Comprehensive factorisation & non-commutative Stone duality

Clemens Berger¹

University of Nice (France)

CT 2018 in Açores July 10, 2018

- Introduction
- 2 Consistent comprehension schemes
- 3 Comprehensive factorisations
- 4 Distributive bands and distributive skew-lattices
- 5 Non-commutative Stone duality

- topological covering/X \longleftrightarrow $\Pi_1(X)$ -set
- ullet discrete fibration/ $\mathcal C$ \longleftrightarrow set-valued presheaf on $\mathcal C$

- general notion of covering & associated factorisation system using Lawvere's comprehension schemes '70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality '37.

- topological covering/X \longleftrightarrow $\Pi_1(X)$ -set
- discrete fibration/ $\mathcal{C} \iff$ set-valued presheaf on \mathcal{C}

- general notion of covering & associated factorisation system using Lawvere's comprehension schemes '70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality '37.

- topological covering/X \longleftrightarrow $\Pi_1(X)$ -set
- discrete fibration/ \mathcal{C} \iff set-valued presheaf on \mathcal{C}

- general notion of covering & associated factorisation system using Lawvere's comprehension schemes '70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality '37.

- topological covering/X \longleftrightarrow $\Pi_1(X)$ -set
- discrete fibration/ \mathcal{C} \iff set-valued presheaf on \mathcal{C}

- general notion of covering & associated factorisation system using Lawvere's comprehension schemes '70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality '37.

- topological covering/X \longleftrightarrow $\Pi_1(X)$ -set
- ullet discrete fibration/ ${\cal C}$ \iff set-valued presheaf on ${\cal C}$

- general notion of covering & associated factorisation system using Lawvere's comprehension schemes '70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality '37.

- topological covering/X \longleftrightarrow $\Pi_1(X)$ -set
- ullet discrete fibration/ $\mathcal C$ \longleftrightarrow set-valued presheaf on $\mathcal C$

- general notion of covering & associated factorisation system using Lawvere's comprehension schemes '70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality '37.

- topological covering/X \longleftrightarrow $\Pi_1(X)$ -set
- discrete fibration/ $\mathcal{C} \iff$ set-valued presheaf on \mathcal{C}

- general notion of covering & associated factorisation system using Lawvere's comprehension schemes '70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality '37.

Definition (category of adjunctions)

objects of Adj_* are categories with a distinguished terminal object morphisms of Adj_* are adjunctions $(f_!, f^*)$.

Definition (comprehension scheme)

A comprehension scheme on $\mathcal E$ is a pseudo-functor $P:\mathcal E\to\mathrm{Adj}_*$ such that for each object B of $\mathcal E$ the functor

$$\mathcal{E}/B \longrightarrow PB$$

$$(f: A \to B) \longmapsto f_!(\star_{PA})$$

has a fully faithful right adjoint $\operatorname{el}_B:PB o \mathcal E/B$.

Definition (category of adjunctions)

objects of Adj_* are categories with a distinguished terminal object morphisms of Adj_* are adjunctions $(f_!, f^*)$.

Definition (comprehension scheme)

A comprehension scheme on $\mathcal E$ is a pseudo-functor $P:\mathcal E\to\mathrm{Adj}_*$ such that for each object B of $\mathcal E$ the functor

$$\mathcal{E}/B \longrightarrow PB$$
$$(f: A \to B) \longmapsto f_!(\star_{PA})$$

has a fully faithful right adjoint $el_B : PB \to \mathcal{E}/B$.

- A morphism $f: A \to B$ is a *P-covering* if it belongs to the essential image of el_B .
- A comprehension scheme is *consistent* if *P*-coverings *compose* and are *left cancellable*: $gf, g \in \text{Cov}_B \implies f \in \text{Cov}_B$.
- A morphism $f: A \to B$ is *P-connected* if $f_!(\star_{PA}) \cong \star_{PB}$.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

- ccs induces (P-connected, P-covering)-factorisation.
- $(\mathcal{L}, \mathcal{R})$ -factorisation induces ccs with $el_B = \mathcal{R}/B$

- A morphism $f: A \to B$ is a *P-covering* if it belongs to the essential image of el_B .
- A comprehension scheme is *consistent* if *P*-coverings *compose* and are *left cancellable*: $gf, g \in Cov_B \implies f \in Cov_B$.
- A morphism $f: A \to B$ is P-connected if $f_!(\star_{PA}) \cong \star_{PB}$.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

- ccs induces (P-connected, P-covering)-factorisation.
- $(\mathcal{L}, \mathcal{R})$ -factorisation induces ccs with $el_B = \mathcal{R}/B$

- A morphism $f: A \to B$ is a *P-covering* if it belongs to the essential image of el_B .
- A comprehension scheme is *consistent* if *P*-coverings *compose* and are *left cancellable*: $gf, g \in Cov_B \implies f \in Cov_B$.
- A morphism $f: A \to B$ is P-connected if $f_!(\star_{PA}) \cong \star_{PB}$.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

- ccs induces (P-connected, P-covering)-factorisation.
- $(\mathcal{L}, \mathcal{R})$ -factorisation induces *ccs* with $el_B = \mathcal{R}/B$.

