Feynman categories, derived modular envelopes and moduli spaces

Clemens Berger¹

University of Nice

Topology Feest Utrecht August 28, 2018

- 1 Moduli space of bordered Riemann surfaces
- 2 Feynman categories
- 3 Symmetric, cyclic and modular operads
- 4 Non-symmetric, planar-cyclic and surface-modular operads
- 5 W-construction and derived modular envelopes
- 6 Perspectives and open problems

- $\mathcal{M}_{g,n}$ moduli space of hyperbolic metrics on a surface $S_{g,n}$ of genus g with n punctures where $\chi(S_{g,n}) < 0$ and n > 0.
- ullet \mathcal{M}_G moduli space of admissible metrics on ribbon graph G.

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

 $\mathcal{M}_{g,n} \simeq \bigcup_G \mathcal{M}_G$ where the metric ribbon graphs G are of type (g,n) and at least trivalent.

Proposition (Igusa)

- $\mathcal{M}_{g,n}$ moduli space of hyperbolic metrics on a surface $S_{g,n}$ of genus g with n punctures where $\chi(S_{g,n}) < 0$ and n > 0.
- \mathcal{M}_G moduli space of admissible metrics on ribbon graph G.

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

 $\mathcal{M}_{g,n} \simeq \bigcup_G \mathcal{M}_G$ where the metric ribbon graphs G are of type (g,n) and at least trivalent.

Proposition (Igusa)

- $\mathcal{M}_{g,n}$ moduli space of hyperbolic metrics on a surface $S_{g,n}$ of genus g with n punctures where $\chi(S_{g,n}) < 0$ and n > 0.
- \mathcal{M}_G moduli space of admissible metrics on ribbon graph G.

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

 $\mathcal{M}_{g,n} \simeq \bigcup_G \mathcal{M}_G$ where the metric ribbon graphs G are of type (g,n) and at least trivalent.

Proposition (Igusa)

- $\mathcal{M}_{g,n}$ moduli space of hyperbolic metrics on a surface $S_{g,n}$ of genus g with n punctures where $\chi(S_{g,n}) < 0$ and n > 0.
- ullet $\mathcal{M}_{\mathcal{G}}$ moduli space of admissible metrics on ribbon graph \mathcal{G} .

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

 $\mathcal{M}_{g,n}\simeq\bigcup_G\mathcal{M}_G$ where the metric ribbon graphs G are of type (g,n) and at least trivalent.

Proposition (Igusa)

- $\mathcal{M}_{g,n}$ moduli space of hyperbolic metrics on a surface $S_{g,n}$ of genus g with n punctures where $\chi(S_{g,n}) < 0$ and n > 0.
- \mathcal{M}_G moduli space of admissible metrics on ribbon graph G.

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

 $\mathcal{M}_{g,n} \simeq \bigcup_G \mathcal{M}_G$ where the metric ribbon graphs G are of type (g,n) and at least trivalent.

Proposition (Igusa)

- $\mathcal{M}_{g,n}$ moduli space of hyperbolic metrics on a surface $S_{g,n}$ of genus g with n punctures where $\chi(S_{g,n}) < 0$ and n > 0.
- \mathcal{M}_G moduli space of admissible metrics on ribbon graph G.

Theorem (Mumford, Strebel, Penner, Kontsevich, ...)

 $\mathcal{M}_{g,n} \simeq \bigcup_G \mathcal{M}_G$ where the metric ribbon graphs G are of type (g,n) and at least trivalent.

Proposition (Igusa)

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}}$ moduli space of hyperbolic metrics on a surface $S_{g,s}^{p_1,\dots,p_{\nu}}$ of genus g with s punctures and ν cyclic boundary components containing $p_i>0$ marked points respectively.

Theorem (Penner, Igusa, B-K)

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}} \simeq \bigcup_G \mathcal{M}_G \simeq |\mathrm{rb}_{g,s}^{p_1,\dots,p_{\nu}}|$ where the *flagged* ribbon graphs G are of type $(g,s;p_1,\dots,p_{\nu})$ and at least trivalent.

Proof sketch (via doubling construction)

(bordered R. surface with $\chi < 0$) \longleftrightarrow (involutive hyperbolic surface) (flagged ribbon graph with $\chi < 0$) \longleftrightarrow (involutive ribbon graph) involution = orientation-reversing with separating fixpoint set

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}}$ moduli space of hyperbolic metrics on a surface $S_{g,s}^{p_1,\dots,p_{\nu}}$ of genus g with s punctures and ν cyclic boundary components containing $p_i>0$ marked points respectively.

