s
construction [39] of a spectrum out of a Γ -space, and review some features of Bousfield and
Friedlander’s [17] stable (injective) model structure on Γ -spaces. Segal’s delooping functor Φ is
part of the following commutative triangle of adjunctions:

Spt
Ψ

Ω∞

TopΓ op

red
Φ

U

Top∗.

Σ∞
L (4)

Each based space (X,∗) defines a covariant functor X− : Γ → Top∗ : n 	→ Xn. Indeed, it
follows from the definitions that n = 1×n in Γ , which implies that Top∗ is equivalent to the
category of left exact functors Γ → Top via X 	→ X−.

Each Γ -space A induces an endofunctor A : Top∗ → Top∗ :X 	→ A⊗Γ X−. This endofunctor
can also be defined as the left Kan extension of A :Γ op → Top∗ along Γ op ↪→ Top∗, where
Γ op embeds in Top∗ as the full subcategory spanned by the finite discrete sets {∗,1, . . . , n};
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a based map φ : {∗,1, . . . , n} → {∗,1, . . . ,m} is the dual of the Γ -operator (φ−1(1) − {∗}, . . . ,
φ−1(m) − {∗}) :m → n.

To each Γ -space A is associated (functorially in A) a binatural transformation

φA
X,Y :A(X) ∧ Y → A(X ∧ Y). (5)

The Segal spectrum Φ(A) is then defined by Φ(A)n = A(Sn) with structural maps φA
Sn,S1 :

Φ(A)n ∧S1 → Φ(A)n+1. The maps φA
X,Y are deduced from the canonical natural transformation

(X−) ∧ Y → (X ∧ Y)−. The right adjoint Ψ of Φ uses the sphere-spectrum S = Σ∞S0 and
the fact that Spt is enriched in Top. Indeed, for any spectrum E, the Γ -space Ψ (E) is defined
by Ψ (E)(n) = Spt(S×n,E), in particular UΨ = Ω∞ as required. For sake of completeness, we
mention that the endofunctor LX equals X ∧ −, whence ΦL = Σ∞ as required.

The stable model category of Γ -spaces, as defined by Bousfield and Friedlander [17], is the
left Bousfield localisation with respect to stable equivalences of a strict model category of Γ -
spaces with pointwise weak equivalences. Similarly, the stable model category of spectra is the
left Bousfield localisation with respect to stable equivalences of a strict model category of spectra
with levelwise weak equivalences. The adjoint pair (Φ,Ψ ) is a Quillen adjunction for the strict
and the stable model categories. In order to see this, the following description of the structural
maps φA

Sn,S1 , essentially due to Segal [39], will be very useful.

Any Γ -space A and based space X define a Γ -space AX by AX = Am⊗Γ X− where m :Γ ×
Γ → Γ takes (n1, n2) to n1n2. Explicitly, the value of the Γ -space AX at n is given by the coend
formula

AX(n) = Am(n,−) ⊗Γ X−.

As usual we denote by m! the left adjoint of the inverse image functor m∗. Kuhn, cf. [29,
Lemma 3.8], observes that for based spaces X,Y , there is a canonical identification m!(X− ×
Y−) = (X ∧ Y)−; therefore, we get by adjointness

AX(Y ) = (Am ⊗Γ X−) ⊗Γ Y− = (
m∗A

) ⊗Γ ×Γ (X− × Y−)

= A ⊗Γ m!(X− × Y−) = A ⊗Γ (X ∧ Y)−

= A(X ∧ Y).

Segal calls the Γ -space AS1 the classifying Γ -space of A. Inductively, the n-fold classifying Γ -
space of A may be identified with ASn , and the Segal spectrum Φ(A) gets the formula Φ(A)n =
ASn(S0) = ASn(1) = U(ASn), see [39, Definition 1.3].

Segal also defines a functor γ :Δ → Γ which takes the ordinal [m] to the set m, and the
simplicial operator φ : [k] → [m] to the Γ -operator γ (φ) : k → m where γ (φ)(i) = {j ∈ m |
φ(i − 1) < j � φ(i)} for i = 1, . . . , k. This yields for each Γ -space A the identifications (cf.
Corollary 3.17 below and [39, Proposition 3.2])

∣∣γ ∗A
∣∣ = (

γ ∗A
) ⊗Δ Δ− = A ⊗Γ γ!Δ− = A ⊗Γ

(
S1)− = A

(
S1). (6)
Δ
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Bousfield and Friedlander [17] define for each Γ -space A a skeletal filtration skn A; the functor
γ ∗ takes this filtration to the skeletal filtration of the simplicial space γ ∗A. The 1-skeleton of AX

is easily identified with L(A(X)). Therefore, we get

∣∣γ ∗(sk1 AX → AX)
∣∣
Δ

=
(
A(X) ∧ S1

φA

X,S1−−−→ A
(
X ∧ S1)). (7)

Since the composite functor |γ ∗(−)|Δ preserves colimits and (trivial) cofibrations of the strict
model category of Γ -spaces, it follows immediately from (7) that the delooping functor
Φ : TopΓ op

red → Spt preserves cofibrations and trivial cofibrations of the strict model categories.
Therefore, (Φ,Ψ ) is a Quillen adjunction for the strict model categories; it will be a Quillen
adjunction for the stable model categories if Ψ preserves stable fibrations.

By an argument of Dugger [26, 8.5.4], it suffices to check that Ψ preserves stable fibrations
between stably fibrant objects. By Remark 1.12.5, stable fibrations between stably fibrant objects
coincide with fibrations, and the latter are preserved by Ψ ; so it suffices to show that Ψ preserves
stably fibrant objects. For a stably fibrant spectrum E, Ψ (E) is a fibrant Γ -space which satisfies
Segal’s conditions (a) and (b), since for all n, the canonical inclusion of the n-fold wedge S∨n

into the n-fold cartesian product S×n is a stable equivalence between cofibrant spectra. Therefore,
it suffices to show that fibrant Γ -spaces which satisfy Segal’s conditions (a) and (b) are stably
fibrant. This may be deduced from the fact that Φ takes cofibrant–fibrant Γ -spaces A which
satisfy Segal’s conditions (a) and (b) to Ω-spectra. The latter property in turn is a consequence
of Theorem 2.4, Lemma 1.10 and formula (6), using that for all n, γ ∗(ASn) is a cofibrant Segal-
fibrant reduced simplicial space; indeed, this yields a canonical sequence of weak equivalences

A
(
S0) ∼−→ ΩA

(
S1) ∼−→ Ω2A

(
S2) ∼−→ · · · .

Theorem 2.7. The category of reduced Γ -spaces with the stable injective model structure of
Bousfield and Friedlander is a model for infinite loop spaces.

Proof. All hypotheses of Lemma 1.11 are fulfilled: we just showed that (Φ,Ψ ) is a Quillen ad-
junction, and that Φ takes cofibrant–stably fibrant Γ -spaces to Ω-spectra. It is clear that (L,U)

also is a Quillen adjunction, and that U is homotopy-right-conservative. Finally, we have equality
U = Ω∞Φ . �
Remark 2.8. The previous theorem is just a reformulation of one of the central results of Segal
[39] and Bousfield–Friedlander [17], namely that reduced Γ -spaces are models for connective
spectra. Indeed, the homotopy-counits of the Φ–Ψ -adjunction yield an explicit connective cover
for each Ω-spectrum. The homotopy category of reduced Γ -spaces may thus be identified with
the coreflective subcategory of the stable homotopy category spanned by the connective spectra.

3. Wreath product over Δ and duality

In this central section, we define for each small category A, categorical wreath products Δ �A
and Γ � A. The main object of study are the iterated wreath products Δ � · · · � Δ which will
be denoted by Θn. We use this notation, since we shall show below that the dual of Θn may
be identified with Joyal’s category Dn of finite combinatorial n-disks, and Joyal [28] uses the
notation Θn for the dual of Dn. Our point of view here is to consider Θn as an n-categorical
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analog of Δ, and to exploit the fact that the wreath product construction allows us to argue by
induction on n, building on classical properties of the simplex category Δ = Θ1. In particular,
we shall establish the following four properties:

(1) Θn is a dense subcategory of the category of (small strict) n-categories;
(2) the presheaf topos on Θn is a classifying topos for combinatorial n-disks;
(3) the presheaf topos on Θn has a left exact realisation functor with values in the category of

CW-complexes;
(4) there is an assembly functor γn : Θn → Γ whose induced geometric morphism classifies the

generic n-sphere (i.e. the quotient of the generic combinatorial n-disk by its boundary).

Since all idempotents of Θn split, property (2) implies

(2′) the dual of Θn is isomorphic to the category of finite combinatorial n-disks.

The duality between Θn and Dn, as expressed by (2) and (2′), has an analog for Segal’s cate-
gory Γ : the presheaf topos on Γ is a classifying topos for pointed objects; this implies that the
dual of Γ is the category of finite pointed sets, cf. Section 2.6, and shows that (4) characterises
the assembly functor γn.

For any small category A, the presheaf topos SetsA
op

will be denoted by Â; for any object A

of A, the representable presheaf A(−,A) will be denoted by A[A].

Definition 3.1. The wreath product Δ �A (respectively Γ �A) is defined to be the category

• with objects the m-tuples (A1, . . . ,Am) of objects of A, for varying m � 0;
• with operators (φ;φ1, . . . , φm) : (A1, . . . ,Am) → (B1, . . . ,Bn) all (m + 1)-tuples consist-

ing of a Δ-operator φ : [m] → [n] (respectively Γ -operator φ :m → n) and an m-tuple
(φ1, . . . , φm) of morphisms in Â of the form

φi :A[Ai] → A[Bφ(i−1)+1] ×A[Bφ(i−1)+2] × · · · ×A[Bφ(i)](
respectively φi :A[Ai] →

∏
k∈φ(i)

A[Bk]
)

.

