Comprehensive factorisation & non-commutative Stone duality

Clemens Berger1

University of Nice (France)

CT 2018 in Açores
July 10, 2018

1 joint with Mai Gehrke and Ralph Kaufmann
1 Introduction

2 Consistent comprehension schemes

3 Comprehensive factorisations

4 Distributive bands and distributive skew-lattices

5 Non-commutative Stone duality
Examples (notions of covering)

- topological covering $\X \rightsquigarrow \Pi_1(X)$-set
- discrete fibration $\C \rightsquigarrow$ set-valued presheaf on \C

Purpose of the talk

- general notion of covering & associated factorisation system using Lawvere's comprehension schemes '70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality '37.
Examples (notions of covering)

- topological covering/$X \leftrightarrow \Pi_1(X)$-set
- discrete fibration/$\mathcal{C} \leftrightarrow$ set-valued presheaf on \mathcal{C}

Purpose of the talk

- general notion of covering & associated factorisation system using Lawvere’s comprehension schemes ’70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality ’37.
Comprehensive factorisation & non-commutative Stone duality

Introduction

Examples (notions of covering)
- topological covering/$\pi_1(X)$-set
- discrete fibration/\mathcal{C}-set-valued presheaf on \mathcal{C}

Purpose of the talk
- general notion of covering & associated factorisation system using Lawvere's comprehension schemes '70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality '37.
Examples (notions of covering)

- topological covering/$X \iff \Pi_1(X)$-set
- discrete fibration/$C \iff$ set-valued presheaf on C

Purpose of the talk

- general notion of covering & associated factorisation system using Lawvere's comprehension schemes '70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality '37.
Examples (notions of covering)

- topological covering $\xrightarrow{\sim} \Pi_1(X)$-set
- discrete fibration $\xrightarrow{\sim} \text{set-valued presheaf on } C$

Purpose of the talk

- general notion of covering & associated factorisation system using Lawvere’s comprehension schemes ’70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality ’37.
Examples (notions of covering)

- topological covering/\(X\) \(\leftrightarrow\) \(\Pi_1(X)\)-set
- discrete fibration/\(C\) \(\leftrightarrow\) set-valued presheaf on \(C\)

Purpose of the talk

- general notion of covering & associated factorisation system using Lawvere’s comprehension schemes ’70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality ’37.
Examples (notions of covering)

- topological covering $/X \leftrightarrow \Pi_1(X)$-set
- discrete fibration $/C \leftrightarrow$ set-valued presheaf on C

Purpose of the talk

- general notion of covering & associated factorisation system using Lawvere’s comprehension schemes ’70.
- apply to idempotent semigroups to get non-commutative versions of Stone duality ’37.
Definition (category of adjunctions)

Objects of Adj_* are categories with a distinguished terminal object. Morphisms of Adj_* are adjunctions $(f_!, f^*)$.

Definition (comprehension scheme)

A *comprehension scheme* on \mathcal{E} is a pseudo-functor $P : \mathcal{E} \to \text{Adj}_*$ such that for each object B of \mathcal{E} the functor

$$
\begin{array}{ccc}
\mathcal{E}/B & \longrightarrow & PB \\
(f : A \to B) & \longmapsto & f_!(\star_{PA})
\end{array}
$$

has a *fully faithful* right adjoint $e_{\downarrow B} : PB \to \mathcal{E}/B$.
Definition (category of adjunctions)

objects of \(\text{Adj}_* \) are categories with a distinguished terminal object
morphisms of \(\text{Adj}_* \) are adjunctions \((f_!, f^*)\).

Definition (comprehension scheme)

A *comprehension scheme* on \(\mathcal{E} \) is a pseudo-functor \(P : \mathcal{E} \to \text{Adj}_* \)
such that for each object \(B \) of \(\mathcal{E} \) the functor

\[
\begin{array}{c}
\mathcal{E}/B \\
\downarrow
\end{array}
\xrightarrow{\downarrow}
\begin{array}{c}
P B \\
\end{array}
\]

\((f : A \to B) \xmapsto{\downarrow} f_!(\star_{PA}) \)

has a *fully faithful* right adjoint \(e_B : PB \to \mathcal{E}/B \).
Definition

- A morphism $f : A \to B$ is a P-covering if it belongs to the essential image of $e|_B$.
- A comprehension scheme is consistent if P-coverings compose and are left cancellable: $gf, g \in \text{Cov}_B \implies f \in \text{Cov}_B$.
- A morphism $f : A \to B$ is P-connected if $f_!(\star_{PA}) \cong \star_{PB}$.

Theorem (B-Kaufmann ’17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

Proof.

- ccs induces $(P$-connected, P-covering)-factorisation.
- $(\mathcal{L}, \mathcal{R})$-factorisation induces ccs with $e|_B = \mathcal{R}/B$.
Definition

- A morphism \(f : A \to B \) is a \(P \)-covering if it belongs to the essential image of \(e|_B \).
- A comprehension scheme is consistent if \(P \)-coverings compose and are left cancellable: \(gf, g \in Cov_B \implies f \in Cov_B \).
- A morphism \(f : A \to B \) is \(P \)-connected if \(f_!(*_{PA}) \cong *_{PB} \).

Theorem (B-Kaufmann ’17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

Proof.