- A morphism $f: A \to B$ is a *P-covering* if it belongs to the essential image of el_B .
- A comprehension scheme is *consistent* if *P*-coverings *compose* and are *left cancellable*: $gf, g \in Cov_B \implies f \in Cov_B$.
- A morphism $f: A \to B$ is P-connected if $f_!(\star_{PA}) \cong \star_{PB}$.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

- ccs induces (P-connected, P-covering)-factorisation.
- $(\mathcal{L}, \mathcal{R})$ -factorisation induces *ccs* with $el_B = \mathcal{R}/B$.

- A morphism $f: A \to B$ is a *P-covering* if it belongs to the essential image of el_B .
- A comprehension scheme is *consistent* if *P*-coverings *compose* and are *left cancellable*: $gf, g \in Cov_B \implies f \in Cov_B$.
- A morphism $f: A \to B$ is P-connected if $f_!(\star_{PA}) \cong \star_{PB}$.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

Proof

ccs induces (*P*-connected, *P*-covering)-factorisation.
(L, R)-factorisation induces ccs with el_B = R/B.

- A morphism $f: A \to B$ is a *P-covering* if it belongs to the essential image of el_B .
- A comprehension scheme is *consistent* if *P*-coverings *compose* and are *left cancellable*: $gf, g \in Cov_B \implies f \in Cov_B$.
- A morphism $f: A \to B$ is P-connected if $f_!(\star_{PA}) \cong \star_{PB}$.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

- ccs induces (P-connected, P-covering)-factorisation.
- $(\mathcal{L}, \mathcal{R})$ -factorisation induces *ccs* with $el_B = \mathcal{R}/B$.

- A morphism $f: A \to B$ is a *P-covering* if it belongs to the essential image of el_B .
- A comprehension scheme is *consistent* if *P*-coverings *compose* and are *left cancellable*: $gf, g \in Cov_B \implies f \in Cov_B$.
- A morphism $f: A \to B$ is *P-connected* if $f_!(\star_{PA}) \cong \star_{PB}$.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

- ccs induces (P-connected, P-covering)-factorisation.
- $(\mathcal{L}, \mathcal{R})$ -factorisation induces *ccs* with $el_B = \mathcal{R}/B$.

- A morphism $f: A \to B$ is a *P-covering* if it belongs to the essential image of el_B .
- A comprehension scheme is *consistent* if *P*-coverings *compose* and are *left cancellable*: $gf, g \in Cov_B \implies f \in Cov_B$.
- A morphism $f: A \to B$ is *P-connected* if $f_!(\star_{PA}) \cong \star_{PB}$.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

- ccs induces (P-connected, P-covering)-factorisation.
- $(\mathcal{L}, \mathcal{R})$ -factorisation induces *ccs* with $el_B = \mathcal{R}/B$.

A ccs satisfies Frobenius reciprocity (Lawvere '70) if and only if P-connected maps are stable under pullback along P-coverings.

- Sets \rightarrow Adi.: $X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
 - Cat \rightarrow Adj. : $\mathcal{C} \mapsto P\mathcal{C} = [\mathcal{C}^{op}]$. Sets induces the
 - comprehensive factorisation of a functor (Street-Walters '73

 - PC restricts to
 - ullet $\exists ccs \; \mathrm{Multicat} o \mathrm{Adj}_* \; \mathrm{and} \; \mathrm{Feyn} o \mathrm{Adj}_* \; (\mathsf{B} ext{-}\mathsf{Kaufmann} \; '17)$
 - \bullet Top_{s/sc} \to Adj_{*} : $X \mapsto \operatorname{Sh}_{loc}(X)$ yields a comprehensive
 - factorisation of a continuous map of slsc spaces.

A ccs satisfies Frobenius reciprocity (Lawvere '70) if and only if P-connected maps are stable under pullback along P-coverings.