If the set {k | φ(i − 1) < k � φ(i)} (respectively φ(i)) is empty, the target of φi above is
the terminal presheaf. If [m] = [0] (respectively m = 0), operators (φ; ) : ( ) → (B1, . . . ,Bn) in
Δ �A (respectively Γ �A) correspond bijectively to operators φ : [0] → [n] (respectively 0 → n).
Therefore, the 0-tuple in Δ �A (respectively Γ �A) is the terminal object of Δ �A (respectively
null-object of Γ �A), since [0] is the terminal object of Δ (respectively 0 is the null-object of Γ ).
Recall that by definition a null-object of a category is an object which is simultaneously initial
and terminal.

Composition of operators is obvious: indeed, the use of the Yoneda-embedding A ↪→ Â above
may be avoided. A more elementary (but more cumbersome) definition replaces the morphism
φi : A[Ai] → A[Bφ(i−1)+1] × A[Bφ(i−1)+2] × · · · × A[Bφ(i)] by its components φk

i :Ai → Bk

in A; composition in the wreath product is then directly induced by composition in A.
If A has a null-object, the category A may be considered as a pointed object in Cat with base

point � →A given by the null-object of A. Therefore, there is a canonical functor A− :Γ → Cat
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taking n to A×n, cf. Section 2.6. The Grothendieck-construction
∫
Γ
A− is then isomorphic to the

wreath product Γ �A. Similarly, for the Segal functor γ :Δ → Γ composed with A− :Γ → Cat,
the Grothendieck-construction

∫
Δ
A− ◦γ is isomorphic to the wreath product Δ �A. However, if

A has no null-object, it seems unlikely that the wreath products Γ �A and Δ �A may be described
by such Grothendieck-constructions.

The Segal functor γ :Δ → Γ , cf. Section 2.6, induces an obvious functor γ �A :Δ �A → Γ �A
which is the identity on objects, and sends an operator (φ;φ1, . . . , φm) of Δ � A to the operator
(γ (φ);φ1, . . . , φm) of Γ � A. We shall see that the two wreath products enjoy quite different
“universal properties”; the wreath product over Δ is a kind of non-symmetric version of the
wreath product over Γ .

Just for the purpose of the next proposition we introduce the following terminology: a category
C will be called semi-additive whenever C has finite products and a null-object. A finite product-
preserving functor between semi-additive categories will be called semi-additive.

Lemma 3.2. The wreath product Γ � A is the free semi-additive category on A. In particular,
there is a canonical assembly functor α :Γ � Γ → Γ which takes (n1, · · · , nk) to n1 + · · · + nk .

Proof. By definition, 0 is a null-object of Γ so that the 0-tuple ( ) is a null-object for Γ � A.
Concatenation of tuples defines a cartesian product for Γ � A so that Γ � A is semi-additive;
moreover, A embeds in Γ � A via A 	→ (A), and the universal property of Γ � A follows. The
assembly functor α is induced by the universal property of Γ � Γ applied to the identity functor
Γ → Γ � ∗. �

In particular, each functor F :A → B induces a canonical semi-additive functor Γ � F :Γ �
A → Γ �B taking (A) to (F (A)). This yields a composite functor

γ � F :Δ �A γ �A−−→ Γ �A Γ �F−−→ Γ �B.

Definition 3.3. Let Θ1 = Δ and γ1 = γ , cf. 2.6. Define by induction on n,

Θn = Δ � Θn−1, and

γn :Θn = Δ � Θn−1
γ �γn−1−−−−→ Γ � Γ α−→ Γ.

Remark 3.4. The preceding definition of Θn applies the wreath product in a specific order,
namely Θn = Δ � (Δ � (· · · � (Δ � Δ) · · ·)). We are grateful to J.-L. Loday for pointing out to us
the following generalisation of the wreath product which allows us to formulate an associativity
property of the wreath product.

It is straightforward to check that all we need to carry out the definition of B � A for ar-
bitrary small categories B and A is the existence of a specific functor B → Γ . If A also
comes equipped with a functor to Γ , the wreath product B � A is again equipped with a
functor to Γ , exactly as above; in other words, the wreath product is actually a bifunctor
− � − : Cat/Γ × Cat/Γ → Cat/Γ. It can be checked that this bifunctor defines a monoidal
structure on Cat/Γ with unit the functor � → Γ taking the unique object of the one-point cate-
gory to 1. In particular, if we consider Θn as equipped with the above defined assembly functor
γn :Θn → Γ , then we get canonical isomorphisms of categories Θm � Θn

∼= Θm+n. We shall
however not need these associativity isomorphisms in this article.
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For the next proposition, recall that a small subcategory A of a category V is called dense (or
adequate in the original terminology of Isbell) if the associated nerve functor NA :V → Â :V 	→
V(−,V ) is fully faithful.

Proposition 3.5. For any full (small) subcategory A of a cocomplete cartesian closed cate-
gory V , the wreath product Δ � A embeds in V-Cat as the full subcategory spanned by the free
V-categories on finite linear A-graphs.

If A is dense in V then Δ �A is dense in V-Cat.

Proof. Under the given hypotheses, the forgetful functor UV :V-Cat → V-Grph from V-
categories to V-graphs has a left adjoint FV :V-Grph → V-Cat. A linear V-graph of length
m is just an m-tuple (V1, . . . , Vm) of objects of V , so that there is a canonical correspondence
between the objects of Δ � A and finite linear A-graphs. The free V-category on (A1, . . . ,Am)

admits then the following explicit description:

FV (A1, . . . ,Am)(i, j) = Ai+1 × · · · × Aj

where 0 � i < j � m. The endomorphism-objects are terminal in V , all other hom-objects
are initial in V . Composition is induced by cartesian product in V . It follows that the set of
V-functors FV (A1, . . . ,Am) → FV (B1, . . . ,Bn) may be identified with the set of operators
(A1, . . . ,Am) → (B1, . . . ,Bn) in Δ � A, and that this correspondence respects the composition
laws.

For the second statement, we have to show that if the nerve functor NA : V → Â is fully
faithful, then the nerve functor NΔ�A : V-Cat → Δ̂ �A is also fully faithful. For this, we factor
the latter as follows:

V-Cat

NA-Cat

NΔ�A
Δ̂ �A

Â-Cat

N ′
Δ�A

where the vertical functor is a “change-of-enrichment” functor and N ′
Δ�A is derived from the

construction above applied to the Yoneda-embedding A ↪→ Â. The vertical functor is fully faith-
ful since by hypothesis NA is fully faithful. Therefore, it suffices to show that N ′

Δ�A is fully

faithful: for any Â-category X, the value of N ′
Δ�A(X) at (A1, . . . ,Am) is given by

∐
(x0,...,xm)∈Xm+1

0

X(x0, x1)(A1) × X(x1, x2)(A2) × · · · × X(xm−1, xm)(Am)

where X0 denotes the set of objects of X.
Setting m = 1 shows that N ′

Δ�A is faithful. For any Δ̂ �A-morphism f :N ′
Δ�A(X) →

N ′
Δ�A(Y ), the compatibility of f with Δ � A-operators of type (id[1];φ1) : (A) → (B) yields an

Â-morphism X(x,y) → Y(f x,fy) for each pair of objects (x, y) ∈ X2; the compatibility with
0



C. Berger / Advances in Mathematics 213 (2007) 230–270 251
Δ � A-operators of type (φ;φ1, φ2) : (A3) → (A1,A2) shows that f is the nerve of a Â-functor,
thus N ′

Δ�A is full. �
Proposition 3.5 inductively identifies Θn with a dense subcategory of the category nCat of

(small strict) n-categories. In order to make this embedding explicit, we need Batanin’s star-
construction which establishes a one-to-one correspondence between level-trees T of height � n

and certain n-graphs T∗, cf. [6, p. 61], [10, 1.2].

3.6. Level-trees and hypergraphs

A level-tree T , cf. [10, 1.1–4], is a contractible planar graph with a distinguished root-vertex,
and (if existent) a distinguished “left-most” root-edge; the height of a vertex v of T is the length
of the edge-path between v and the root-vertex; the height of T is the maximal occurring height
of its vertices; the edges are rootwards oriented so that for each vertex of T the incoming edges
are totally ordered from left to right according to the planarity of T and to the distinguished
left-most root-edge.

An n-graph X, cf. [10, 0.2], is a graded set (Xk)0�k�n together with source/target maps
s, t : Xk ⇒ Xk−1 satisfying the usual relations ss = st and ts = t t . The category of n-graphs is
thus a presheaf category which we shall denote by nGrph.

Street [40] has shown that the n-graphs X arising as T∗ for some level-tree T are those for
which the partial order on

⊔n
k=0 Xk , generated by s(x) � x � t (x), is a total order. In particular,

the representable n-graphs are the n-graphs k̄∗ for linear level-trees k̄ of height k � n. In general,
T∗ is a canonical “T -shaped” colimit of representable n-graphs, one for each “sector” of T , cf.
[6, p. 61], [10, 1.2].

The objects of the iterated wreath product Θn = Δ � Θn−1 are “bunches” of objects of Θn−1
or, equivalently, level-trees of height � 1 the edges of which support objects of Θn−1. Assuming
inductively that the objects of Θn−1 are finite level-trees of height � n − 1, this establishes
a one-to-one correspondence between the objects of Θn and finite level-trees of height � n.
We shall henceforth identify the objects of Θn with finite level-trees of height � n under this
correspondence.

The obvious forgetful functor Un : nCat → nGrph has a left adjoint Fn : nGrph → nCat
which can be described explicitly, cf. [6], [10, 1.8, 1.12].

Theorem 3.7. The iterated wreath product Θn embeds in nCat as the full subcategory spanned
by the free n-categories Fn(T∗) on T∗, where T runs through the set of finite level-trees of
height � n. In particular, Θn is dense in nCat.

Proof. We proceed by induction on n. For n = 1, the statement is well known: level-trees of
height � 1 are finite (possibly empty) corolla T m which induce the linear 1-graphs T m∗ of
length m. The simplex-category Δ = Θ1 is the full subcategory of Cat spanned by the finite
ordinals [m] = F1(T

m∗ ). The density of Δ in Cat is (well known and) the special case A = ∗ of
Proposition 3.5.