- \(ccs \) induces \((P \text{-connected}, P \text{-covering})\)-factorisation.
- \((\mathcal{L}, \mathcal{R})\)-factorisation induces \(ccs \) with \(e|_B = \mathcal{R}/B \).
Definition

- A morphism \(f : A \to B \) is a \(P \)-covering if it belongs to the essential image of \(e \mathcal{B} \).
- A comprehension scheme is consistent if \(P \)-coverings compose and are left cancellable: \(gf, g \in \text{Cov}_B \implies f \in \text{Cov}_B \).
- A morphism \(f : A \to B \) is \(P \)-connected if \(f_!(\star_{PA}) \cong \star_{PB} \).

Theorem (B-Kaufmann ’17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

Proof.

- \(\text{ccs} \) induces \((P \text{-connected, } P \text{-covering}) \)-factorisation.
- \((\mathcal{L}, \mathcal{R}) \)-factorisation induces \(\text{ccs} \) with \(e \mathcal{B} = \mathcal{R}/\mathcal{B} \).
Definition

- A morphism \(f : A \to B \) is a \(P \)-covering if it belongs to the essential image of \(\text{el}_B \).
- A comprehension scheme is consistent if \(P \)-coverings compose and are left cancellable: \(gf, g \in \text{Cov}_B \implies f \in \text{Cov}_B \).
- A morphism \(f : A \to B \) is \(P \)-connected if \(f_!(\star_{PA}) \cong \star_{PB} \).

Theorem (B-Kaufmann ’17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

Proof.

- \(\text{ccs} \) induces \((P \text{-connected}, P \text{-covering})\)-factorisation.
- \((\mathcal{L}, \mathcal{R})\)-factorisation induces \(\text{ccs} \) with \(\text{el}_B = \mathcal{R}/B \).
Definition

- A morphism \(f : A \to B \) is a *P-covering* if it belongs to the essential image of \(\text{el}_B \).
- A comprehension scheme is *consistent* if \(P \)-coverings compose and are *left cancellable*: \(gf, g \in \text{Cov}_B \implies f \in \text{Cov}_B \).
- A morphism \(f : A \to B \) is *\(P \)-connected* if \(f! (\star_{PA}) \simeq \star_{PB} \).

Theorem (B-Kaufmann ’17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

Proof.

- \(\text{ccs} \) induces \((P\text{-connected, } P\text{-covering})\)-factorisation.
- \((\mathcal{L}, \mathcal{R})\)-factorisation induces \(\text{ccs} \) with \(\text{el}_B = \mathcal{R}/B \).
Definition

- A morphism $f : A \to B$ is a **P-covering** if it belongs to the essential image of el_B.
- A comprehension scheme is **consistent** if P-coverings compose and are **left cancellable**: $gf, g \in \text{Cov}_B \implies f \in \text{Cov}_B$.
- A morphism $f : A \to B$ is **P-connected** if $f_!(\ast_{PA}) \cong \ast_{PB}$.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

Proof.

- ccs induces $(P$-connected, P-covering)-factorisation.
- $(\mathcal{L}, \mathcal{R})$-factorisation induces ccs with $\text{el}_B = \mathcal{R}/B$.
Definition

- A morphism \(f : A \to B \) is a \(P \)-covering if it belongs to the essential image of \(e_1 B \).
- A comprehension scheme is consistent if \(P \)-coverings compose and are left cancellable: \(gf, g \in \text{Cov}_B \implies f \in \text{Cov}_B \).
- A morphism \(f : A \to B \) is \(P \)-connected if \(f_!(\star_{PA}) \cong \star_{PB} \).

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

Proof.

- \(ccs \) induces \((P \)-connected, \(P \)-covering)-factorisation.
- \((L, R) \)-factorisation induces \(ccs \) with \(e_1 B = R/B \).
Definition

- A morphism $f : A \rightarrow B$ is a P-covering if it belongs to the essential image of el_B.
- A comprehension scheme is consistent if P-coverings compose and are left cancellable: $gf, g \in \text{Cov}_B \implies f \in \text{Cov}_B$.
- A morphism $f : A \rightarrow B$ is P-connected if $f_!(\star PA) \cong \star PB$.

Theorem (B-Kaufmann '17)

There is a 1-1 correspondence between consistent comprehension schemes and complete orthogonal factorisation systems.

Proof.

- ccs induces (P-connected, P-covering)-factorisation.
- $(\mathcal{L}, \mathcal{R})$-factorisation induces ccs with $\text{el}_B = \mathcal{R}/B$.
Remark (Frobenius)

A ccs satisfies Frobenius reciprocity (Lawvere ’70) if and only if P-connected maps are stable under pullback along P-coverings.

Examples (comprehensive factorisation systems)

- $\text{Sets} \to \text{Adj} : X \mapsto (P_X, \subset)$ induces epi/mono-factorisation.
- $\text{Cat} \to \text{Adj} : C \mapsto PC = [C^{\text{op}}, \text{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters ’73).
- PC restricts to $\text{Posets} \subset \text{Cat}$ and $\text{Gpd} \subset \text{Cat}$ (Bourn ’87).
- \exists ccs $\text{Multicat} \to \text{Adj}$ and $\text{Feyn} \to \text{Adj}$ (B-Kaufmann ’17).
- $\text{Top}_{slsc} \to \text{Adj} : X \mapsto \text{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.
Remark (Frobenius)

A ccs satisfies *Frobenius reciprocity* (Lawvere ’70) if and only if P-connected maps are stable under pullback along P-coverings.

