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Examples (notions of covering)

e topological covering/X e~ T3(X)-set

o discrete fibration/C  «~» set-valued presheaf on C

Purpose of the talk

@ general notion of covering & associated factorisation system
using Lawvere's comprehension schemes '70.

@ apply to idempotent semigroups to get non-commutative
versions of Stone duality '37.
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Definition (category of adjunctions)

objects of Adj, are categories with a distinguished terminal object
morphisms of Adj, are adjunctions (f;, f*).

Definition (comprehension scheme)

A comprehension scheme on &£ is a pseudo-functor P : £ — Adj,
such that for each object B of £ the functor

§/B——>PB
(f A — B)I—> ﬁ(*pA)

has a fully faithful right adjoint elg : PB — £/B.
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Consistent comprehension schemes

@ A morphism f : A — B is a P-covering if it belongs to the
essential image of elg.

@ A comprehension scheme is consistent if P-coverings compose
and are left cancellable: gf,g € Covg = f € Covg.

@ A morphism f : A — B is P-connected if fi(xpa) = *p5.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension
schemes and complete orthogonal factorisation systems.

@ ccs induces (P-connected, P-covering)-factorisation.
@ (L, R)-factorisation induces ccs with elg = R/B.
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Remark (Frobenius)

A ccs satisfies Frobenius reciprocity (Lawvere '70) if and only if
P-connected maps are stable under pullback along P-coverings.

Examples (comprehensive factorisation systems)

e Sets — Adj, : X — (PX, C) induces epi/mono-factorisation.

e Cat — Adj, : C— PC = [C°P, Sets]| induces the
comprehensive factorisation of a functor (Street-Walters '73).

PC restricts to Posets C Cat and Gpd C Cat (Bourn '87).
dces Multicat — Adj, and Feyn — Adj, (B-Kaufmann '17).

Topgse — Adj, : X — Shyc(X) yields a comprehensive
factorisation of a continuous map of slsc spaces.
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Remark (espace étalé)

The equivalence Sh(X) ~ {local homeomorphisms/X} restricts to
an equivalence Shj,c(X) ~ {topological coverings/X}.

Lawvere '70: ... we remark that although our discussion below of
comprehension hinges on the operation ¥, there is one structure in
which all features of hyperdoctrines except ¥ exist ..., but in which
there is clearly a kind of “extension”, namely the espace étalé.

Proposition (f for locally constant sheaves on slsc spaces)

For any slsc space, monodromy induces an equivalence of
categories Shyoc(X) ~ My (X)-sets. In particular for f : X — Y,

My (X)-sets el M1(Y)-sets
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Proposition (homotopical characterisation of connected maps)

A map of slsc spaces f : X — Y is connected iff mo(f) is bijective
and m1(f, x) : m1(X, x) — w1 (Y, f(x)) is surjective Vx € X.
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Proposition (homotopical characterisation of connected maps)

A map of slsc spaces f : X — Y is connected iff mo(f) is bijective
and m1(f, x) : m1(X, x) — w1 (Y, f(x)) is surjective Vx € X.

A\

Corollary (existence of universal coverings)

For any based slsc space (X, x) the comprehensive factorisation

Ux x)

conney l .
covering

* X

produces the universal covering of X at x.
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Definition
A band (=idempotent semigroup) is a set (X, -) with an
associative multiplication such that x> = x for all x € X.

Lemma (meet-semilattices)

Commutative bands are the same as posets with binary meets.

Lemma (Green's D-relation)

Each band is partially ordered by x < y g = yxy. The
commutative bands form a reflective subcategory. The reflection is

given by X — X /D where xDy = xyx and y = yxy.
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Distributive bands and distributive skew-lattices

Definition (Schiitzenberger '47)
A band is left (resp. right) regular if xy = xyx (resp. yx = xyx).

Proposition (B-Gehrke '18)

The category of right regular bands admits a comprehensive
factorisation system lifted along the functor (X, -) — (X, <).

Lemma (discrete objects)

For a right regular band X tfae:
e (X, <) is order-discrete;
e (X,-) is a right zero band (i.e. yx = x);

@ the terminal map X — xggp is a covering.
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A right regular band is right normal (i.e. xyz = yxz) if and only if
the semilattice reflection X — X /D is a covering.

Definition
A band X is called right distributive if

(i) X is right normal;
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Example (the local sections of a sheaf form a distributive band)
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Proposition (Yamada-Kimura '57, B-Gehrke '18)

A right regular band is right normal (i.e. xyz = yxz) if and only if
the semilattice reflection X — X /D is a covering.

Definition
A band X is called right distributive if
(i) X is right normal;
(i) X/D is a (bounded) distributive lattice;
(i) for any finite subset S of X consisting of pairwise commuting
elements the join \/ S in (X, <) exists.

Example (the local sections of a sheaf form a distributive band)

We define (U,0)(V,7) = (UN V,7]}qy)- Local sections
commute iff they glue. (U,o) < (V,7)iff UC V and o = 7.
(iii) expresses sheaf condition w/to finite open covers.
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Definition (skew-lattice, Leech '89)

A skew lattice (S, A, Y) consists of two bands (S, A) and (S, Y)
such that the following four absorption laws hold:

() (yAx) Y x=x=xA(xYy),
(i) xY (x Ay)=x=(y Y x) A x.
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Definition (skew-lattice, Leech '89)

A skew lattice (S, A, Y) consists of two bands (S, A) and (S, Y)
such that the following four absorption laws hold:

() (yAx) Y x=x=xA(xYy),
(i) xY (x Ay)=x=(y Y x) A x.

Remark (lattice reflection)

The order relation of (S, &) is dual to the order relation of (S, Y).
Green's D-relation yields a lattice S/D, the lattice reflection of S.
(S, A) is right regular iff (S, Y) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is symmetricif x Ay =y AXx <= XY y=yY x.
A skew-lattice is right distributive if it is symmetric, right normal
and its lattice reflection is distributive.
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Theorem (Stone '37)

There is a duality between the category of distributive lattices and
the category of spectral spaces.

Theorem (B-Gehrke '18)

There is a duality between the category of right distributive bands
and the category of sheaves over spectral spaces.
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Theorem (Stone '37)

There is a duality between the category of distributive lattices and
the category of spectral spaces.

Theorem (B-Gehrke '18)

There is a duality between the category of right distributive bands
and the category of sheaves over spectral spaces.

Theorem (Bauer, Cvetko-Vah, Gehrke, van Gool, Kudryatseva '13)

There is a duality between the category of right distributive
skew-lattices and the category of sheaves over Priestley spaces.
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