Consider now for V = nCat and W = nGrph the following factorisation of the adjunction
Un+1 : n + 1Cat � n + 1Grph : Fn+1:

n + 1Cat = V-Cat
UV

V-Grph
FV

Un-Grph
W-Grph = n + 1Grph.

Fn-Grph



252 C. Berger / Advances in Mathematics 213 (2007) 230–270
The inductive step follows then from Proposition 3.5 and the fact that under the identification
n + 1Grph = W-Grph, Batanin’s star-construction T∗ of a level-tree T of height � n + 1 and
root-valence m corresponds to the 1-graph T m∗ labelled by the m-tuple of n-graphs (S1∗, . . . , Sm∗ ),
where T is obtained by grafting the m-tuple (S1, . . . , Sm) onto the corolla T m. �

This proves property (1) of the introduction to this section. For property (2), recall (cf.
[15, III.4]) that a presheaf topos Â is called a classifying topos for a certain structure T if
there is an equivalence of categories between the category of flat functors A → Sets and the
category of T -structured sets. A functor F :A → Sets is called flat if its left Kan extension
(−)⊗A F : Â → Sets is left exact and therefore the inverse-image-part of a geometric morphism
Sets � Â. Precomposing the inverse-image-part with the Yoneda-embedding A ↪→ Â gives back
the flat functor A → Sets that represents the T -structured set. Therefore, the Yoneda-embedding
A ↪→ Â is also called a generic model for T -structured objects. Property (2) thus states that there
is an equivalence of categories between the category of flat functors Θn → Sets and the category
of combinatorial n-disks in Joyal’s sense [28].

We shall prove property (2) by induction on n. Again, the case n = 1 is well known, since
a combinatorial 1-disk is defined to be a linearly ordered set (X,�X) with distinct minimal
and maximal elements x0 and x1, and any such quadruple (X,�X,x0, x1) determines, and
is determined by, a flat functor X :Δ → Sets such that (X,x0, x1) = X([0] ⇒ [1]). The lin-
ear order �X may be recovered from X as the relation on X induced by the degeneracy pair
(s∗

0 , s∗
1 ) :X([2]) → X([1]) × X([1]), cf. MacLane and Moerdijk [31, VIII.8].

Definition 3.8. For each small category A, define δA :Δ ×A → Δ �A by

δA
([n],A) =

n times︷ ︸︸ ︷
(A, . . . ,A)

δA
(
φ : [m] → [n], f :A → B

) = (φ;f1, . . . , fm)

where fi :A[A] →A[Bφ(i−1)+1] × · · · ×A[Bφ(i)] is A[f ] :A[A] → A[B] on each factor.
Define inductively δ1 :Δ id−→ Θ1 and for n > 1,

δn :Δ×n
δ
Δ×n−1−−−−→ Δ � Δ×n−1 Δ�δn−1−−−−→ Δ � Θn−1 = Θn.

For the inductive step in the proof of property (2) we need a preliminary result on realisation
functors for the presheaf topos Δ̂ �A. By a realisation functor, we mean any colimit-preserving
left-exact functor, e.g. the inverse-image-part of a geometric morphism of toposes.

Proposition 3.9. Let E be a cocomplete cartesian closed category, and assume that Δ̂ and Â
have E-valued realisation functors |−|Δ and |−|A. Then Δ̂ �A has an E-valued realisation func-
tor |−|Δ�A = |−|Δ×A ◦ (δA)∗ taking (Δ � A)[(A1, . . . ,Am)] to the simplicial suspension of the
m-tuple (|A[A1]|A, . . . , |A[Am]|A).

Proof. The presheaf topos Δ̂ ×A has an obvious realisation functor |X × Y |Δ×A = |X|Δ ×
|Y |A. Therefore, since (δA)∗ is left and right adjoint, the composite functor |−|Δ×A ◦ (δA)∗
defines a realisation functor |−|Δ�A for Δ̂ �A.
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It remains to be shown that on representable objects, this realisation functor is a simpli-
cial suspension functor. In order to give a precise definition of the latter, observe first that
the given realisation functor |−|Δ : Δ̂ → E factors through the category EΔop

of simplicial E-
objects via a functor (−)E : SetsΔop → EΔop

, obtained by composition with the obvious functor
Sets → E :X 	→ ⊔

X �E , where �E denotes the terminal object of E . In other words, if we de-
note by Δ−

E :Δ → E the composite functor Δ ↪→ Δ̂ → E , then we have canonical identifications
Δn
E = |Δ[n]E |Δ. Next, observe that for each object E of E , there is an essentially unique map of

simplicial E-objects Δ[E] → Δ[1]E such that the fibers over the extremities Δ[0]E ⇒ Δ[1]E are
�E and all other fibers are E. The unreduced suspension SE of E is by definition the realisation
of the simplicial E-object Δ[E]; the unreduced suspension is thus fibered over Δ1

E . More gen-
erally, the simplicial suspension S(E1, . . . ,Em) of an m-tuple (E1, . . . ,Em) is the realisation of
the simplicial E-object Δ[E1, . . . ,Em] defined by the following pullback in EΔop

:

Δ[E1, . . . ,Em] Δ[E1] × · · · × Δ[Em]

Δ[m]E Δ[1]E × · · · × Δ[1]E ,

(8)

where the lower horizontal map is induced by the canonical inclusion of Δ[m] into the simplicial
m-cube Δ[1]m (ordering the m factors from left to right). In particular, the simplicial suspension
S(E1, . . . ,Em) is fibered over Δm

E .
We want to show that |(Δ � A)[(A1, . . . ,Am)]|Δ�A = S(|A[A1]|A, . . . , |A[Am]|A). Any

object of Δ̂ ×A can be realised in two steps, by realising first with respect to the A-
coordinate, and then with respect to the Δ-coordinate; in particular, the realisation functor
|−|Δ�A : Δ̂ �A → E factors through the category of simplicial E-objects via the composite func-

tor rA : Δ̂ �A (δA)∗−−−→ Δ̂ ×A |−|A−−−→ EΔop
. Therefore, it remains to be shown that the simplicial

E-object Δ[|A[A1]|A, . . . , |A[Am]|A] may be identified with rA(Δ � A)[(A1, . . . ,Am)]. We
show more precisely that the pullback square (8) is the image under rA of the following commu-
tative square

(Δ �A)[(A1, . . . ,Am)]
α

β
(Δ �A)[(A1)] × · · · × (Δ �A)[(Am)]

π∗π!(Δ �A)[(A1, . . . ,Am)] π∗π!(Δ �A)[(A1)] × · · · × π∗π!(Δ �A)[(Am)]

(9)

where π :Δ � A → Δ is the canonical projection, Ek = |A[Ak]|A for 1 � k � m and the ver-
tical maps are induced by the units of the (π!,π∗)-adjunction. The horizontal maps of (9) are
induced by the m surjective Δ-operators φ : [m] → [1]. Since the left adjoint π! preserves rep-
resentable presheaves, the lower horizontal map of (9) is the canonical inclusion π∗Δ[m] ↪→
π∗Δ[1] × · · · × π∗Δ[1] whose image under rA is precisely the lower horizontal map of (8). It
follows from the definitions that for any object A of A, the image under rA of the representable
presheaf (Δ �A)[(A)] is the simplicial E-object Δ[|A[A]|A] defined above; in particular, the im-
age of the right vertical map of (9) is the right vertical map of (8). Therefore, since rA is left exact,
it finally remains to be shown that (9) is a pullback square in Δ̂ �A. But this follows from the de-
finition of the (Δ �A)-operators: indeed, for any (φ;φ1, . . . , φn) : (B1, . . . ,Bn) → (A1, . . . ,Am),
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considered as an element of (Δ �A)[(A1, . . . ,Am)], the image under α determines φ, the image
under β determines (φ1, . . . , φn), and the commutativity of (9) amounts to the property that φi

represents a map A[Bi] →A[Aφ(i−1)+1] × · · · ×A[Aφ(i)] in Â. �
Theorem 3.10. The presheaf topos on the iterated wreath product Θn is a classifying topos for
combinatorial n-disks. In particular, the dual of Θn is isomorphic to Joyal’s category Dn of finite
combinatorial n-disks.

Proof. As mentioned above, we argue by induction on n. Recall from [28] that a combinatorial
n-disk consists of a sequence of sets and mappings

Dn

in
Dn−1

in−1

sn

tn
Dn−2 · · ·D2

sn−1

tn−1

i2
D1

s2

t2

i1
D0

s1

t1

such that D0 is singleton, iksk = iktk = idDk−1 , tk+1tk = sk+1tk , tk+1sk = sk+1sk for all k, and
such that for each x ∈ Dk−1, the fiber i−1

k (x) is linearly ordered with minimum sk(x) and maxi-
mum tk(x), and finally the equaliser of (sk, tk) is the empty set for k = 1, respectively the union
sk−1(Dk−2) ∪ tk−1(Dk−2) for k = 2, . . . , n.

Therefore, if �Gn denotes the full subcategory of Θn spanned by the linear level-trees, cf. [10,
0.2/2.1], a combinatorial n-disk amounts to covariant functor Dn : �Gn → Sets fulfilling certain
order and exactness relations. Maps of combinatorial n-disks are natural transformations pre-
serving the linear orderings of the fibers. We have to show that any such combinatorial n-disk
�Gn → Sets extends in an essentially unique way to a flat functor Θn → Sets and, conversely, any
flat functor Θn → Sets restricts to a combinatorial n-disk on �Gn.