- Sets $\to \mathrm{Adj}_* : X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- Cat → Adj_{*} : C → PC = [C^{op}, Sets] induces the comprehensive factorisation of a functor (Street-Walters '73).
- PC restricts to Posets ⊂ Cat and Gpd ⊂ Cat (Bourn '87).
- $\exists \textit{ccs} \ \mathrm{Multicat} \to \mathrm{Adj}_* \ \mathsf{and} \ \mathrm{Feyn} \to \mathrm{Adj}_* \ (\mathsf{B}\text{-Kaufmann '17}).$
- $\operatorname{Top}_{slsc} \to \operatorname{Adj}_* : X \mapsto \operatorname{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.

A ccs satisfies Frobenius reciprocity (Lawvere '70) if and only if P-connected maps are stable under pullback along P-coverings.

- Sets $\to \mathrm{Adj}_* : X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- Cat → Adj_{*} : C → PC = [C^{op}, Sets] induces the comprehensive factorisation of a functor (Street-Walters '73)
- PC restricts to Posets ⊂ Cat and Gpd ⊂ Cat (Bourn '87).
- $\exists ccs \ \mathrm{Multicat} \to \mathrm{Adj}_* \ \text{and} \ \mathrm{Feyn} \to \mathrm{Adj}_* \ (\mathsf{B}\text{-Kaufmann} \ '17).$
- $\operatorname{Top}_{slsc} \to \operatorname{Adj}_* : X \mapsto \operatorname{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.

A ccs satisfies Frobenius reciprocity (Lawvere '70) if and only if P-connected maps are stable under pullback along P-coverings.

- Sets $\to \mathrm{Adj}_* : X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- $\operatorname{Cat} \to \operatorname{Adj}_* : \mathcal{C} \mapsto \mathcal{PC} = [\mathcal{C}^{\operatorname{op}}, \operatorname{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters '73).
- PC restricts to
- $\exists \textit{ccs} \ \mathrm{Multicat} \to \mathrm{Adj}_* \ \mathsf{and} \ \mathrm{Feyn} \to \mathrm{Adj}_* \ (\mathsf{B}\text{-Kaufmann '17}).$
- $\operatorname{Top}_{slsc} \to \operatorname{Adj}_* : X \mapsto \operatorname{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.

A ccs satisfies Frobenius reciprocity (Lawvere '70) if and only if P-connected maps are stable under pullback along P-coverings.

- Sets $\to \mathrm{Adj}_* : X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- $\operatorname{Cat} \to \operatorname{Adj}_* : \mathcal{C} \mapsto \mathcal{PC} = [\mathcal{C}^{\operatorname{op}}, \operatorname{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters '73).
- *PC* restricts to Posets ⊂ Cat and Gpd ⊂ Cat (Bourn '87).
- $\exists ccs \ \mathrm{Multicat} \to \mathrm{Adj}_* \ \mathsf{and} \ \mathrm{Feyn} \to \mathrm{Adj}_* \ (\mathsf{B}\text{-Kaufmann '17}).$
- $\operatorname{Top}_{slsc} \to \operatorname{Adj}_* : X \mapsto \operatorname{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.

A *ccs* satisfies *Frobenius reciprocity* (Lawvere '70) if and only if *P*-connected maps are stable under pullback along *P*-coverings.

- Sets $\to \mathrm{Adj}_* : X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- $\operatorname{Cat} \to \operatorname{Adj}_* : \mathcal{C} \mapsto \mathcal{PC} = [\mathcal{C}^{\operatorname{op}}, \operatorname{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters '73).
- PC restricts to Posets \subset Cat and $Gpd \subset$ Cat (Bourn '87).
- $\exists \textit{ccs} \ \mathrm{Multicat} \to \mathrm{Adj}_* \ \mathsf{and} \ \mathrm{Feyn} \to \mathrm{Adj}_* \ (\mathsf{B}\text{-Kaufmann '17}).$
- $\operatorname{Top}_{slsc} \to \operatorname{Adj}_* : X \mapsto \operatorname{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.

A ccs satisfies Frobenius reciprocity (Lawvere '70) if and only if P-connected maps are stable under pullback along P-coverings.

- Sets $\to \mathrm{Adj}_* : X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- $\operatorname{Cat} \to \operatorname{Adj}_* : \mathcal{C} \mapsto \mathcal{PC} = [\mathcal{C}^{\operatorname{op}}, \operatorname{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters '73).
- PC restricts to Posets \subset Cat and $Gpd \subset$ Cat (Bourn '87).
- $\exists \textit{ccs} \ \mathrm{Multicat} \to \mathrm{Adj}_* \ \mathsf{and} \ \mathrm{Feyn} \to \mathrm{Adj}_* \ (\mathsf{B}\text{-Kaufmann '17}).$
- $\operatorname{Top}_{s/sc} \to \operatorname{Adj}_* : X \mapsto \operatorname{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.