Theorem (Penner, Igusa, B-K)

 $\mathcal{M}_{g,s}^{\rho_1,\dots,\rho_{\nu}}\simeq\bigcup_{G}\mathcal{M}_{G}\simeq|\mathrm{rb}_{g,s}^{\rho_1,\dots,\rho_{\nu}}|$ where the *flagged* ribbon graphs G are of type $(g,s;\rho_1,\dots,\rho_{\nu})$ and at least trivalent.

Proof sketch (via doubling construction)

(bordered R. surface with $\chi < 0$) \longleftrightarrow (involutive hyperbolic surface) (flagged ribbon graph with $\chi < 0$) \longleftrightarrow (involutive ribbon graph) involution = orientation-reversing with separating fixpoint set

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}}$ moduli space of hyperbolic metrics on a surface $S_{g,s}^{p_1,\dots,p_{\nu}}$ of genus g with s punctures and ν cyclic boundary components containing $p_i>0$ marked points respectively.

Theorem (Penner, Igusa, B-K)

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}}\simeq\bigcup_G\mathcal{M}_G\simeq|\mathrm{rb}_{g,s}^{p_1,\dots,p_{\nu}}|$ where the *flagged* ribbon graphs G are of type $(g,s;p_1,\dots,p_{\nu})$ and at least trivalent.

Proof sketch (via doubling construction)

(bordered R. surface with $\chi < 0) \leadsto (involutive \text{ hyperbolic surface})$ (flagged ribbon graph with $\chi < 0) \leadsto (involutive \text{ ribbon graph})$ involution = orientation-reversing with separating fixpoint set

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}}$ moduli space of hyperbolic metrics on a surface $S_{g,s}^{p_1,\dots,p_{\nu}}$ of genus g with s punctures and ν cyclic boundary components containing $p_i>0$ marked points respectively.

Theorem (Penner, Igusa, B-K)

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}} \simeq \bigcup_G \mathcal{M}_G \simeq |\mathrm{rb}_{g,s}^{p_1,\dots,p_{\nu}}|$ where the *flagged* ribbon graphs G are of type $(g,s;p_1,\dots,p_{\nu})$ and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with $\chi < 0$) \longleftrightarrow (involutive hyperbolic surface) (flagged ribbon graph with $\chi < 0$) \longleftrightarrow (involutive ribbon graph) involution = orientation-reversing with separating fixpoint set

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}}$ moduli space of hyperbolic metrics on a surface $S_{g,s}^{p_1,\dots,p_{\nu}}$ of genus g with s punctures and ν cyclic boundary components containing $p_i>0$ marked points respectively.

Theorem (Penner, Igusa, B-K)

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}} \simeq \bigcup_G \mathcal{M}_G \simeq |\mathrm{rb}_{g,s}^{p_1,\dots,p_{\nu}}|$ where the *flagged* ribbon graphs G are of type $(g,s;p_1,\dots,p_{\nu})$ and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with $\chi < 0$) \longleftrightarrow (involutive hyperbolic surface) (flagged ribbon graph with $\chi < 0$) \longleftrightarrow (involutive ribbon graph) involution = orientation-reversing with separating fixpoint set

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}}$ moduli space of hyperbolic metrics on a surface $S_{g,s}^{p_1,\dots,p_{\nu}}$ of genus g with s punctures and ν cyclic boundary components containing $p_i>0$ marked points respectively.

Theorem (Penner, Igusa, B-K)

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}} \simeq \bigcup_G \mathcal{M}_G \simeq |\mathrm{rb}_{g,s}^{p_1,\dots,p_{\nu}}|$ where the *flagged* ribbon graphs G are of type $(g,s;p_1,\dots,p_{\nu})$ and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with $\chi < 0$) \longleftrightarrow (involutive hyperbolic surface) (flagged ribbon graph with $\chi < 0$) \longleftrightarrow (involutive ribbon graph)

involution = orientation-reversing with separating fixpoint set

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}}$ moduli space of hyperbolic metrics on a surface $S_{g,s}^{p_1,\dots,p_{\nu}}$ of genus g with s punctures and ν cyclic boundary components containing $p_i>0$ marked points respectively.