The main idea for the inductive step is to cut the n-disk Dn into a 1-disk D1 : �G1 → Sets and
a “desuspended” (n − 1)-disk Dn−1 : �Gn−1 → Sets. More precisely, the combinatorial 1-disk
D1 is obtained as the restriction of Dn along the canonical inclusion �G1 ↪→ �Gn; in particular,
since simplicial sets form a classifying topos for linearly ordered sets, this 1-disk extends to a flat
functor Δ → Sets and (by left Kan extension) to a realisation functor Δ̂ → Sets. Therefore, we
get by Proposition 3.9 (with A = � and E = Sets) an unreduced suspension functor S : Sets →
Sets. Due to the exactness property of an n-disk, there is then an essentially unique (n − 1)-
disk Dn−1 such that the value of Dn at a linear level-tree of height k > 0 equals the value of
SDn−1 at a linear level-tree of height k − 1. Now, apply the induction hypothesis and extend
Dn−1 to a flat functor on Θn−1 and (by left Kan extension) to a realisation functor for Θ̂n−1.
Hence, according to Proposition 3.9, we get a realisation functor for Θ̂n which on representable
objects is a simplicial suspension functor. Restricting back along the Yoneda-embedding Θn ↪→
Θ̂n yields the required essentially unique flat extension of Dn. For the converse direction, a
similar inductive argument applies.

For the duality, we use that a combinatorial n-disk �Gn → Sets is finite if and only if its
flat extension Θn → Sets preserves filtered colimits. Moreover, idempotents in Θn split, cf. [10,
Remark 2.5] and Remark 3.13. As a consequence, a filtered colimit preserving flat functor Θn →
Sets is corepresentable, cf. [15, I:6.5.6/6.7.6]; thus, the contravariant Yoneda-embedding Θ

op
n ↪→

SetsΘn :T 	→ Θ(T ,−) identifies the dual of Θn with Joyal’s category Dn of finite combinatorial
n-disks. �
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Corollary 3.11. The presheaf topos on Θn admits a topological realisation functor which takes
the representable presheaf Θn[T ] to a CW-ball of dimension equal to the number of edges of the
level-tree T .

Proof. This follows either inductively from Proposition 3.9, using the classical realisation func-
tor for simplicial sets, or directly from Theorem 3.10, using that Top is topological over Sets
(see [15, II:7.3.2]), and that the underlying set of the unit n-ball Bn in Rn has a combinatorial
n-disk structure, cf. [28], [10, 2.1]:

Bn
in

Bn−1
in−1

sn

tn Bn−2 · · ·B2

sn−1

tn−1

i2
B1

s2

t2

i1
B0

s1

t1

where sk (respectively tk) maps Bk−1 to the lower (respectively upper) hemisphere of Bk while
ik :Bk → Bk−1 denotes the canonical projection. Either way gives rise to essentially the same
topological realisation functor as can be seen by comparison of their values at representable
presheaves. The recursive formula for |Θn[T ]|Θn (as an iterated simplicial suspension of the
one-point space, cf. the proof of 3.9) can also be found in [28, Proposition 3]; the direct non-
recursive formula is described in detail in [10, Proposition 2.6]; both methods yield a CW-ball
of dimension equal to the number of edges of the representing level-tree T . �
Remark 3.12. This topological realisation functor |−|Θn : Θ̂n → Top mixes in a clever way
simplicial and hemispherical combinatorics. Indeed, the presheaf represented by a linear level-
tree of height k realises to a k-ball with its hemispherical cell-decomposition, while the presheaf
represented by a 1-level-tree with k edges realises to a euclidean k-simplex with its simplicial
cell-decomposition. In general, the presheaf represented by a level-tree T realises to a convex
subset of a cube of dimension equal to the number of edges of T , cf. [10, Proposition 2.6].
The left exactness of the realisation functor is related to a shuffle-formula which decomposes
a product of representable presheaves Θn[S] × Θn[T ] into a union of representable presheaves
Θn[U ], where U runs through the set of level-trees that are obtained by shuffling S and T over the
root. This formula generalises the decomposition of Δ[m]×Δ[n] into (n+m)!

n!m! copies of Δ[n+m],
cf. [10, Proposition 2.8].

Proposition 3.9 shows that the realisation functor for Θ̂n factors through the realisation functor
for Δ̂×n by means of an iterated diagonal δn :Δ×n → Θn, in other words, there is a natural iso-
morphism of functors |−|Θn

∼= |−|Δ×n ◦ (δn)
∗. This implies in particular that strict n-categories

may be realised topologically in two different, but homeomorphic ways. Indeed, the dense em-
bedding Θn ↪→ nCat defines a fully faithful nerve functor NΘn : nCat → Θ̂n; composing the
latter with |−|Θn : Θ̂n → Top yields a topological realisation for strict n-categories. Alternatively,
a strict n-category may be realised by applying iteratively the simplicial nerve functor, and then
realising the resulting n-simplicial nerve. The n-simplicial nerve functor is easily identified with
the composite functor (δn)

∗ ◦NΘn ; therefore, the two realisations of a strict n-category coincide
up to homeomorphism. However, the combinatorial structures of the two nerves are different; in
particular, the Θn-nerve is a full functor, while the n-simplicial nerve is not a full functor for
n > 1.

Despite this difference, strict n-categories can be characterised as special nerves using either
the n-simplicial or the Θn-nerve, and a definition of weak n-category may be deduced from
both approaches. The n-simplicial approach leads to Simpson–Tamsamani’s definition [41] while
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the Θn-approach leads to Joyal’s definition [28] of a weak n-category. The iterated diagonal
δn :Δ×n → Θn induces a direct comparison of the two definitions, cf. [10, Remarks 1.13/2.13].

3.13. Pregeometric Reedy categories

An explicit non-recursive description of the operators in Θn or the dual operators in Dn

affords some combinatorial work, which has been done by several authors, cf. [6,9,10,28,32].
We advertise the reader that a comparison of the different descriptions is a non-trivial task, some
hints are given in Remark 3.15 below. Later on, we explicitly use one further structure on Θn,
namely its Reedy structure. We could derive this Reedy structure from [10, Lemma 2.4] on the
basis of Theorem 3.7, which allows us to identify the iterated wreath product Θn with the nth
filtration of the category Θ studied in detail in [10]. It is however more in the spirit of the present
text to rederive the Reedy structure on Θn by induction on n. Interestingly, a naive induction does
not work. We have to replace the notion of a Reedy category by a slightly stronger notion, which
is the starting point of a forthcoming joint work with Denis-Charles Cisinski, see [11]. Here, we
discuss just that part of the structure that is needed to define inductively the Reedy structure on
Θn, cf. Remark 4.4. Let A be an arbitrary small category.

• A is called retractive if any morphism of A factors in a unique way as a retraction followed
by a monomorphism, and if moreover for any object A of A, the poset of retractions under
A is a lattice;

• A is called cellular if for any object A of A, the poset of subobjects of A is the cell-poset of
a finite regular CW-complex (such posets are called CW-posets by Björner [13]; they are in
particular ranked posets);

• A is called pregeometric if A is at once retractive and cellular.

Retractive categories A have the following four properties: the identities are the only isomor-
phisms; all idempotents of A split; any map of presheaves A[A] → X factors in a unique way
as a retraction A[A] � A[B] followed by a non-degenerate map A[B] → X (i.e. one that does
not factor through a non-identity retraction); any finite product of representable presheaves is the
union of its representable subobjects. (The last two properties follow from the lattice property
of retractions, while the first two properties follow from the factorisation property of A.) In a
cellular category A, any object A has a well-defined dimension dimA(A), namely the rank of
the poset of subobjects of A. Non-identity monomorphisms of A increase this dimension. Recall
[26,27] that a Reedy category is a quadruple (A,A+,A−,dimA) where A is a small category
whose objects are graded by the dimension-function dimA. Moreover, A contains subcategories
A+ respectively A− whose non-identity morphisms increase respectively decrease dimension,
and any morphism of A factors in a unique way as a morphism in A− followed by a morphism
in A+.

It follows that any pregeometric category A has a canonical Reedy structure (A,A+,A−,

dimA) where A+ (respectively A−) contains all monomorphisms (respectively retractions) of
A. A pregeometric category A equipped with this Reedy structure will be called a pregeometric
Reedy category. The simplex category Δ with its canonical Reedy structure is a pregeometric
Reedy category; the only point needing a comment is the lattice property of the retractions; the
latter expresses the fact that the poset of ordered partitions of [n] is a lattice for any n. Usually,
the monomorphisms (respectively retractions) of Δ are called face (respectively degeneracy)
operators; we shall adopt the same terminology for an arbitrary pregeometric Reedy category A.



C. Berger / Advances in Mathematics 213 (2007) 230–270 257
Any pregeometric Reedy category A has a canonical embedding in the category of finite reg-
ular CW-complexes and cellular maps; indeed, for any object A of A, the simplicial nerve of the
subobject-poset A+/A represents the barycentric subdivision of the regular CW-complex CA

whose cell-poset is A+/A. Therefore, the realisation |NΔ(A+/A)|Δ is canonically homeomor-
phic to CA. Each operator A → B in A induces thus (by factoring it into a degeneracy followed
by a face operator) a functor A+/A → A+/B and hence a cellular map CA → CB . Left Kan
extension of this embedding along the Yoneda-embedding A ↪→ Â defines a colimit preserving
functor |−|A : Â → Top with values in the category of CW-complexes. Indeed, for any presheaf
X on A, the topological space |X|A decomposes as a (set-theoretically) disjoint union of “cell-
interiors”, indexed by the non-degenerate elements of X, exactly as in the case of a simplicial
set.

A pregeometric Reedy category A will be called (locally) flat if |−|A : Â → Top preserves
finite (connected) limits. In particular, A is flat if and only if A is locally flat and the terminal
presheaf �Â realises to the one-point space. The latter happens for instance if A contains a
terminal object without proper subobjects. The next proposition establishes property (3) of the
introduction to this section.

Proposition 3.14. For any flat pregeometric Reedy category A, the wreath product Δ �A is again
a flat pregeometric Reedy category with dimension-function

dimΔ�A
(
(A1, . . . ,Am)

) = m + dimA(A1) + · · · + dimA(Am).

In particular, the iterated wreath product Θn is a flat pregeometric Reedy category with
dimension-function dimΘn(T ) given by the number of edges of the level-tree T .

Proof. We have to show that Δ �A is retractive, cellular and flat, with the indicated dimension-
function. The second statement follows then by induction on n.