A ccs satisfies Frobenius reciprocity (Lawvere '70) if and only if P-connected maps are stable under pullback along P-coverings.

- Sets $\to \mathrm{Adj}_* : X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- $\operatorname{Cat} \to \operatorname{Adj}_* : \mathcal{C} \mapsto \mathcal{PC} = [\mathcal{C}^{\operatorname{op}}, \operatorname{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters '73).
- PC restricts to Posets \subset Cat and $Gpd \subset$ Cat (Bourn '87).
- $\exists \textit{ccs} \ \mathrm{Multicat} \to \mathrm{Adj}_* \ \text{and} \ \mathrm{Feyn} \to \mathrm{Adj}_* \ (\mathsf{B}\text{-Kaufmann '17}).$
- $\operatorname{Top}_{s/sc} \to \operatorname{Adj}_* : X \mapsto \operatorname{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.

A ccs satisfies Frobenius reciprocity (Lawvere '70) if and only if P-connected maps are stable under pullback along P-coverings.

- Sets $\to \mathrm{Adj}_* : X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- $\operatorname{Cat} \to \operatorname{Adj}_* : \mathcal{C} \mapsto \mathcal{PC} = [\mathcal{C}^{\operatorname{op}}, \operatorname{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters '73).
- PC restricts to Posets \subset Cat and $Gpd \subset$ Cat (Bourn '87).
- $\exists \textit{ccs} \ \mathrm{Multicat} \to \mathrm{Adj}_* \ \text{and} \ \mathrm{Feyn} \to \mathrm{Adj}_* \ (\mathsf{B}\text{-Kaufmann} \ '17).$
- $\operatorname{Top}_{slsc} \to \operatorname{Adj}_* : X \mapsto \operatorname{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.

The equivalence $\mathrm{Sh}(X)\simeq\{\mathrm{local\ homeomorphisms}/X\}$ restricts to an equivalence $\mathrm{Sh}_{loc}(X)\simeq\{\mathrm{topological\ coverings}/X\}.$

Lawvere '70: ... we remark that although our discussion below of comprehension hinges on the operation Σ , there is one structure in which all features of hyperdoctrines except Σ exist ..., but in which there is clearly a kind of "extension", namely the espace étalé.

Proposition $(\mathit{f}_{!}$ for locally constant sheaves on slsc spaces)

For any slsc space, monodromy induces an equivalence of categories $\mathrm{Sh}_{loc}(X) \simeq \Pi_1(X)$ -sets. In particular for $f: X \to Y$,

$$\operatorname{Sh}_{loc}(X)$$
 $\xrightarrow{\exists f_i}$ $\operatorname{Sh}_{loc}(Y)$ \simeq $\downarrow \simeq$ $\Pi_1(X)\text{-sets} \xrightarrow{\Pi_1(f)_{\mathbb{I}}} \Pi_1(Y)\text{-sets}$

The equivalence $\mathrm{Sh}(X)\simeq\{\mathrm{local\ homeomorphisms}/X\}$ restricts to an equivalence $\mathrm{Sh}_{loc}(X)\simeq\{\mathrm{topological\ coverings}/X\}.$

Lawvere '70: ... we remark that although our discussion below of comprehension hinges on the operation Σ , there is one structure in which all features of hyperdoctrines except Σ exist ..., but in which there is clearly a kind of "extension", namely the espace étalé.

Proposition (f_1 for locally constant sheaves on slsc spaces) For any slsc space, monodromy induces an equivalence of

The equivalence $\mathrm{Sh}(X)\simeq\{\mathrm{local\ homeomorphisms}/X\}$ restricts to an equivalence $\mathrm{Sh}_{loc}(X)\simeq\{\mathrm{topological\ coverings}/X\}.$

Lawvere '70: ... we remark that although our discussion below of comprehension hinges on the operation Σ , there is one structure in which all features of hyperdoctrines except Σ exist ..., but in which there is clearly a kind of "extension", namely the espace étalé.

Proposition $(f_!$ for locally constant sheaves on slsc spaces)

For any slsc space, monodromy induces an equivalence of categories $\mathrm{Sh}_{loc}(X) \simeq \Pi_1(X)$ -sets. In particular for $f: X \to Y$,

$$\operatorname{Sh}_{loc}(X) \xrightarrow{\exists f_!} \operatorname{Sh}_{loc}(Y)$$

$$\simeq \downarrow \qquad \qquad \downarrow \simeq$$

$$\Pi_1(X)\operatorname{-sets} \xrightarrow{\Pi_1(f)_!} \Pi_1(Y)\operatorname{-sets}$$

The equivalence $\mathrm{Sh}(X)\simeq\{\mathrm{local\ homeomorphisms}/X\}$ restricts to an equivalence $\mathrm{Sh}_{loc}(X)\simeq\{\mathrm{topological\ coverings}/X\}.$

Lawvere '70: ... we remark that although our discussion below of comprehension hinges on the operation Σ , there is one structure in which all features of hyperdoctrines except Σ exist ..., but in which there is clearly a kind of "extension", namely the espace étalé.