Examples (comprehensive factorisation systems)

- $\text{Sets} \to \text{Adj}^\ast : X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- $\text{Cat} \to \text{Adj}^\ast : \mathcal{C} \mapsto \mathcal{P}\mathcal{C} = [\mathcal{C}^{\text{op}}, \text{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters ’73).
- $\mathcal{P}\mathcal{C}$ restricts to $\text{Posets} \subset \text{Cat}$ and $\text{Gpd} \subset \text{Cat}$ (Bourn ’87).
- \exists ccs Multicat $\to \text{Adj}^\ast$ and Feyn $\to \text{Adj}^\ast$ (B-Kaufmann ’17).
- $\text{Top}_{\text{slsc}} \to \text{Adj}^\ast : X \mapsto \text{Sh}_{\text{loc}}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.
Remarks (Frobenius)

A ccs satisfies *Frobenius reciprocity* (Lawvere ’70) if and only if P-connected maps are stable under pullback along P-coverings.

Examples (comprehensive factorisation systems)

- **Sets** → $\text{Adj} _*$: $X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- **Cat** → $\text{Adj} _*$: $C \mapsto \mathcal{P}C = [\mathcal{C}^{\text{op}}, \text{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters ’73).
- $\mathcal{P}C$ restricts to $\text{Posets} \subset \text{Cat}$ and $\text{Gpd} \subset \text{Cat}$ (Bourn ’87).
- \exists ccs Multicat → $\text{Adj} _*$ and Feyn → $\text{Adj} _*$ (B-Kaufmann ’17).
- Top_{slsc} → $\text{Adj} _*$: $X \mapsto \text{Sh}_{\text{loc}}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.
Remark (Frobenius)

A ccs satisfies *Frobenius reciprocity* (Lawvere ’70) if and only if P-connected maps are stable under pullback along P-coverings.

Examples (comprehensive factorisation systems)

- **Sets** → **Adj**$_* : X \mapsto (\mathcal{P}X, \subseteq)$ induces epi/mono-factorisation.
- **Cat** → **Adj**$_* : \mathcal{C} \mapsto \mathcal{P}\mathcal{C} = [\mathcal{C}^{op}, \text{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters ’73).
- PC restricts to **Posets** ⊂ **Cat** and **Gpd** ⊂ **Cat** (Bourn ’87).
- ∃ccs Multicat → **Adj**$_*$ and Feyn → **Adj**$_*$ (B-Kaufmann ’17).
- **Top**$_{slsc}$ → **Adj**$_* : X \mapsto \text{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.
Remark (Frobenius)

A ccs satisfies *Frobenius reciprocity* (Lawvere ’70) if and only if P-connected maps are stable under pullback along P-coverings.

Examples (comprehensive factorisation systems)

- $\text{Sets} \to \text{Adj}^*: X \mapsto (\mathcal{P} X, \subset)$ induces epi/mono-factorisation.
- $\text{Cat} \to \text{Adj}^*: C \mapsto \mathcal{P} C = [\text{C}^{\text{op}}, \text{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters ’73).
- $\mathcal{P} C$ restricts to $\text{Posets} \subset \text{Cat}$ and $\text{Gpd} \subset \text{Cat}$ (Bourn ’87).
- \exists ccs $\text{Multicat} \to \text{Adj}^*$ and $\text{Feyn} \to \text{Adj}^*$ (B-Kaufmann ’17).
- $\text{Top}_{s\text{ls}c} \to \text{Adj}^*: X \mapsto \text{Sh}_{\text{loc}}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.
Remark (Frobenius)

A ccs satisfies *Frobenius reciprocity* (Lawvere ’70) if and only if P-connected maps are stable under pullback along P-coverings.

Examples (comprehensive factorisation systems)

- $\text{Sets} \to \text{Adj}_*: X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- $\text{Cat} \to \text{Adj}_*: C \mapsto PC = [C^{\text{op}}, \text{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters ’73).
- PC restricts to $\text{Posets} \subseteq \text{Cat}$ and $\text{Gpd} \subseteq \text{Cat}$ (Bourn ’87).
- \exists ccs $\text{Multicat} \to \text{Adj}_*$ and $\text{Feyn} \to \text{Adj}_*$ (B-Kaufmann ’17).
- $\text{Top}_{slsc} \to \text{Adj}_*: X \mapsto \text{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.
Remark (Frobenius)

A ccs satisfies \textit{Frobenius reciprocity} (Lawvere ’70) if and only if \(P \)-connected maps are stable under pullback along \(P \)-coverings.