Let (φ;φ1, . . . , φm) : (A1, . . . ,Am) → (B1, . . . ,Bn) be an operator in Δ � A. Such an opera-
tor is a retraction precisely when φ is a retraction, and each φk is either the trivial morphism
A[Ak] → �Â or a retraction A[Ak] → A[Bk′ ] in Â. For a general operator (φ;φ1, . . . , φm),
factor φ as a retraction ψ followed by a monomorphism ρ. Then (φ;φ1, . . . , φm) factors as
(ψ;ψ1, . . . ,ψm) followed by (ρ;ρ1, . . . , ρm′) where each ψk is either trivial or an identity.
Since A is retractive, each ρk :A[Ak] → A[Bρ(k−1)+1] × · · · × A[Bρ(k)] factors as a retraction
σk :A[Ak] → A[A′

k] followed by a non-degenerate map τk :A[A′
k] → A[Bτ(k−1)+1] × · · · ×

A[Bτ(k)] (i.e. τk does not factor through any non-identity retraction). The retractions σk as-
semble into a retraction (id[m′];σ1, . . . σm′) in Δ � A. Since A is retractive, the non-degenerate
map τk is monic in Â because otherwise the target of τk would not be the union of its repre-
sentable subobjects. Therefore, we get the required factorisation of (φ;φ1, . . . , φm) into a retrac-
tion (id[m′];σ1, . . . σm′)(ψ;ψ1, . . . ,ψm) followed by a monomorphism (ρ; τ1, . . . , τm′). Assume
there is another such factorisation. Then, it follows from the above that the two retraction-parts
are the same, and hence the two monic parts are the same too. The lattice property of the retrac-
tions in Δ �A follows from the lattice property of the retractions in Δ and the lattice property of
the retractions in A.

For the cellularity of Δ � A, we use diagram (9) of the proof of Proposition 3.9, which iden-
tifies (Δ � A)[(A1, . . . ,Am)] with a certain subobject of the cartesian product (Δ � A)[(A1)] ×
· · · × (Δ � A)[(Am)]. We have to show that the realisation functor |−|Δ�A of Proposition 3.9
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endows |(Δ � A)[(A1, . . . ,Am)]|Δ�A with the structure of a regular CW-complex with cell-
poset (Δ � A)+/(A1, . . . ,Am). This is clear for m = 1, since for any object A, the unreduced
suspension of |A[A]|A may be obtained by applying the unreduced suspension cell-wise and
gluing the suspended cells together like in the original cell; the resulting cell-poset of the unre-
duced suspension of |A[A]|A is then precisely (Δ � A)+/(A). Therefore, we get a canonical
product CW-structure on |(Δ � A)[(A1)] × · · · × (Δ � A)[(Am)]|Δ�A. The right vertical map
of diagram (9) maps this product cellularly to the m-cube (Δ1)×m endowed with its canon-
ical product CW-structure. The latter admits a regular CW-subdivision by m! copies of the
standard m-simplex Δm; this subdivision lifts in a unique way to a regular CW-subdivision
of the product |(Δ � A)[(A1)] × · · · × (Δ � A)[(Am)]|Δ�A. It is then straightforward to check
that the cells of this regular CW-structure correspond canonically to the representable sub-
objects of (Δ � A)[(A1)] × · · · × (Δ � A)[(Am)]. In particular, the representable subobject
(Δ �A)[(A1, . . . ,Am)] realises to a regular CW-complex with cell-poset (Δ �A)+/(A1, . . . ,Am).

The flatness of Δ �A follows from Proposition 3.9, since the realisation functor defined there
coincides up to homeomorphism with the realisation functor derived from the cellular structure
of Δ �A. The formula for the dimension-function expresses the fact that (Δ �A)[(A1, . . . ,Am)]
and (Δ �A)[(A1)] × · · · × (Δ �A)[(Am)] realise to CW-balls of the same dimension. �
Remark 3.15. The degeneracy operators of Θn admit a direct description in terms of level-trees.
Indeed, simplicial degeneracy operators [k] → [l] correspond bijectively to subtree-inclusions
of a corolla with l leaves into a corolla with k leaves; this implies by induction on n that de-
generacy operators S → T correspond bijectively to subtree-inclusions of T into S, where we
mean by a subtree of S any subgraph which is a level-tree with same root as S. Alternatively,
a degeneracy operator S → T may be considered as a special kind of edge-contraction, namely
an edge-contraction of those edges of S which do not belong to the subtree T .

The face operators of Θn may be divided into inner and outer face operators. We proceed
again by induction on n. A simplicial face operator is called inner if it preserves minimal and
maximal elements. A face operator (φ;φ1, . . . , φm) :S → T of Θn is called inner if φ is an inner
simplical face operator and the projections of each φk :Θn−1[Sk] → Θn−1[Tφ(k−1)+1] × · · · ×
Θn−1[Tφ(k)] are inner face operators of Θn−1.

Inner face operators also admit a direct description in terms of level-trees. Here, we use the
following terminology, cf. Section 3.6 and [10, Definitions 1.1/2.3]: a subtree T of S will be
called plain if for each vertex v of T , the edges of T incoming in v form a connected (possibly
empty) subset of the set of edges of S incoming in v. An inner face operator φ :S → T deter-
mines, and is determined by, a family (Tv)v∈in(S) of plain subtrees of T indexed by the input
vertices v ∈ in(S) such that (i) the height of v equals the height of Tv ; (ii) the union of the Tv

is T ; and (iii) for any pair of input vertices (v1, v2) ∈ in(S) × in(S) for which the edge-paths to
the root meet at height k, the k-level-truncations of Tv1 and Tv2 coincide with the intersection
Tv1 ∩ Tv2 . The composite of two such operators

S
(Tv)v∈in(S)−−−−−−→ T

(Uw)w∈in(T )−−−−−−−→ U

is obtained by assigning to v ∈ in(S) the union of all Uw for w ∈ in(Tv).
A simplicial face operator φ is called outer if φ(i + 1) = φ(i) + 1 for all i. A face opera-

tor (φ;φ1, . . . , φm) :S → T of Θn is called outer if φ is an outer simplicial face operator and
each φk is either trivial or an outer face operator of Θn−1. The subcategory of Θn containing
the outer face operators can be identified with the image of the free functor from n-graphs to
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n-categories; in other words, outer face operators S → T correspond bijectively to maps of
n-graphs S∗ → T∗, cf. Section 3.6. In particular, the subcategory of outer face operators comes
equipped with a subcanonical Grothendieck topology (where the covering sieves are epimorphic
families); the latter can be used to characterise nerves of n-categories as those presheaves on
Θn which become sheaves when restricted to the subcategory of outer face operators, cf. [10,
Remark 1.13]. For n = 1, this recovers the well known Grothendieck–Segal characterisation of
nerves of categories. This also explains the role of outer face operators in the definition of a
Segal-fibration, cf. Definition 2.3.

In [10], face operators are called level-preserving operators, outer face operators are called
immersions, and operators of the subcategory generated by inner face operators and degeneracy
operators are called covers. Joyal [28] calls the dual of such a cover an open disk map. Batanin
[6] calls inner face operators tree-diagrams.

Batanin and Street [9] define a category Ωn which is closely related to Joyal’s category of
finite combinatorial n-disks and open disk maps; however, Ωn contains in addition for each
level-tree S of height < n degenerate level-trees ZkS for 0 < k � n − ht(S), to the effect that
those open disk maps which are dual to degeneracy operators get a slightly different description
in Ωn. Each of the categories Ωn is characterised by a universal property; indeed, Ωn is the
precise n-categorical analog of Ω1 ∼= Δalg = Δ ∪ {[−1]}, where [−1] denotes the empty ordinal.

The assembly functor γn : Θn → Γ coincides after restriction to covers and dualisation (up
to the different ways of representing degeneracies) with Batanin’s functor Ωn → Ωs ⊂ Γ op,
cf. [7, Chapter 5]. Indeed, the assembly functor associates to each operator S → T its “trace”
on the vertices of height n; in particular, the value γn(T ) is k iff T has k vertices of height n.
It follows then from the combinatorial description of a cover φ :S → T given above that the
induced operator γn(φ) :γn(S) → γn(T ) is a Γ -operator of a special type: it “covers” its target,
or equivalently, the dual operator is a map of finite pointed sets which restricts away from the
base-point, i.e. which belongs to Batanin’s subcategory Ωs of Γ op.

Proposition 3.16. For each n � 1, the assembly functor γn : Θn → Γ induces a geometric mor-
phism of presheaf toposes (γn)∗ : Θ̂n � Γ̂ : (γn)

∗ which classifies the quotient of the generic
combinatorial n-disk by its boundary.

Proof. For n = 1, the generic combinatorial 1-disk is the standard 1-simplex Δ[1] of the classi-
fying topos for combinatorial 1-disks. Since the Γ -set Γ [1] is the generic pointed object of the
classifying topos for pointed objects, we have to show that γ ∗

1 Γ [1] = Δ[1]/∂Δ[1]. This follows
from the fact that distinct simplicial operators [m] → [1] are identified under γ1 :Δ → Γ if and
only if they factor through [0].

By induction on n, the generic combinatorial n-disk of the classifying topos for combinatorial
n-disks is represented by the linear level-tree n̄ of height n, cf. the proof of Theorem 3.10. We
have to show that γ ∗

n Γ [1] = Θn[n̄]/∂Θn[n̄] where the boundary ∂Θn[n̄] is derived from the
Reedy structure on Θn, cf. Proposition 3.14.