Theorem (Penner, Igusa, B-K)

 $\mathcal{M}_{g,s}^{p_1,\dots,p_{\nu}} \simeq \bigcup_G \mathcal{M}_G \simeq |\mathrm{rb}_{g,s}^{p_1,\dots,p_{\nu}}|$ where the *flagged* ribbon graphs G are of type $(g,s;p_1,\dots,p_{\nu})$ and at least trivalent.

Proof sketch (via doubling construction).

(bordered R. surface with $\chi < 0$) \longleftrightarrow (involutive hyperbolic surface) (flagged ribbon graph with $\chi < 0$) \longleftrightarrow (involutive ribbon graph) involution = orientation-reversing with separating fixpoint set

- ullet nerve $(\mathrm{rb}_{g,n})\cong (\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ S_{g,n})^{\mathrm{op}}$
- ullet nerve $(\mathrm{rb}_{g,s}^{\rho_1,\dots,\rho_{
 u}})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ S_{g,s}^{\rho_1,\dots,\rho_{
 u}})^{\mathrm{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor
 - J: (planar-cyclic operads) \longrightarrow (surface-modular operads)
 - induces homotopy equivalences
 - $LJ_1(x)(g,s;p_1,\ldots,p_r)\simeq M^{p_1\cdots p_r}$

- ullet nerve $(\mathrm{rb}_{g,n})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ S_{g,n})^{\mathrm{op}}$
- ullet nerve $(\mathrm{rb}_{g,s}^{
 ho_1,\ldots,
 ho_
 u})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ S_{g,s}^{
 ho_1,\ldots,
 ho_
 u})^{\mathrm{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor
 - J: (planar-cyclic operads) \longrightarrow (surface-modular operads)
 - induces homotopy equivalencess
 - $LJ_1(z)(g,s;p_1,\ldots,p_s) \simeq M_0^0 z^{-sp_s}$

- ullet nerve $(\mathrm{rb}_{g,n})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ \mathcal{S}_{g,n})^{\mathrm{op}}$
- ullet nerve $(\mathrm{rb}_{g,s}^{
 ho_1,\ldots,
 ho_
 u})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ S_{g,s}^{
 ho_1,\ldots,
 ho_
 u})^{\mathrm{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor
 - J: (planar-cyclic operads) \longrightarrow (surface-modular operads)
- induces homotopy equivalences
- $Lh(1)(g, s; p_1, \ldots, p_g) \simeq \mathcal{M}_{\sigma_1}^{p_1, \ldots, p_g}$

- ullet nerve $(\mathrm{rb}_{g,n})\cong(\mathsf{quasi ext{-}filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ \mathcal{S}_{g,n})^{\mathrm{op}}$
- $\bullet \ \operatorname{nerve}(\operatorname{rb}_{g,s}^{\rho_1,\ldots,\rho_\nu}) \cong (\mathsf{quasi-filling} \ \mathsf{arc} \ \mathsf{systems} \ \mathsf{on} \ \mathcal{S}_{g,s}^{\rho_1,\ldots,\rho_\nu})^{\mathrm{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor
- J: (planar-cyclic operads) \longrightarrow (surface-modular operads)

4□ → 4回 → 4 三 → 4 三 → 9 q @

- ullet nerve $(\mathrm{rb}_{g,n})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ \mathcal{S}_{g,n})^{\mathrm{op}}$
- ullet nerve $(\mathrm{rb}_{g,s}^{p_1,\ldots,p_{
 u}})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ S_{g,s}^{p_1,\ldots,p_{
 u}})^{\mathrm{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

 $J: (planar-cyclic operads) \longrightarrow (surface-modular operads)$

induces homotopy equivalences

 $\mathbb{L} J_!(1)(g,s;
ho_1,\ldots,
ho_
u)\simeq \mathcal{M}^{
ho_1,\ldots,
ho_
u}_{\sigma,s}$

- ullet nerve $(\operatorname{rb}_{g,n})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ \mathcal{S}_{g,n})^{\mathrm{op}}$
- ullet nerve $(\mathrm{rb}_{g,s}^{
 ho_1,\ldots,
 ho_
 u})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ S_{g,s}^{
 ho_1,\ldots,
 ho_
 u})^{\mathrm{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

 $J: (planar-cyclic operads) \longrightarrow (surface-modular operads)$

induces homotopy equivalences

 $\mathbb{L} J_{!}(1)(g,s; p_1,\ldots,p_{
u}) \simeq \mathcal{M}_{\sigma,s}^{p_1,\ldots,p_{
u}}$