Examples (comprehensive factorisation systems)

- \(\text{Sets} \rightarrow \text{Adj}^* : X \mapsto (\mathcal{P}X, \subset) \) induces epi/mono-factorisation.
- \(\text{Cat} \rightarrow \text{Adj}^* : C \mapsto PC = [C^{\text{op}}, \text{Sets}] \) induces the comprehensive factorisation of a functor (Street-Walters ’73).
- \(PC \) restricts to \(\text{Posets} \subset \text{Cat} \) and \(\text{Gpd} \subset \text{Cat} \) (Bourn ’87).
- \(\exists \text{ccs Multicat} \rightarrow \text{Adj}^* \) and \(\text{Feyn} \rightarrow \text{Adj}^* \) (B-Kaufmann ’17).
- \(\text{Top}_{slsc} \rightarrow \text{Adj}^* : X \mapsto \text{Sh}_{loc}(X) \) yields a comprehensive factorisation of a continuous map of slsc spaces.
Remark (Frobenius)

A ccs satisfies *Frobenius reciprocity* (Lawvere ’70) if and only if P-connected maps are stable under pullback along P-coverings.

Examples (comprehensive factorisation systems)

- $\text{Sets} \rightarrow \text{Adj}_*: X \mapsto (PX, \subset)$ induces epi/mono-factorisation.
- $\text{Cat} \rightarrow \text{Adj}_*: C \mapsto PC = [C^{\text{op}}, \text{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters ’73).
- PC restricts to $\text{Posets} \subset \text{Cat}$ and $\text{Gpd} \subset \text{Cat}$ (Bourn ’87).
- \exists ccs $\text{Multicat} \rightarrow \text{Adj}_*$ and $\text{Feyn} \rightarrow \text{Adj}_*$ (B-Kaufmann ’17).
- $\text{Top}_{\text{sllsc}} \rightarrow \text{Adj}_*: X \mapsto \text{Sh}_{\text{loc}}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.
Remark (Frobenius)

A *ccs* satisfies *Frobenius reciprocity* (Lawvere ’70) if and only if *P*-connected maps are stable under pullback along *P*-coverings.

Examples (comprehensive factorisation systems)

- **Sets** → Adj*: $X \mapsto (\mathcal{P}X, \subset)$ induces epi/mono-factorisation.
- **Cat** → Adj*: $C \mapsto PC = [C^{\text{op}}, \text{Sets}]$ induces the comprehensive factorisation of a functor (Street-Walters ’73).
- PC restricts to Posets \subset Cat and Gpd \subset Cat (Bourn ’87).
- $\exists ccs$ Multicat → Adj* and Feyn → Adj* (B-Kaufmann ’17).
- **Top* *slsc** → Adj*: $X \mapsto \text{Sh}_{loc}(X)$ yields a comprehensive factorisation of a continuous map of slsc spaces.
Remark (espace étalé)

The equivalence $\mathsf{Sh}(X) \simeq \{\text{local homeomorphisms}/X\}$ restricts to an equivalence $\mathsf{Sh}_{loc}(X) \simeq \{\text{topological coverings}/X\}$.

Lawvere '70: ... we remark that although our discussion below of comprehension hinges on the operation Σ, there is one structure in which all features of hyperdoctrines except Σ exist ..., but in which there is clearly a kind of “extension”, namely the espace étalé.

Proposition ($f!$ for locally constant sheaves on slsc spaces)

For any slsc space, monodromy induces an equivalence of categories $\mathsf{Sh}_{loc}(X) \simeq \Pi_1(X)$-sets. In particular for $f : X \to Y$,

\[
\begin{array}{c}
\mathsf{Sh}_{loc}(X) \xrightarrow{f!} \mathsf{Sh}_{loc}(Y) \\
\simeq \\
\downarrow \\
\Pi_1(X)\text{-sets} \xrightarrow{\Pi_1(f)_!} \Pi_1(Y)\text{-sets}
\end{array}
\]
Remark (espace étalé)

The equivalence $\mathsf{Sh}(X) \simeq \{\text{local homeomorphisms}/X\}$ restricts to an equivalence $\mathsf{Sh}_{loc}(X) \simeq \{\text{topological coverings}/X\}$.

Lawvere '70: ... we remark that although our discussion below of comprehension hinges on the operation Σ, there is one structure in which all features of hyperdoctrines except Σ exist ..., but in which there is clearly a kind of “extension”, namely the espace étalé.

Proposition ($f!$ for locally constant sheaves on slsc spaces)

For any slsc space, monodromy induces an equivalence of categories $\mathsf{Sh}_{loc}(X) \simeq \Pi_1(X)$-sets. In particular for $f : X \to Y$,

$$
\begin{align*}
\mathsf{Sh}_{loc}(X) & \xrightarrow{\exists f!} \mathsf{Sh}_{loc}(Y) \\
\simeq & \downarrow \simeq \\
\Pi_1(X)\text{-sets} & \xrightarrow{\Pi_1(f)!} \Pi_1(Y)\text{-sets}
\end{align*}
$$
Remark (espace étalé)

The equivalence $\text{Sh}(X) \simeq \{\text{local homeomorphisms}/X\}$ restricts to an equivalence $\text{Sh}_{loc}(X) \simeq \{\text{topological coverings}/X\}$.

Lawvere '70: ... we remark that although our discussion below of comprehension hinges on the operation Σ, there is one structure in which all features of hyperdoctrines except Σ exist ..., but in which there is clearly a kind of “extension”, namely the espace étalé.