By induction on n, the value γn(T ) at a level-tree T with k vertices of height n is the k-element
set k. In particular, γn(T ) is the null-object of Γ if and only if ht(T ) < n. Moreover, γn(T ) = 1
if and only if n̄ embeds as a subtree in T in a unique way, i.e. (cf. Remark 3.15) iff there is
a uniquely determined degeneracy operator ρ :T → n; in particular ρ ∈ Θn[n]. Since ∂Θn[n̄]
consists of all operators T → n which factor through a level-tree with < n edges, it remains to
be shown that distinct operators ρ1, ρ2 :T ⇒ n̄ have same image under γn if and only if they
factor through a level-tree with < n edges.
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If ρ1 and ρ2 factor through a level-tree with < n edges then γn(ρ1) and γn(ρ2) factor
through the null-object of Γ and therefore coincide. Conversely, if γn(ρ1) = γn(ρ2), then
(γ1 � γn−1)(ρ1) = (γ1 � γn−1)(ρ2) since the assembly functor α :Γ � Γ → Γ of Proposition 3.2
is faithful. Now, assume that T = ([m];S1, . . . , Sm), and that ρ1 = (φ;φ1, . . . , φm) and ρ2 =
(ψ;ψ1, . . . ,ψm), in particular γ1(φ) = γ1(ψ). If φ �= ψ , this implies that φ and ψ factor through
[0] and we are done; if φ = ψ : [m] → [1] is a degeneracy operator, then all φj and ψj for j �= i

are trivial, where φ(i − 1) = 0 and φ(i) = 1, while φi �= ψi and γn−1(φi) = γn−1(ψi). By in-
duction hypothesis, this implies that φi and ψi factor through a level-tree with < (n − 1) edges;
therefore, ρ1 and ρ2 factor through a level-tree with < n edges. �
Corollary 3.17. For any Γ -space A and any n � 1, the geometric realisation |γ ∗

n A|Θn is home-
omorphic to the nth space A(Sn) of the Segal spectrum of A.

Proof. The left Kan extension of the flat functor Θ−
n :Θn ↪→ Θ̂n → Top along the assembly

functor γn :Θn → Γ yields a flat and hence left exact functor γn!Θ−
n :Γ → Top; the latter is

determined by its value at 1 which by adjunction is

∣∣γ ∗
n Γ [1]∣∣

Θn
= ∣∣Θn[n̄]/∂Θn[n̄]∣∣

Θn
= Bn/∂Bn = Sn.

Therefore, γn!Θ−
n : Γ → Top is the functor which takes k to (Sn)k . This implies for any Γ -space

A the identifications

∣∣γ ∗
n A

∣∣
Θn

= (
γ ∗
n A

) ⊗Θn Θ−
n = A ⊗Γ γn!Θ−

n = A ⊗Γ

(
Sn

)− = A
(
Sn

)
. �

Remark 3.18. The preceding proposition establishes property (4) of the introduction to this sec-
tion; its corollary relates the combinatorics of Θn-sets in an interesting way to stable homotopy
theory. We are grateful to Bjørn Dundas for pointing out to us the following more concrete way
of understanding this relationship.

The dual Γ op of Γ is the category of finite pointed sets and embeds therefore canonically in
Sets. The classifying property of Segal’s functor γ : Δ → Γ is then just a fancy way of saying
that its dual γ op :Δop → Γ op ⊂ Sets is precisely the simplicial circle Δ[1]/∂Δ[1]. Similarly, the
classifying property of the assembly functor γn : Θn → Γ is just a fancy way of saying that its
dual γ

op
n : Θ

op
n → Γ op ⊂ Sets is precisely the canonical Θn-set-model Θn[n̄]/∂Θn[n̄] of the n-

sphere. This last statement can be related to some classical constructions with Γ -spaces. Indeed,
consider the following commutative diagram of functors

Δ × · · · × Δ
δn

Δ � · · · � Δ
γn

Γ × · · · × Γ
δΓ
n

Γ � · · · � Γ α
Γ

where the vertical functors are induced by γ :Δ → Γ and δΓ
n is defined in complete

analogy to δn, cf. Definition 3.8. In particular, the composite of δΓ
n with the iterated assembly

functor α yields the n-fold product map mn :Γ ×n → Γ . Proposition 3.9 shows that the Θn-set
γ

op
n :Θop

n → Sets can be realised by pulling back along δn and realising the resulting n-simplicial
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set. The commutativity of the diagram above shows then that this n-simplicial set is precisely the
n-fold smash product of the simplicial circle, and hence realises to an n-sphere.

Lydakis [30] shows that the smash-product of Γ -spaces, defined by left Kan extension along
m2 :Γ × Γ → Γ , has homotopical meaning insofar as monoids with respect to this smash-
product (so-called Γ -rings) are models for connective ring spectra, cf. Remark 2.8. An essential
ingredient in his proof is the homotopical analysis of the so-called assembly map A∧B → A◦B

for Γ -spaces A and B . This assembly map is closely related to the diagonal δΓ
2 :Γ ×Γ → Γ �Γ ,

and therefore, the fact that the assembly map is a weak equivalence (if A or B is cofibrant), is
closely related to Proposition 3.9.

3.19. Embedding functors

The category Θn embeds in Θn+1 as the full subcategory spanned by the level-trees of height
� n. This embedding is compatible with the embedding of Theorem 3.7 in the sense that we have
commutative squares

Θn nCat

Θn+1 n + 1Cat.

The embedding in :Θn → Θn+1 is also compatible with the realisation functors of Corollary 3.11
in the sense that we have commutative triangles

Θ̂n

in!

|−|Θn
Top

Θ̂n+1

|−|Θn+1

where as always in! denotes left Kan extension along in.

3.20. Suspension functors

The inductive definition Θn+1 = Δ � Θn defines a second completely different functor

σn :Θn → Θn+1,

given on objects by S 	→ (S) and on operators by ρ 	→ (id[1];ρ). The level-tree (S) is the level-
tree S shifted upwards one level by adjunction of an extra root-edge. We call σn a suspension
functor; this functor has already been considered by Joyal [28] and also (in dual form, cf. Re-
mark 3.15) by Batanin [7]. It follows from the definitions that we have commutative triangles for
n � 0
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Θn

σn

γn

Γ

Θn+1

γn+1

where Θ0 denotes the terminal category and γ0 :Θ0 → Γ takes the unique object of Θ0 to 1. Let
us mention that Θ0 has a completely different meaning in [10], where it stands for the subcate-
gory of outer face operators of the union Θ of the Θn.

The suspension functors σn are compatible with the unreduced topological suspension functor
S as expressed by the following (pseudo)commutative squares

Θn

σn

Θ−
n

Top

S

Θn+1

Θ−
n+1

Top

where the flat functors Θ−
n :Θn ↪→ Θ̂n

|−|Θn−−−→ Top can indifferently be defined using either
Proposition 3.9 or Corollary 3.11 or Proposition 3.14.

4. Reduced Θn-spaces and n-fold loop spaces

Definition 4.1. A Θn-space X :Θop
n → Top is reduced if the value of X at each level-tree of

height < n is the one-point space. A Θ-spectrum (Xn, sn)n�0 is a sequence of reduced Θn-
spaces Xn and natural transformations sn :Xn → σ ∗

n Xn+1.

Proposition 4.2. The Segal spectrum functor from Γ -spaces to topological spectra factors
through the category of Θ-spectra via A 	→ (γ ∗

n A)n�0.

Proof. For any Γ -space A, the canonical isomorphisms sn :γ ∗
n A → σ ∗

n γ ∗
n+1A define a

Θ-spectrum (γ ∗
n A, sn)n�0. Any Θ-spectrum (Xn, sn)n�0 defines a topological spectrum

(|Xn|Θn)n�0 with the following structural maps: according to the proof of Proposition 3.9, the
geometric realisation |Xn+1|Θn+1 may be identified with the realisation of the simplicial space
rΘnXn+1 = |δ∗

Θn
Xn+1|Θn ; this simplicial space is reduced, and its underlying space is precisely

|σ ∗
n Xn+1|Θn , cf. Section 2.1; we get thus a canonical map |σ ∗

n Xn+1|Θn → Ω|Xn+1|Θn+1 and
hence, by precomposition with |sn|Θn , the structural maps |Xn|Θn → Ω|Xn+1|Θn+1 of a topo-
logical spectrum. It follows from Corollary 3.17 that the composite of the two functors above is
isomorphic to the Segal spectrum functor Φ : TopΓ op

red → Spt of Section 2.6. �
Each abelian group π gives rise to a discrete Γ -space Hπ (also called a Γ -set) defined by

(Hπ)(k) = πk where the Γ -operations are induced by the abelian structure of π . This Γ -space
Hπ is cofibrant–stably fibrant for the injective model structure of Bousfield and Friedlander; its
associated Segal spectrum Φ(Hπ) is an explicit model for the Eilenberg–MacLane spectrum of
the abelian group π , cf. [38, 1.5]. In particular, the nth space Hπ(Sn) has the homotopy type of
an Eilenberg–MacLane space of type K(π,n). The preceding proposition implies thus
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Corollary 4.3. For each abelian group π and each n, the reduced Θn-set γ ∗
n (Hπ) realises to an

Eilenberg–MacLane space of type K(π,n).

Remark 4.4. The methods of [10, Chapter 3] yield a Quillen model structure on Θ̂n together with
a monoidal Quillen equivalence |−|Θn : Θ̂n � Top : SingΘn

. In joint work with Cisinski [11],
a new proof of this result is obtained along with a far reaching generalisation. Indeed, a Reedy
category A is called geometric in [11] if it is a pregeometric Reedy category in the sense of
Section 3.13 with the further property that Â admits functorial cylinder-objects in Quillen’s sense
[35], where the cofibrations (respectively weak equivalences) are the injective maps (respectively
those maps of presheaves that realise to weak homotopy equivalences). One of the key results
of [11] says that for any (locally flat) geometric Reedy category A, this defines a proper Quillen
model structure on Â, cofibrantly generated by sphere- and horn-inclusions, together with a
(monoidal) Quillen equivalence |−|A : Â � Top/| �Â |A : SingA.

It follows from Proposition 3.14 that the iterated wreath-product Θn is a flat geometric Reedy
category; this means thus that the presheaf topos Θ̂n has a full-fledged homotopy theory, in-
cluding a well-behaved combinatorial concept of fibration, and a homotopy-invariant notion of
Eilenberg–MacLane object of type K(π,n). The reduced Θn-sets γ ∗

n (Hπ) are particularly nice
such objects. Surprisingly, the resulting CW-complexes |γ ∗

n (Hπ)|Θn are comparatively small
and permit a new, combinatorially interesting, “cochain calculus.”