Proposition $(f_!$ for locally constant sheaves on slsc spaces)

For any slsc space, monodromy induces an equivalence of categories $\mathrm{Sh}_{loc}(X)\simeq \Pi_1(X)\text{-sets}.$ In particular for $f:X\to Y$,

$$\operatorname{Sh}_{loc}(X) \xrightarrow{\exists f_!} \operatorname{Sh}_{loc}(Y)$$

$$\simeq \downarrow \qquad \qquad \downarrow \simeq$$

$$\Pi_1(X)\operatorname{-sets} \xrightarrow{\Pi_1(f)_!} \Pi_1(Y)\operatorname{-sets}$$

Proposition (homotopical characterisation of connected maps)

A map of slsc spaces $f: X \to Y$ is connected iff $\pi_0(f)$ is bijective and $\pi_1(f, x): \pi_1(X, x) \to \pi_1(Y, f(x))$ is surjective $\forall x \in X$.

Corollary (existence of universal coverings)

For any based slsc space (X, x) the comprehensive factorisation

$$\begin{array}{c|c} \mathcal{U}_{(X,x)} \\ \text{connected} & covering \\ \star & \times & X \end{array}$$

produces the *universal covering* of X at x.

Proposition (homotopical characterisation of connected maps)

A map of slsc spaces $f: X \to Y$ is connected iff $\pi_0(f)$ is bijective and $\pi_1(f, x) : \pi_1(X, x) \to \pi_1(Y, f(x))$ is surjective $\forall x \in X$.

Corollary (existence of universal coverings)

For any based slsc space (X, x) the comprehensive factorisation

$$\begin{array}{c|c} \mathcal{U}_{(X,x)} \\ \text{connected} & covering \\ \star & \times X \end{array}$$

produces the universal covering of X at x.

Proposition (homotopical characterisation of connected maps)

A map of slsc spaces $f: X \to Y$ is connected iff $\pi_0(f)$ is bijective and $\pi_1(f, x) : \pi_1(X, x) \to \pi_1(Y, f(x))$ is surjective $\forall x \in X$.

Corollary (existence of universal coverings)

For any based slsc space (X,x) the comprehensive factorisation

produces the universal covering of X at x.

A band (=idempotent semigroup) is a set (X, \cdot) with an associative multiplication such that $x^2 = x$ for all $x \in X$.

Lemma (meet-semilattices)

Commutative bands are the same as posets with binary meets.

Lemma (Green's \mathcal{D} -relation)

Each band is partially ordered by $x \leq y \stackrel{dfn}{\iff} x = yxy$. The commutative bands form a reflective subcategory. The reflection is given by $X \to X/\mathcal{D}$ where $x\mathcal{D}y \stackrel{dfn}{\iff} x = xyx$ and y = yxy.

Definition

A band (=idempotent semigroup) is a set (X, \cdot) with an associative multiplication such that $x^2 = x$ for all $x \in X$.

Lemma (meet-semilattices)

Commutative bands are the same as posets with binary meets.

$\mathsf{Lemma}\;(\mathsf{Green's}\;\mathcal{D} ext{-relation})$

Each band is partially ordered by $x \le y \stackrel{dfn}{\iff} x = yxy$. The commutative bands form a reflective subcategory. The reflection is given by $X \to X/\mathcal{D}$ where $x\mathcal{D}y \stackrel{dfn}{\iff} x = xyx$ and y = yxy.

Definition

A band (=idempotent semigroup) is a set (X, \cdot) with an associative multiplication such that $x^2 = x$ for all $x \in X$.

Lemma (meet-semilattices)

Commutative bands are the same as posets with binary meets.

$\mathsf{Lemma}\;(\mathsf{Green's}\;\mathcal{D} ext{-relation})$

Each band is partially ordered by $x \leq y \iff x = yxy$. The commutative bands form a reflective subcategory. The reflection is given by $X \to X/\mathcal{D}$ where $x\mathcal{D}y \iff x = xyx$ and y = yxy.

Definition

A band (=idempotent semigroup) is a set (X, \cdot) with an associative multiplication such that $x^2 = x$ for all $x \in X$.

Lemma (meet-semilattices)

Commutative bands are the same as posets with binary meets.