Proposition ($f_!$ for locally constant sheaves on slsc spaces)

For any slsc space, monodromy induces an equivalence of categories $\text{Sh}_{loc}(X) \simeq \Pi_1(X)$-sets. In particular for $f : X \to Y$,

$$\begin{align*}
\text{Sh}_{loc}(X) & \xrightarrow{\exists f_!} \text{Sh}_{loc}(Y) \\
\simeq & \downarrow \simeq \\
\Pi_1(X)\text{-sets} & \xrightarrow{\Pi_1(f)_!} \Pi_1(Y)\text{-sets}
\end{align*}$$
Remark (espace étalé)

The equivalence $\text{Sh}(X) \simeq \{\text{local homeomorphisms}/X\}$ restricts to an equivalence $\text{Sh}_{loc}(X) \simeq \{\text{topological coverings}/X\}$.

Lawvere '70: ... we remark that although our discussion below of comprehension hinges on the operation Σ, there is one structure in which all features of hyperdoctrines except Σ exist ..., but in which there is clearly a kind of “extension”, namely the espace étalé.

Proposition ($f_!$ for locally constant sheaves on slsc spaces)

For any slsc space, monodromy induces an equivalence of categories $\text{Sh}_{loc}(X) \simeq \Pi_1(X)$-sets. In particular for $f : X \to Y$,

\[
\begin{array}{ccc}
\text{Sh}_{loc}(X) & \xrightarrow{\exists f_!} & \text{Sh}_{loc}(Y) \\
\downarrow & & \downarrow \\
\Pi_1(X)\text{-sets} & \xrightarrow{\Pi_1(f)_!} & \Pi_1(Y)\text{-sets}
\end{array}
\]

\[
\simeq \quad \simeq
\]
Proposition (homotopical characterisation of connected maps)

A map of slsc spaces \(f : X \to Y \) is connected iff \(\pi_0(f) \) is bijective and \(\pi_1(f, x) : \pi_1(X, x) \to \pi_1(Y, f(x)) \) is surjective \(\forall x \in X \).

Corollary (existence of universal coverings)

For any based slsc space \((X, x)\) the comprehensive factorisation

\[
\begin{array}{ccccccc}
\star & \xrightarrow{\text{connected}} & U(X, x) & \xrightarrow{\text{covering}} & X \\
\downarrow & & \downarrow & & \\
 x & \xrightarrow{f} & X
\end{array}
\]

produces the *universal covering* of \(X \) at \(x \).
Proposition (homotopical characterisation of connected maps)

A map of slsc spaces $f : X \to Y$ is connected iff $\pi_0(f)$ is bijective and $\pi_1(f, x) : \pi_1(X, x) \to \pi_1(Y, f(x))$ is surjective $\forall x \in X$.

Corollary (existence of universal coverings)

For any based slsc space (X, x) the comprehensive factorisation

$$
\begin{array}{c}
\ast \\
\downarrow \\
X
\end{array}
\xleftarrow{\text{connected}}
\xrightarrow{\text{covering}}
\U(X, x)
$$

produces the universal covering of X at x.
Proposition (homotopical characterisation of connected maps)

A map of slsc spaces \(f : X \rightarrow Y \) is connected iff \(\pi_0(f) \) is bijective and \(\pi_1(f, x) : \pi_1(X, x) \rightarrow \pi_1(Y, f(x)) \) is surjective \(\forall x \in X \).

Corollary (existence of universal coverings)

For any based slsc space \((X, x)\) the comprehensive factorisation

\[
\begin{array}{ccc}
\ast & \xrightarrow{\text{connected}} & U(X, x) \\
& \searrow & \downarrow \text{covering} \\
x & \rightarrow & X
\end{array}
\]

produces the *universal covering* of \(X \) at \(x \).
Definition

A *band* (=idempotent semigroup) is a set (X, \cdot) with an associative multiplication such that $x^2 = x$ for all $x \in X$.

Lemma (meet-semilattices)

Commutative bands are the same as posets with binary meets.

Lemma (Green’s D-relation)

Each band is partially ordered by $x \leq y \iff x = yxy$. The commutative bands form a reflective subcategory. The reflection is given by $X \to X/D$ where $xDy \iff x = xyx$ and $y = yxy$.
Definition

A **band** (=idempotent semigroup) is a set \((X, \cdot)\) with an associative multiplication such that \(x^2 = x\) for all \(x \in X\).

Lemma (meet-semilattices)

Commutative bands are the same as posets with binary meets.

Lemma (Green’s \(\mathcal{D}\)-relation)

Each band is partially ordered by \(x \leq y \iff dfn x = yxy\). The commutative bands form a reflective subcategory. The reflection is given by \(X \to X/\mathcal{D}\) where \(x\mathcal{D}y \iff dfn x = xyx\) and \(y = yxy\).
Definition

A **band** (=idempotent semigroup) is a set \((X, \cdot)\) with an associative multiplication such that \(x^2 = x\) for all \(x \in X\).

Lemma (meet-semilattices)

Commutative bands are the same as posets with binary meets.

Lemma (Green’s \(D\)-relation)

Each band is partially ordered by \(x \leq y \iff x = yxy\). The commutative bands form a reflective subcategory. The reflection is given by \(X \rightarrow X/D\) where \(xDy \iff x = xyx\) and \(y = yxy\).
Definition

A band (\(=\)idempotent semigroup) is a set \((X, \cdot)\) with an associative multiplication such that \(x^2 = x\) for all \(x \in X\).