Before we study in more detail these models for Eilenberg–MacLane spaces, we come to the

main result of this article and endow the category TopΘ
op
n

red of reduced Θn-spaces with a Quillen
model structure in such a way that it becomes a model for the derived image of the n-fold loop
functor Ωn : Top∗ → Top∗. We will use Lemma 1.10 and define first a commutative triangle of
Quillen adjunctions

Top∗
Ωn

Seg

Ωn

TopΘ
op
n

red

|−|Θn

U

Top∗.

Σn
L (10)

This triangle generalises triangle (1) of Section 2.1. In particular, for any based space (X,∗), the
n-fold Segal loop space Ωn

Seg(X) is defined by

Ωn
Seg(X)(T ) = Top

((∣∣Θn[T ]∣∣
Θn

,
∣∣in−1!i∗n−1Θn[T ]∣∣

Θn

)
, (X,∗)

)
with the usual (compact-open) topology, where in−1 :Θn−1 → Θn denotes the canonical embed-
ding of Section 3.19. The underlying-space functor U is given by U(Y ) = Y(n̄), where n̄ denotes
the linear level-tree of height n. Since |Θn[n̄]|Θn = Bn and |in−1!i∗n−1Θn[n̄]|Θn = |∂Θn[n̄]|Θn =
∂Bn, cf. Remark 3.12, the composite functor UΩn

Seg may be identified with the classical n-fold
loop functor Ωn.
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Since Θn is a Reedy category by Proposition 3.14, there is a canonical Reedy model structure

on TopΘ
op
n∗ with pointwise weak equivalences, cf. [26,27]. The latter restricts to the bireflective

subcategory TopΘ
op
n

red of reduced Θn-spaces by Remark 1.12.2 in such a way that the above-
defined adjoint pair (|−|Θn,Ω

n
Seg) is a Quillen adjunction. A map of reduced Θn-spaces is a

realisation weak equivalence if the left derived functor of |−|Θn takes it to an isomorphism in
Ho(Top∗).

Theorem 4.5. The Reedy model category of reduced Θn-spaces admits a left Bousfield localisa-
tion with respect to realisation weak equivalences. The localised model category is a model for
n-fold loop spaces. In particular, for any cofibrant–fibrant reduced Θn-space X, the canonical
map U(X) → Ωn|X|Θn is a weak equivalence.

Proof. We argue by induction on n. The case n = 1 is Theorem 2.4. The inductive step breaks
into three parts: the existence of the asserted localisation, the property that the underlying-
space functor is homotopy-right-conservative, and the property that the canonical map U(X) →
Ωn|X|Θn is a weak equivalence at cofibrant–fibrant objects (which is equivalent to Ωn

Seg being a
homotopy-coreflection).

Recall from Proposition 3.9 that the realisation functor |−|Θn factors through the functor

δ∗
Θn−1

: TopΘ
op
n

red → (Top
Θ

op
n−1

red )Δ
op

red ; the suspension functor σn−1 induces a functor σ ∗
n−1 : TopΘ

op
n

red →
Top

Θ
op
n−1

red which commutes with the underlying-space functors. We already observed (in the proof
of Proposition 4.2) that the following triangle commutes up to isomorphism

TopΘ
op
n

red

σ ∗
n−1

δ∗
Θn−1

(Top
Θ

op
n−1

red )Δ
op

red .

U

Top
Θ

op
n−1

red

(11)

Inductively, a Segal-fibration of reduced Θn-spaces f :X → Y is defined to be a Reedy-
fibration such that the following two conditions hold:

(a) denote by GF the subobject of Θn[T ] generated by a family F of outer face operators
T1 → T , . . . , Tm → T , which is epimorphic in the subcategory of outer face operators, cf.
Remark 3.15; then for any such GF , the induced map X(T ) → Y(T ) ×Y(GF ) X(GF ) has
to be a weak equivalence;

(b) δ∗
Θn−1

(f ) respectively σ ∗
n−1(f ) fulfill condition (b) for a Segal-fibration of reduced simplicial

objects in Top
Θ

op
n−1

red respectively of reduced Θn−1-spaces.

Now we apply Proposition 1.12.4. The existence of a suitable set of realisation-trivial cofibrations
characterising Segal-fibrations among Reedy-fibrations follows by induction on n, since δ∗

Θn−1

and σ ∗
n−1 have left adjoints. It remains to be shown that any realisation-trivial Segal-fibration

f :X → Y is a trivial Reedy-fibration. For this, consider a level-tree T with root-valence m;
then, T is a bouquet of m level-trees T1, . . . , Tm glued together at the root. The isomorphism
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of n-graphs (T1)∗ ∨ · · · ∨ (Tm)∗ ∼= T∗ defines an epimorphic family of outer face operators
Tk → T , 1 � k � m; condition (a) of a Segal-fibration induces then the following homotopy
cartesian square:

X(T )
f (T )

Y (T )

X(T1) × · · · × X(Tm)
f (T1)×···×f (Tm)

Y (T1) × · · · × Y(Tm).

It follows from the inductive definition of a Segal-fibration that the induced maps σ ∗
n−1(f ) and

δ∗
Θn−1

(f ) are Segal-fibrations. Since f is a realisation weak equivalence, δ∗
Θn−1

(f ) is a realisa-
tion weak equivalence as well, and the analog of Theorem 2.4 for reduced simplicial objects in

Top
Θ

op
n−1

red implies that δ∗
Θn−1

(f ) is a trivial Reedy-fibration, cf. Remark 2.5; it follows then from
the commutative triangle (11) that σ ∗

n−1(f ) is also a realisation weak equivalence and hence, by
the inductive hypothesis, a trivial Reedy-fibration. Therefore, since the level-trees Tk , 1 � k � m,
belong to the image of σn−1, each factor f (Tk) :X(Tk) → Y(Tk), 1 � k � m, in the lower hor-
izontal map above is a trivial fibration so that the upper horizontal map f (T ) :X(T ) → Y(T )

is a weak equivalence. Consequently, the given realisation-trivial Segal-fibration f :X → Y is a
pointwise weak equivalence and hence a trivial Reedy-fibration as required.

The underlying-space functor U : TopΘ
op
n → Top∗ :X 	→ X(n̄) is homotopy-right-conserva-

tive, since for a Segal-fibrant reduced Θn-space X, the canonical n-graphical decomposition
of T∗ into a colimit of representable graphs induces a functorial trivial fibration X(T )

∼�∏
γn(T ) X(n̄), where there are as many factors as there are vertices in T of height n, cf. Section 3.6

and Remark 3.15. Finally, for each reduced Θn-space X, the canonical map U(X) → Ωn|X|Θn

factors as

U
(
σ ∗

n−1X
)

α−→ Ωn−1
∣∣σ ∗

n−1X
∣∣
Θn−1

(11)= Ωn−1U
∣∣δ∗

n−1X
∣∣
Θn−1

Ωn−1β−−−−→ Ωn−1Ω|X|Θn.

If X is cofibrant Segal-fibrant, then so are σ ∗
n−1(X) and δ∗

Θn−1
(X), so that α and β are weak

equivalences by the inductive hypothesis and by the analog of Theorem 2.4 for reduced simplicial

objects in Top
Θ

op
n−1

red , cf. Remark 2.5. �
Remark 4.6. There are two other models for n-fold loop spaces (in the sense of Lemma 1.10)
closely related to the preceding one. The first one results from a suitable model structure on
reduced n-simplicial spaces, and can be thought of as a straightforward iteration of the Segal
model for 1-fold loop spaces (an n-fold loop space being a loop space in (n − 1)-fold loop
spaces). The second model is due to Bousfield [16] and results from a suitable model structure
on (n − 1)-reduced simplicial spaces. We are grateful to Rainer Vogt for pointing out to us
that the classical diagonal functor d :Δ → Δ × · · · × Δ cannot be used to relate the reduced
n-simplicial model to the (n − 1)-reduced simplicial model since the inverse image functor d∗
fails to take reduced n-simplicial sets to (n − 1)-reduced simplicial sets. Instead, we shall use
below a realisation functor Θ̂ → Δ̂ which takes reduced Θn-sets to (n − 1)-reduced simplicial
sets.

To be precise, an n-simplicial space X(−, . . . ,−) is reduced if X([k1], . . . , [kn]) is the one-
point space whenever [ks] = [0] for some s. A simplicial space X(−) is (n − 1)-reduced if



266 C. Berger / Advances in Mathematics 213 (2007) 230–270
X([k]) is the one-point space for k < n. The existence of a suitable localisation of the Reedy
model structure on reduced n-simplicial spaces follows from Theorem 2.4 using inductively
Remark 2.5. Bousfield constructs in [16] an explicit suitable localisation of the Reedy model
category of (n − 1)-reduced simplicial spaces.

Proposition 4.7. The diagonal δn :Δ×n → Θn induces a Quillen equivalence between the re-
duced Θn- and the reduced n-simplicial model for n-fold loop spaces.

Proof. By Proposition 1.9, it suffices to show that δn induces a well-adapted Quillen-adjunction

between the models (|−|Θn,TopΘ
op
n

red ,U) and (|−|Δ×n ,TopΔop×n

red ,U) for n-fold loop spaces. Ob-
serve first that δ∗

n takes reduced Θn-spaces to reduced n-simplicial spaces; the compatibility of
δ∗
n with the realisation functors follows then from Proposition 3.9. The underlying-space of a

reduced n-simplicial space X is X([1], . . . , [1]); the underlying space of the right Kan exten-
sion δn∗(X) is given by the n-simplicial “mapping space” from δ∗

n(Θn[n̄], ∂Θn[n̄]) to (X,∗).
The latter is canonically isomorphic to X([1], . . . , [1]). Therefore, the adjunction (δ∗

n, δn∗) is
well-adapted. This adjunction is a Quillen adjunction with respect to the Reedy model struc-
tures. Since both Reedy structures are localised with respect to realisation weak equivalences,
and the left adjoint δ∗

n is compatible with the realisation functors, the adjunction (δ∗
n, δn∗) is also

a Quillen adjunction after localisation. �
Proposition 4.8. There is a minimal combinatorial n-disk in simplicial sets, whose classifying
morphism dn∗ : Δ̂ � Θ̂n : d∗

n induces a Quillen equivalence between the reduced Θn- and the
(n − 1)-reduced simplicial model for n-fold loop spaces.