- ullet nerve $(\mathrm{rb}_{g,n})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ \mathcal{S}_{g,n})^{\mathrm{op}}$
- ullet nerve $(\mathrm{rb}_{g,s}^{p_1,\ldots,p_{
 u}})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ S_{g,s}^{p_1,\ldots,p_{
 u}})^{\mathrm{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

$$J: (\text{planar-cyclic operads}) \longrightarrow (\text{surface-modular operads})$$

induces homotopy equivalences

$$\mathbb{L}J_{!}(1)(g,s;p_{1},\ldots,p_{\nu})\simeq\mathcal{M}_{g,s}^{p_{1},\ldots,p_{\nu}}$$

(cf. Costello, Giansiracusa)

- ullet nerve $(\mathrm{rb}_{g,n})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ \mathcal{S}_{g,n})^{\mathrm{op}}$
- ullet nerve $(\mathrm{rb}_{g,s}^{p_1,\ldots,p_{
 u}})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ S_{g,s}^{p_1,\ldots,p_{
 u}})^{\mathrm{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

 $J: (\text{planar-cyclic operads}) \longrightarrow (\text{surface-modular operads})$

induces homotopy equivalences

$$\mathbb{L}J_!(1)(g,s;p_1,\ldots,p_{\nu})\simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_{\nu}}$$

(cf. Costello, Giansiracusa)

- ullet nerve $(\mathrm{rb}_{g,n})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ \mathcal{S}_{g,n})^{\mathrm{op}}$
- ullet nerve $(\mathrm{rb}_{g,s}^{p_1,\ldots,p_{
 u}})\cong(\mathsf{quasi-filling}\ \mathsf{arc}\ \mathsf{systems}\ \mathsf{on}\ S_{g,s}^{p_1,\ldots,p_{
 u}})^{\mathrm{op}}$

Purpose of the talk

- define surface-modular operads (cf. Markl)
- show that the functor

 $J: (\text{planar-cyclic operads}) \longrightarrow (\text{surface-modular operads})$

induces homotopy equivalences

$$\mathbb{L}J_!(1)(g,s;p_1,\ldots,p_{\nu})\simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_{\nu}}$$

(cf. Costello, Giansiracusa)

Each coloured operad $\mathcal{O}(i_1,\ldots,i_k;i)$ induces a symmetric monoidal category $\mathfrak{F}_{\mathcal{O}}$ having as objects ordered sequences of colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)

 $\mathfrak{F}_{\mathcal{O}}$ contains the invertible unary operations of \mathcal{O} as subgroupoid $\mathcal{V}_{\mathcal{O}}$ such that $(\mathcal{V}_{\mathcal{O}})^{\otimes} \simeq \mathrm{Iso}(\mathfrak{F}_{\mathcal{O}})$ (we call $\mathcal{V}_{\mathcal{O}}$ a framing of $\mathfrak{F}_{\mathcal{O}}$).

Proposition (Getzler, B-K, Batanin-Kock-Weber)

Coloured operads are *coreflective* inside framed sym. monoidal categories. The essential image consists of *Feynman categories*.

Definition (Kaufmann-Ward)

Each coloured operad $\mathcal{O}(i_1,\ldots,i_k;i)$ induces a symmetric monoidal category $\mathfrak{F}_{\mathcal{O}}$ having as objects ordered sequences of colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)

 ${\mathfrak F}_{\mathcal O}$ contains the invertible unary operations of ${\mathcal O}$ as subgroupoid ${\mathcal V}_{\mathcal O}$ such that $({\mathcal V}_{\mathcal O})^\otimes \simeq \mathrm{Iso}({\mathfrak F}_{\mathcal O})$ (we call ${\mathcal V}_{\mathcal O}$ a framing of ${\mathfrak F}_{\mathcal O}$).

Proposition (Getzler, B-K, Batanin-Kock-Weber)

Coloured operads are *coreflective* inside framed sym. monoidal categories. The essential image consists of *Feynman categories*.

Definition (Kaufmann-Ward)

Each coloured operad $\mathcal{O}(i_1,\ldots,i_k;i)$ induces a symmetric monoidal category $\mathfrak{F}_{\mathcal{O}}$ having as objects ordered sequences of colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)

 $\mathfrak{F}_{\mathcal{O}}$ contains the invertible unary operations of \mathcal{O} as subgroupoid $\mathcal{V}_{\mathcal{O}}$ such that $(\mathcal{V}_{\mathcal{O}})^{\otimes} \simeq \mathrm{Iso}(\mathfrak{F}_{\mathcal{O}})$ (we call $\mathcal{V}_{\mathcal{O}}$ a framing of $\mathfrak{F}_{\mathcal{O}}$).