Lemma (meet-semilattices)

Commutative bands are the same as posets with binary meets.

Lemma (Green’s \(\mathcal{D}\)-relation)

Each band is partially ordered by \(x \leq y \iff x = yxy\). The commutative bands form a reflective subcategory. The reflection is given by \(X \to X/\mathcal{D}\) where \(x\mathcal{D}y \iff x = xyx\) and \(y = yxy\).
Definition (Schützenberger ’47)

A band is left (resp. right) regular if \(xy = xyx \) (resp. \(yx = xyx \)).

Proposition (B-Gehrke ’18)

The category of right regular bands admits a comprehensive factorisation system lifted along the functor \((X, \cdot) \mapsto (X, \leq) \).

Lemma (discrete objects)

For a right regular band \(X \) tfae:

- \((X, \leq) \) is order-discrete;
- \((X, \cdot) \) is a right zero band (i.e. \(yx = x \));
- the terminal map \(X \to *_{RRB} \) is a covering.
Definition (Schützenberger '47)
A band is *left* (resp. *right*) *regular* if $xy = xyx$ (resp. $yx = xyx$).

Proposition (B-Gehrke '18)
The category of right regular bands admits a comprehensive factorisation system lifted along the functor $(X, \cdot) \mapsto (X, \leq)$.

Lemma (discrete objects)
For a right regular band X tfae:
- (X, \leq) is order-discrete;
- (X, \cdot) is a right zero band (i.e. $yx = x$);
- the terminal map $X \to \star_{RRB}$ is a covering.
Definition (Schützenberger ’47)
A band is left (resp. right) regular if \(xy = xyx \) (resp. \(yx = xyx \)).

Proposition (B-Gehrke ’18)
The category of right regular bands admits a comprehensive factorisation system lifted along the functor \((X, \cdot) \mapsto (X, \leq)\).

Lemma (discrete objects)
For a right regular band \(X \) tfae:
- \((X, \leq)\) is order-discrete;
- \((X, \cdot)\) is a right zero band (i.e. \(yx = x \));
- the terminal map \(X \to *_{RRB} \) is a covering.
Definition (Schützenberger ’47)
A band is left (resp. right) regular if $xy = xyx$ (resp. $yx = xyx$).

Proposition (B-Gehrke ’18)
The category of right regular bands admits a comprehensive factorisation system lifted along the functor $(X, \cdot) \mapsto (X, \leq)$.

Lemma (discrete objects)
For a right regular band X tfae:
- (X, \leq) is order-discrete;
- (X, \cdot) is a right zero band (i.e. $yx = x$);
- the terminal map $X \to \star_{RRB}$ is a covering.
Definition (Schützenberger ’47)
A band is left (resp. right) regular if $xy = xyx$ (resp. $yx = xyx$).

Proposition (B-Gehrke ’18)
The category of right regular bands admits a comprehensive factorisation system lifted along the functor $(X, \cdot) \mapsto (X, \leq)$.

Lemma (discrete objects)
For a right regular band X tfae:
- (X, \leq) is order-discrete;
- (X, \cdot) is a right zero band (i.e. $yx = x$);
- the terminal map $X \to \star_{RRB}$ is a covering.
Definition (Schützenberger ’47)
A band is left (resp. right) regular if $xy = xyx$ (resp. $yx = xyx$).

Proposition (B-Gehrke ’18)
The category of right regular bands admits a comprehensive factorisation system lifted along the functor $(X, \cdot) \mapsto (X, \leq)$.

Lemma (discrete objects)
For a right regular band X tfae:
- (X, \leq) is order-discrete;
- (X, \cdot) is a right zero band (i.e. $yx = x$);
- the terminal map $X \to \star_{RRB}$ is a covering.
Proposition (Yamada-Kimura ’57, B-Gehrke ’18)

A right regular band is right normal (i.e. $xyz = yxz$) if and only if the semilattice reflection $X \rightarrow X/\mathcal{D}$ is a covering.

Definition

A band X is called right distributive if

(i) X is right normal;
(ii) X/\mathcal{D} is a (bounded) distributive lattice;
(iii) for any finite subset S of X consisting of pairwise commuting elements the join $\bigvee S$ in (X, \leq) exists.

Example (the local sections of a sheaf form a distributive band)

We define $(U, \sigma)(V, \tau) = (U \cap V, \tau|_{U \cap V})$. Local sections commute iff they glue. $(U, \sigma) \leq (V, \tau)$ iff $U \subset V$ and $\sigma = \tau|_U$. (iii) expresses sheaf condition w/to finite open covers.
Proposition (Yamada-Kimura ’57, B-Gehrke ’18)

A right regular band is right normal (i.e. \(xyz = yxz \)) if and only if the semilattice reflection \(X \to X/\mathcal{D} \) is a covering.

Definition

A band \(X \) is called right distributive if

(i) \(X \) is right normal;

(ii) \(X/\mathcal{D} \) is a (bounded) distributive lattice;

(iii) for any finite subset \(S \) of \(X \) consisting of pairwise commuting elements the join \(\bigvee S \) in \((X, \leq) \) exists.