Lemma (Green's \mathcal{D} -relation)

Each band is partially ordered by $x \leq y \iff x = yxy$. The commutative bands form a reflective subcategory. The reflection is given by $X \to X/\mathcal{D}$ where $x\mathcal{D}y \iff x = xyx$ and y = yxy.

A band is *left* (resp. *right*) *regular* if xy = xyx (resp. yx = xyx).

Proposition (B-Gehrke '18)

The category of right regular bands admits a comprehensive factorisation system lifted along the functor $(X, \cdot) \mapsto (X, \leq)$.

Lemma (discrete objects)

- (X, \leq) is order-discrete;
- (X, \cdot) is a right zero band (i.e. yx = x)
- the terminal map $X \to \star_{RRR}$ is a covering

A band is *left* (resp. *right*) *regular* if xy = xyx (resp. yx = xyx).

Proposition (B-Gehrke '18)

The category of right regular bands admits a comprehensive factorisation system lifted along the functor $(X, \cdot) \mapsto (X, \leq)$.

Lemma (discrete objects)

- (X,≤) is order-discrete;
- (X, \cdot) is a right zero band (i.e. yx = x);
- the terminal map $X \to \star_{RRB}$ is a covering

A band is *left* (resp. *right*) *regular* if xy = xyx (resp. yx = xyx).

Proposition (B-Gehrke '18)

The category of right regular bands admits a comprehensive factorisation system lifted along the functor $(X, \cdot) \mapsto (X, \leq)$.

Lemma (discrete objects)

- (X, \leq) is order-discrete;
- (X, \cdot) is a right zero band (i.e. yx = x);
- the terminal map $X \to \star_{RRB}$ is a covering

A band is *left* (resp. *right*) *regular* if xy = xyx (resp. yx = xyx).

Proposition (B-Gehrke '18)

The category of right regular bands admits a comprehensive factorisation system lifted along the functor $(X, \cdot) \mapsto (X, \leq)$.

Lemma (discrete objects)

- (X, \leq) is order-discrete;
- (X, \cdot) is a right zero band (i.e. yx = x);
- the terminal map $X \to \star_{RRB}$ is a covering.

A band is *left* (resp. *right*) *regular* if xy = xyx (resp. yx = xyx).

Proposition (B-Gehrke '18)

The category of right regular bands admits a comprehensive factorisation system lifted along the functor $(X, \cdot) \mapsto (X, \leq)$.

Lemma (discrete objects)

- (X, \leq) is order-discrete;
- (X, \cdot) is a right zero band (i.e. yx = x);
- the terminal map $X \to \star_{RRB}$ is a covering

A band is *left* (resp. *right*) *regular* if xy = xyx (resp. yx = xyx).

Proposition (B-Gehrke '18)

The category of right regular bands admits a comprehensive factorisation system lifted along the functor $(X, \cdot) \mapsto (X, \leq)$.

Lemma (discrete objects)

- (X, \leq) is order-discrete;
- (X, \cdot) is a right zero band (i.e. yx = x);
- the terminal map $X \to \star_{RRB}$ is a covering.

A right regular band is right normal (i.e. xyz = yxz) if and only if the semilattice reflection $X \to X/\mathcal{D}$ is a covering.

Definition

A band X is called right distributive if

- (i) X is right normal;
- (ii) X/\mathcal{D} is a (bounded) distributive lattice;
- (iii) for any finite subset S of X consisting of pairwise commuting elements the join $\bigvee S$ in (X, \leq) exists.

Example (the local sections of a sheaf form a distributive band)

We define $(U, \sigma)(V, \tau) = (U \cap V, \tau)^V_{U \cap V}$. Local sections commute iff they glue. $(U, \sigma) \leq (V, \tau)$ iff $U \subset V$ and $\sigma = \tau_{|U|}$. (iii) expresses sheaf condition w/to finite open covers.

A right regular band is right normal (i.e. xyz = yxz) if and only if the semilattice reflection $X \to X/\mathcal{D}$ is a covering.

Definition

A band X is called right distributive if

- (i) X is right normal;
- (ii) X/\mathcal{D} is a (bounded) distributive lattice;
- (iii) for any finite subset S of X consisting of pairwise commuting elements the join $\bigvee S$ in (X, \leq) exists.

Example (the local sections of a sheaf form a distributive band

We define $(U, \sigma)(V, \tau) = (U \cap V, \tau)_{U \cap V}^V$. Local sections commute iff they glue. $(U, \sigma) \leq (V, \tau)$ iff $U \subset V$ and $\sigma = \tau_{|U|}$. (iii) expresses sheaf condition w/to *finite* open covers.