Proof. In the category of simplicial sets, put D0 = Δ[0], D1 = Δ[1] and for n > 1,

Dn = Δ[n]/(∂0Δ[n − 1] ∪ · · · ∪ ∂n−2Δ[n − 1]).
It is then readily verified that

Dn

sn−1
Dn−1

sn−2

∂n

∂n−1
Dn−2 · · ·D2

∂n−1

∂n−2

s1
D1

∂2

∂1

s0
D0

∂1

∂0

defines a combinatorial n-disk in simplicial sets which realises to the combinatorial n-disk un-
derlying the topological n-ball, cf. the proofs of Theorem 3.10 and Corollary 3.11. Therefore,
there is an essentially unique geometric morphism of toposes dn∗ : Δ̂ � Θ̂n : d∗

n such that the
left adjoint d∗

n takes the generic combinatorial n-disk Θ[n̄] to Dn. This left adjoint commutes
up to isomorphism with the realisation functors and preserves thus “boundaries.” In particular,
d∗
n takes reduced Θn-sets to (n − 1)-reduced simplicial sets. Since Top is topological over Sets,

the adjunction lifts to an adjunction between reduced Θn-spaces and (n − 1)-reduced simplicial
spaces in such a way that the right adjoint commutes up to isomorphism with the underlying-
space functors. Moreover, the adjunction is a Quillen adjunction with respect to the canonical
Reedy model structures (on the reduced objects) before and after localisation. Proposition 1.9
allows us then to conclude. �
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Remark 4.9. We completely left out the discussion of operadic models for n-fold loop spaces.
There is indeed much to say about these and their relationship to the Segal-type models described
above. One of the motivations of this text was to prepare things for a general picture which would
incorporate them all.

An En-algebra (see Boardman–Vogt [14], May [33]) models an n-fold loop space only if it
is group-complete so that the classical model structures on En-algebras have to be localised in
order to give rise to models for n-fold loop spaces in the sense of Lemma 1.10. With this caveat
in mind, Proposition 1.9 may prove useful in constructing explicit chains of Quillen equivalences
relating presheaf-type models and operadic models for n-fold loop spaces.

In this context, let us mention that by [10, Proposition 1.16] an n-operad in Batanin’s sense [6]
with values in (a cocomplete cartesian closed category) E is essentially the same as an E-enriched
category over Θn fulfilling some factorisation properties; for n = 1, this correspondence has been
studied by Thomason [42] and Dunn [21]. Similarly, a symmetric operad with values in E is
essentially the same as an E-enriched category over Γ fulfilling some factorisation properties; the
latter correspondence has been studied by May and Thomason [34], cf. also Dunn [21]. It turns
out that (under these correspondences) “base-change” along the assembly functor γn : Θn → Γ

gives rise to a right Quillen functor from reduced symmetric operads to reduced n-operads, the
left adjoint of which has the remarkable property that its left derived functor takes the terminal
reduced n-operad to an En-operad; this is a reformulation of one of the central results of Batanin
[7,8] and should ultimately lead to a combinatorial characterisation of En-operads. In particular,
combining technics of Thomason [42] and May–Thomason [34] with Proposition 4.7 should
shed some light into results of Dunn [21] and Fiedorowicz–Vogt [24].

4.10. The canonical reduced Θn-set for an Eilenberg–MacLane space

We come back to the Θn-set γ ∗
n (Hπ) of Corollary 4.3 for an Eilenberg–MacLane space

of type K(π,n). For brevity, we shall write K(π,n) = γ ∗
n (Hπ) and consider K(π,n) as a

set-valued presheaf on Θn. The inverse image functors δ∗
n : Θ̂n → Δ̂×n and d∗

n : Θ̂n → Δ̂ of
Propositions 4.7 and 4.8 take K(π,n) to the classical n-simplicial and simplicial models.

Observe that in any model category for n-fold loop spaces in the sense of Lemma 1.10,
a discrete cofibrant–fibrant object X deloops to an Eilenberg–MacLane space Φ(X). Indeed,
the discrete underlying space U(X) is weakly equivalent to ΩnΦ(X), whence Φ(X) is n-
coconnected, and the homotopy-counits of the Φ–Ψ -adjunction are (n − 1)-connected covers,
whence Φ(X) is (n − 1)-connected; therefore, Φ(X) is an Eilenberg–MacLane space of type
K(πn(Φ(X)),n); moreover, the isomorphism πn(Φ(X)) ∼= π0(U(X)) endows the underlying
set of X with a canonical group structure. In our case, the delooping functors are given by
realisation functors, which explains why the discrete cofibrant–fibrant reduced presheaves are
themselves models for Eilenberg–MacLane spaces. We have seen that the inverse image functors
δ∗
n and d∗

n are compatible with the topological realisation functors; nevertheless, the resulting
CW-structures depend on the choice of the cell category. We study here the cellular structure of
the reduced Θn-set K(π,n).

By definition, the set K(π,n)(T ) of T -cells of K(π,n) is the power-set πγn(T ), which can be
considered as the set of all labellings of the height-n-vertices of T by elements of the group π .
We have to describe the action of the degeneracy operators on these cells. A degeneracy operator
φ :S → T in Θn corresponds to a subtree-inclusion of T in S, cf. Remark 3.15; the func-
tor γn takes φ :S → T to the projection map γn(φ) : γn(S) → γn(T ) which “forgets” about
those height-n-vertices of S which do not belong to the subtree T . Therefore, K(π,n)(φ) :
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K(π,n)(T ) → K(π,n)(S) labels those height-n-vertices of S which do not belong to T by
the neutral element of π . This implies that there are non-degenerate T -cells in K(π,n) only if
T is either of height 0 (in which case there is a unique non-degenerate 0-cell) or if T is a pruned
n-tree, i.e. a tree whose input vertices are all of height n; in the latter case, the non-degenerate
T -cells correspond to all labellings of the input vertices by non-neutral elements.

Recall from Proposition 3.14 that the dimension of the cell |Θn[T ]|Θn defined by T is the
number of edges of T , and recall from Remark 3.13 that K(π,n) realises to a CW-complex with
as many cells as there are non-degenerate elements in K(π,n). We denote by f k

n,π the number of
non-degenerate π -labelled pruned n-trees with n + k edges, where a non-degenerate π -labelling
consists of a labelling of the input vertices by non-neutral elements of π . We just proved

Proposition 4.10.1. The realisation of the canonical reduced Θn-set K(π,n) is a reduced CW-
complex with f k

n,π cells of dimension n + k.

The number f k
n,π only depends on the order of the group π . In particular, f k

n = f k
n,Z/2Z

counts
the number of pruned n-trees with n + k edges. This number is a generalised Fibonacci number
of order n as expressed by the following counting lemma, first noticed by James Dolan, cf. [19],
and its obvious generalisation below.

Lemma 4.10.2. For any n � 1, if f k
n = 0 for k < 0 and f 0

n = 1, one has the recursion formula
f k

n +f k+1
n +· · ·+f k+n−1

n = f k+n
n . In particular, the sequence (f k

2 )k�0 is the classical Fibonacci
number sequence.

Proof. Take a pruned n-tree with n+k edges and consider the edge-path from its rightmost input
vertex to the first vertex with more than one incoming edge. This edge-path has a positive length
m � n, and the given pruned n-tree with n + k edges can be recovered in a unique way from the
pruned n-tree with n + k − m edges, obtained by removing the above-mentioned edge-path. �
Lemma 4.10.3. For any n � 1 and any group π of order p, if f k

n,π = 0 for k < 0 and f 0
n,π =

p − 1, one has the recursion formula (p − 1)(f k
n,π + f k+1

n,π + · · · + f k+n−1
n,π ) = f k+n

n,π .

The generating function fn,π (t) = ∑
k�0 f k

n,π tk of these generalised, weighted Fibonacci
numbers is rational. It is readily verified that we have

fn,π (t) = p − 1

1 − (p − 1)(t + t2 + · · · + tn)
.

Therefore, the generating function K(π,n)(t) = ∑
d�0 cd(|K(π,n)|Θn)t

d for the number
cd(|K(π,n)|Θn) of d-cells of the CW-complex |K(π,n)|Θn is rational again:

K(π,n)(t) = 1 + tnfn,π (t) = 1 − (p − 1)(t + t2 + · · · + tn−1)

1 − (p − 1)(t + t2 + · · · + tn)

and we get as virtual Euler–Poincaré characteristic χ(K(π,n)) = K(π,n)(−1):

Proposition 4.10.4. χ(K(π,n)) = p(−1)n for any group π of order p.
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This calculation suggests the existence of an Euler–Poincaré characteristic for a quite large
class of CW-complexes, which would simultaneously be homotopy-invariant, additive with re-
spect to cellular attachments, and multiplicative with respect to fibrations. Proposition 4.10.4
reflects the multiplicativity. It remains however unexplained why the above-defined character-
istic should be an additive homotopy-invariant outside the context of finite CW-complexes. In
particular, if under some hypotheses on the class of CW-complexes, the three properties above
would hold, then the Euler–Poincaré characteristic of a simple CW-complex could be calculated
in two completely different ways; either “cellularly” like above, or “cocellularly,” by using the
Postnikov decomposition of the space; this second way leads to what Baez and Dolan [3,5] call
the homotopy cardinality of the space. The importance of having an Euler–Poincaré characteristic
calculable in these two different ways has been emphasised by Loday a long time ago.
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