Example (the local sections of a sheaf form a distributive band)

We define \((U, \sigma)(V, \tau) = (U \cap V, \tau|_{U \cap V}) \). Local sections commute iff they glue. \((U, \sigma) \leq (V, \tau) \) iff \(U \subseteq V \) and \(\sigma = \tau|_{U} \). (iii) expresses sheaf condition w/to finite open covers.
Proposition (Yamada-Kimura ’57, B-Gehrke ’18)

A right regular band is right normal (i.e. \(xyz = yxz\)) if and only if the semilattice reflection \(X \rightarrow X/D\) is a covering.

Definition

A band \(X\) is called right **distributive** if

(i) \(X\) is right normal;

(ii) \(X/D\) is a (bounded) distributive lattice;

(iii) for any finite subset \(S\) of \(X\) consisting of pairwise commuting elements the join \(\bigvee S\) in \((X, \leq)\) exists.

Example (the local sections of a sheaf form a distributive band)

We define \((U, \sigma)(V, \tau) = (U \cap V, \tau|_{U \cap V})\). Local sections commute iff they glue. \((U, \sigma) \leq (V, \tau)\) iff \(U \subset V\) and \(\sigma = \tau|_U\). (iii) expresses sheaf condition w/to finite open covers.
Proposition (Yamada-Kimura ’57, B-Gehrke ’18)

A right regular band is right normal (i.e. $xyz = yxz$) if and only if the semilattice reflection $X \rightarrow X/\mathcal{D}$ is a covering.

Definition

A band X is called right \textit{distributive} if

(i) X is right normal;

(ii) X/\mathcal{D} is a (bounded) distributive lattice;

(iii) for any finite subset S of X consisting of pairwise commuting elements the join $\bigvee S$ in (X, \leq) exists.

Example (the local sections of a sheaf form a distributive band)

We define $(U, \sigma)(V, \tau) = (U \cap V, \tau \upharpoonright_{U \cap V})$. Local sections commute iff they glue. $(U, \sigma) \leq (V, \tau)$ iff $U \subset V$ and $\sigma = \tau \upharpoonright U$. (iii) expresses sheaf condition w/to \textit{finite} open covers.
Proposition (Yamada-Kimura ’57, B-Gehrke ’18)

A right regular band is right normal (i.e. $xyz = yxz$) if and only if the semilattice reflection $X \to X/\mathcal{D}$ is a covering.

Definition

A band X is called right distributive if

(i) X is right normal;

(ii) X/\mathcal{D} is a (bounded) distributive lattice;

(iii) for any finite subset S of X consisting of pairwise commuting elements the join $\bigvee S$ in (X, \leq) exists.

Example (the local sections of a sheaf form a distributive band)

We define $(U, \sigma)(V, \tau) = (U \cap V, \tau|_{U \cap V})$. Local sections commute iff they glue. $(U, \sigma) \leq (V, \tau)$ iff $U \subset V$ and $\sigma = \tau|_U$.

(iii) expresses sheaf condition w/to finite open covers.
Proposition (Yamada-Kimura '57, B-Gehrke '18)

A right regular band is right normal (i.e. \(xyz = yxz\)) if and only if the semilattice reflection \(X \rightarrow X/\mathcal{D}\) is a covering.

Definition

A band \(X\) is called right distributive if

(i) \(X\) is right normal;

(ii) \(X/\mathcal{D}\) is a (bounded) distributive lattice;

(iii) for any finite subset \(S\) of \(X\) consisting of pairwise commuting elements the join \(\bigvee S\) in \((X, \leq)\) exists.

Example (the local sections of a sheaf form a distributive band)

We define \((U, \sigma)(V, \tau) = (U \cap V, \tau|_{U \cap V})\). Local sections commute iff they glue. \((U, \sigma) \leq (V, \tau)\) iff \(U \subset V\) and \(\sigma = \tau|_U\).

(iii) expresses sheaf condition w/to finite open covers.
Definition (skew-lattice, Leech '89)

A skew lattice \((S, \land, \lor)\) consists of two bands \((S, \land)\) and \((S, \lor)\) such that the following four absorption laws hold:

(i) \((y \land x) \lor x = x = x \land (x \lor y)\);
(ii) \(x \lor (x \land y) = x = (y \lor x) \land x\).

Remark (lattice reflection)

The order relation of \((S, \land)\) is dual to the order relation of \((S, \lor)\). Green's \(D\)-relation yields a lattice \(S/D\), the lattice reflection of \(S\). \((S, \land)\) is right regular iff \((S, \lor)\) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is symmetric if \(x \land y = y \land x \iff x \lor y = y \lor x\).
A skew-lattice is right distributive if it is symmetric, right normal and its lattice reflection is distributive.
Definition (skew-lattice, Leech ’89)

A *skew lattice* (S, \preceq, \succ) consists of two bands (S, \preceq) and (S, \succ) such that the following four absorption laws hold:

(i) $(y \preceq x) \succ x = x = x \preceq (x \succ y)$;

(ii) $x \succ (x \preceq y) = x = (y \succ x) \preceq x$.

Remark (lattice reflection)

The order relation of (S, \preceq) is *dual* to the order relation of (S, \succ). Green’s D-relation yields a lattice S/D, the *lattice reflection* of S. (S, \preceq) is right regular iff (S, \succ) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is *symmetric* if $x \preceq y = y \preceq x \iff x \succ y = y \succ x$.