A right regular band is right normal (i.e. xyz = yxz) if and only if the semilattice reflection $X \to X/\mathcal{D}$ is a covering.

Definition

A band X is called right distributive if

- (i) X is right normal;
- (ii) X/\mathcal{D} is a (bounded) distributive lattice;
- (iii) for any finite subset S of X consisting of pairwise commuting elements the join $\bigvee S$ in (X, \leq) exists.

Example (the local sections of a sheaf form a distributive band)

We define $(U, \sigma)(V, \tau) = (U \cap V, \tau)_{U \cap V}^V$. Local sections commute iff they glue. $(U, \sigma) \leq (V, \tau)$ iff $U \subset V$ and $\sigma = \tau_{|U|}$ (iii) expresses sheaf condition w/to *finite* open covers.

A right regular band is right normal (i.e. xyz = yxz) if and only if the semilattice reflection $X \to X/\mathcal{D}$ is a covering.

Definition

A band X is called right distributive if

- (i) X is right normal;
- (ii) X/\mathcal{D} is a (bounded) distributive lattice;
- (iii) for any finite subset S of X consisting of pairwise commuting elements the join $\bigvee S$ in (X, \leq) exists.

Example (the local sections of a sheaf form a distributive band)

We define $(U, \sigma)(V, \tau) = (U \cap V, \tau)_{U \cap V}^V$. Local sections commute iff they glue. $(U, \sigma) \leq (V, \tau)$ iff $U \subset V$ and $\sigma = \tau_{|U}$.

A right regular band is right normal (i.e. xyz = yxz) if and only if the semilattice reflection $X \to X/\mathcal{D}$ is a covering.

Definition

A band X is called right distributive if

- (i) X is right normal;
- (ii) X/\mathcal{D} is a (bounded) distributive lattice;
- (iii) for any finite subset S of X consisting of pairwise commuting elements the join $\bigvee S$ in (X, \leq) exists.

Example (the local sections of a sheaf form a distributive band)

We define $(U, \sigma)(V, \tau) = (U \cap V, \tau)_{U \cap V}^V$. Local sections commute iff they glue. $(U, \sigma) \leq (V, \tau)$ iff $U \subset V$ and $\sigma = \tau_{|U}$.

(iii) expresses sheat condition w/to finite open covers

A right regular band is right normal (i.e. xyz = yxz) if and only if the semilattice reflection $X \to X/\mathcal{D}$ is a covering.

Definition

A band X is called right distributive if

- (i) X is right normal;
- (ii) X/\mathcal{D} is a (bounded) distributive lattice;
- (iii) for any finite subset S of X consisting of pairwise commuting elements the join $\bigvee S$ in (X, \leq) exists.

Example (the local sections of a sheaf form a distributive band)

We define $(U,\sigma)(V,\tau)=(U\cap V,\tau)^V_{U\cap V}$. Local sections commute iff they glue. $(U,\sigma)\leq (V,\tau)$ iff $U\subset V$ and $\sigma=\tau_{|U}$. (iii) expresses sheaf condition w/to *finite* open covers.

A skew lattice (S, λ, Υ) consists of two bands (S, λ) and (S, Υ) such that the following four absorption laws hold:

- (i) $(y \downarrow x) \uparrow x = x = x \downarrow (x \uparrow y)$;
- (ii) $x \curlyvee (x \curlywedge y) = x = (y \curlyvee x) \curlywedge x$.

Remark (lattice reflection)

The order relation of (S, λ) is *dual* to the order relation of (S, γ) . Green's \mathcal{D} -relation yields a lattice S/\mathcal{D} , the *lattice reflection* of S. (S, λ) is right regular iff (S, γ) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is *symmetric* if $x \downarrow y = y \downarrow x \iff x \uparrow y = y \uparrow x$.

A skew-lattice is *right distributive* if it is symmetric, right normal and its lattice reflection is distributive.

A skew lattice $(S, \curlywedge, \curlyvee)$ consists of two bands (S, \curlywedge) and (S, \curlyvee) such that the following four absorption laws hold:

- (i) $(y \downarrow x) \uparrow x = x = x \downarrow (x \uparrow y)$;
- (ii) $x \lor (x \lor y) = x = (y \lor x) \lor x$.

Remark (lattice reflection)

The order relation of (S, λ) is *dual* to the order relation of (S, Υ) . Green's \mathcal{D} -relation yields a lattice S/\mathcal{D} , the *lattice reflection* of S. (S, λ) is right regular iff (S, Υ) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is *symmetric* if $x \perp y = y \perp x \iff x \vee y = y \vee x$ A skew-lattice is *right distributive* if it is symmetric, right normal and its lattice reflection is distributive.