A skew-lattice is *right distributive* if it is symmetric, right normal and its lattice reflection is distributive.
Definition (skew-lattice, Leech '89)

A *skew lattice* \((S, \curlywedge, \curlyvee)\) consists of two bands \((S, \curlywedge)\) and \((S, \curlyvee)\) such that the following four absorption laws hold:

(i) \((y \curlywedge x) \curlyvee x = x = x \curlywedge (x \curlyvee y)\);
(ii) \(x \curlyvee (x \curlywedge y) = x = (y \curlyvee x) \curlywedge x\).

Remark (lattice reflection)

The order relation of \((S, \curlywedge)\) is *dual* to the order relation of \((S, \curlyvee)\). Green’s \(D\)-relation yields a lattice \(S/\mathcal{D}\), the *lattice reflection* of \(S\).
\((S, \curlywedge)\) is right regular iff \((S, \curlyvee)\) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is *symmetric* if \(x \curlywedge y = y \curlywedge x \iff x \curlyvee y = y \curlyvee x\).

A skew-lattice is *right distributive* if it is symmetric, right normal and its lattice reflection is distributive.
Definition (skew-lattice, Leech ’89)

A skew lattice \((S, \wedge, \vee)\) consists of two bands \((S, \wedge)\) and \((S, \vee)\) such that the following four absorption laws hold:

(i) \((y \wedge x) \vee x = x = x \wedge (x \vee y)\);
(ii) \(x \vee (x \wedge y) = x = (y \vee x) \wedge x\).

Remark (lattice reflection)

The order relation of \((S, \wedge)\) is dual to the order relation of \((S, \vee)\). Green’s \(\mathcal{D}\)-relation yields a lattice \(S/\mathcal{D}\), the lattice reflection of \(S\). \((S, \wedge)\) is right regular iff \((S, \vee)\) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is symmetric if \(x \wedge y = y \wedge x \iff x \vee y = y \vee x\). A skew-lattice is right distributive if it is symmetric, right normal and its lattice reflection is distributive.
Definition (skew-lattice, Leech '89)

A skew lattice \((S, \land, \lor)\) consists of two bands \((S, \land)\) and \((S, \lor)\) such that the following four absorption laws hold:

(i) \((y \land x) \lor x = x = x \land (x \lor y)\);
(ii) \(x \lor (x \land y) = x = (y \lor x) \land x\).

Remark (lattice reflection)

The order relation of \((S, \land)\) is dual to the order relation of \((S, \lor)\). Green’s \(\mathcal{D}\)-relation yields a lattice \(S/\mathcal{D}\), the lattice reflection of \(S\). \((S, \land)\) is right regular iff \((S, \lor)\) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is symmetric if \(x \land y = y \land x \iff x \lor y = y \lor x\).

A skew-lattice is right distributive if it is symmetric, right normal and its lattice reflection is distributive.
Definition (skew-lattice, Leech ’89)

A skew lattice \((S, \wedge, \vee)\) consists of two bands \((S, \wedge)\) and \((S, \vee)\) such that the following four absorption laws hold:

(i) \((y \wedge x) \vee x = x = x \wedge (x \vee y)\);
(ii) \(x \vee (x \wedge y) = x = (y \vee x) \wedge x\).

Remark (lattice reflection)

The order relation of \((S, \wedge)\) is dual to the order relation of \((S, \vee)\). Green’s \(\mathcal{D}\)-relation yields a lattice \(S/\mathcal{D}\), the lattice reflection of \(S\). \((S, \wedge)\) is right regular iff \((S, \vee)\) is left regular.

Definition (variety of distributive skew-lattices)

A skew-lattice is symmetric if \(x \wedge y = y \wedge x \iff x \vee y = y \vee x\).
A skew-lattice is right distributive if it is symmetric, right normal and its lattice reflection is distributive.
Theorem (Stone ’37)
There is a duality between the category of distributive lattices and the category of spectral spaces.

Theorem (B-Gehrke ’18)
There is a duality between the category of right distributive bands and the category of sheaves over spectral spaces.

Theorem (Bauer, Cvetko-Vah, Gehrke, van Gool, Kudryatseva ’13)
There is a duality between the category of right distributive skew-lattices and the category of sheaves over Priestley spaces.
Theorem (Stone ’37)
There is a duality between the category of distributive lattices and the category of spectral spaces.

Theorem (B-Gehrke ’18)
There is a duality between the category of right distributive bands and the category of sheaves over spectral spaces.

Theorem (Bauer, Cvetko-Vah, Gehrke, van Gool, Kudryatseva ’13)
There is a duality between the category of right distributive skew-lattices and the category of sheaves over Priestley spaces.
<table>
<thead>
<tr>
<th>Theorem (Stone ’37)</th>
<th>There is a duality between the category of distributive lattices and the category of spectral spaces.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem (B-Gehrke ’18)</td>
<td>There is a duality between the category of right distributive bands and the category of sheaves over spectral spaces.</td>
</tr>
<tr>
<td>Theorem (Bauer, Cvetko-Vah, Gehrke, van Gool, Kudryatseva ’13)</td>
<td>There is a duality between the category of right distributive skew-lattices and the category of sheaves over Priestley spaces.</td>
</tr>
</tbody>
</table>