A skew lattice $(S, \curlywedge, \curlyvee)$ consists of two bands (S, \curlywedge) and (S, \curlyvee) such that the following four absorption laws hold:

- (i) $(y \downarrow x) \uparrow x = x = x \downarrow (x \uparrow y)$;
- (ii) $x \curlyvee (x \curlywedge y) = x = (y \curlyvee x) \curlywedge x$.

Remark (lattice reflection)

The order relation of (S, λ) is *dual* to the order relation of (S, Υ) . Green's \mathcal{D} -relation yields a lattice S/\mathcal{D} , the *lattice reflection* of S. (S, λ) is right regular iff (S, Υ) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is *symmetric* if $x \perp y = y \perp x \iff x \vee y = y \vee x$ A skew-lattice is *right distributive* if it is symmetric, right normal and its lattice reflection is distributive.

A skew lattice $(S, \curlywedge, \curlyvee)$ consists of two bands (S, \curlywedge) and (S, \curlyvee) such that the following four absorption laws hold:

- (i) $(y \downarrow x) \uparrow x = x = x \downarrow (x \uparrow y)$;
- (ii) $x \lor (x \lor y) = x = (y \lor x) \lor x$.

Remark (lattice reflection)

The order relation of (S, \bot) is *dual* to the order relation of (S, \curlyvee) . Green's \mathcal{D} -relation yields a lattice S/\mathcal{D} , the *lattice reflection* of S. (S, \bot) is right regular iff (S, \curlyvee) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is *symmetric* if $x \land y = y \land x \iff x \land y = y \land x$. A skew-lattice is *right distributive* if it is symmetric, right normal and its lattice reflection is distributive.

A skew lattice $(S, \curlywedge, \curlyvee)$ consists of two bands (S, \curlywedge) and (S, \curlyvee) such that the following four absorption laws hold:

- (i) $(y \downarrow x) \uparrow x = x = x \downarrow (x \uparrow y)$;
- (ii) $x \curlyvee (x \curlywedge y) = x = (y \curlyvee x) \curlywedge x$.

Remark (lattice reflection)

The order relation of (S, \bot) is *dual* to the order relation of (S, \curlyvee) . Green's \mathcal{D} -relation yields a lattice S/\mathcal{D} , the *lattice reflection* of S. (S, \bot) is right regular iff (S, \curlyvee) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is *symmetric* if $x \downarrow y = y \downarrow x \iff x \land y = y \land x$.

A skew-lattice is *right distributive* if it is symmetric, right norma and its lattice reflection is distributive.

A skew lattice $(S, \curlywedge, \curlyvee)$ consists of two bands (S, \curlywedge) and (S, \curlyvee) such that the following four absorption laws hold:

- (i) $(y \downarrow x) \uparrow x = x = x \downarrow (x \uparrow y)$;
- (ii) $x \lor (x \lor y) = x = (y \lor x) \lor x$.

Remark (lattice reflection)

The order relation of (S, λ) is *dual* to the order relation of (S, Υ) . Green's \mathcal{D} -relation yields a lattice S/\mathcal{D} , the *lattice reflection* of S. (S, λ) is right regular iff (S, Υ) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is *symmetric* if $x \downarrow y = y \downarrow x \iff x \curlyvee y = y \curlyvee x$. A skew-lattice is *right distributive* if it is symmetric, right normal and its lattice reflection is distributive.

Theorem (Stone '37)

There is a duality between the category of distributive lattices and the category of spectral spaces.

Theorem (B-Gehrke '18)

There is a duality between the category of right distributive bands and the category of sheaves over spectral spaces.

Theorem (Bauer, Cvetko-Vah, Gehrke, van Gool, Kudryatseva '13)

There is a duality between the category of right distributive skew-lattices and the category of sheaves over Priestley spaces.

Theorem (Stone '37)

There is a duality between the category of distributive lattices and the category of spectral spaces.

Theorem (B-Gehrke '18)

There is a duality between the category of right distributive bands and the category of sheaves over spectral spaces.

Theorem (Bauer, Cvetko-Vah, Gehrke, van Gool, Kudryatseva '13)

There is a duality between the category of right distributive skew-lattices and the category of sheaves over Priestley spaces.

Theorem (Stone '37)

There is a duality between the category of distributive lattices and the category of spectral spaces.

Theorem (B-Gehrke '18)

There is a duality between the category of right distributive bands and the category of sheaves over spectral spaces.

Theorem (Bauer, Cvetko-Vah, Gehrke, van Gool, Kudryatseva '13)

There is a duality between the category of right distributive skew-lattices and the category of sheaves over Priestley spaces.