Proposition (Getzler, B-K, Batanin-Kock-Weber)

Coloured operads are *coreflective* inside framed sym. monoidal categories. The essential image consists of *Feynman categories*.

Definition (Kaufmann-Ward)

Each coloured operad $\mathcal{O}(i_1,\ldots,i_k;i)$ induces a symmetric monoidal category $\mathfrak{F}_{\mathcal{O}}$ having as objects ordered sequences of colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)

 $\mathfrak{F}_{\mathcal{O}}$ contains the invertible unary operations of \mathcal{O} as subgroupoid $\mathcal{V}_{\mathcal{O}}$ such that $(\mathcal{V}_{\mathcal{O}})^{\otimes} \simeq \mathrm{Iso}(\mathfrak{F}_{\mathcal{O}})$ (we call $\mathcal{V}_{\mathcal{O}}$ a framing of $\mathfrak{F}_{\mathcal{O}}$).

Proposition (Getzler, B-K, Batanin-Kock-Weber)

Coloured operads are *coreflective* inside framed sym. monoidal categories. The essential image consists of *Feynman categories*.

Definition (Kaufmann-Ward)

Each coloured operad $\mathcal{O}(i_1,\ldots,i_k;i)$ induces a symmetric monoidal category $\mathfrak{F}_{\mathcal{O}}$ having as objects ordered sequences of colours and as morphisms ordered sequences of operations.

Remark (framed symmetric monoidal categories)

 $\mathfrak{F}_{\mathcal{O}}$ contains the invertible unary operations of \mathcal{O} as subgroupoid $\mathcal{V}_{\mathcal{O}}$ such that $(\mathcal{V}_{\mathcal{O}})^{\otimes} \simeq \mathrm{Iso}(\mathfrak{F}_{\mathcal{O}})$ (we call $\mathcal{V}_{\mathcal{O}}$ a framing of $\mathfrak{F}_{\mathcal{O}}$).

Proposition (Getzler, B-K, Batanin-Kock-Weber)

Coloured operads are *coreflective* inside framed sym. monoidal categories. The essential image consists of *Feynman categories*.

Definition (Kaufmann-Ward)

Any \mathcal{O} -algebra extends to a strong sym. mon. functor $\mathfrak{F}_{\mathcal{O}} \to \operatorname{Sets}$.

Proposition (Kaufmann-Ward)

Any Feynman functor $j:\mathfrak{F}\to\mathfrak{F}'$ induces an adjunction

$$j_!:\mathfrak{F} ext{-operads}\longrightarrow\mathfrak{F}' ext{-operads}:j^*$$

such that the left adjoint is given by pointwise left Kan extension

$$(j_!P)(A') = \operatorname{colim}_{j(-)\downarrow A'}P(-).$$

Proposition (B-K, cf. Street-Walters' comprehensive factorisation)

Any Feynman functor $j: \mathfrak{F} \to \mathfrak{F}'$ factors essentially uniquely as a connected Feynman functor followed by a covering where j is connected (resp. a covering) iff $j_i(1) = 1$ (resp. $\mathfrak{F} \cong \operatorname{el}_{\mathfrak{F}'}(j_i(1))$)

Any \mathcal{O} -algebra extends to a strong sym. mon. functor $\mathfrak{F}_{\mathcal{O}} \to \operatorname{Sets}$.

Proposition (Kaufmann-Ward)

Any Feynman functor $j:\mathfrak{F}\to\mathfrak{F}'$ induces an adjunction

$$j_!: \mathfrak{F}\text{-operads} \longrightarrow \mathfrak{F}'\text{-operads}: j^*$$

such that the left adjoint is given by pointwise left Kan extension

$$(j_!P)(A') = \operatorname{colim}_{j(-)\downarrow A'}P(-).$$

Proposition (B-K, cf. Street-Walters' comprehensive factorisation

Any Feynman functor $j: \mathfrak{F} \to \mathfrak{F}'$ factors essentially uniquely as a connected Feynman functor followed by a covering where j is connected (resp. a covering) iff $j_i(1) = 1$ (resp. $\mathfrak{F} \cong \operatorname{el}_{\mathfrak{F}'}(j_i(1))$)

Any \mathcal{O} -algebra extends to a strong sym. mon. functor $\mathfrak{F}_{\mathcal{O}} \to \operatorname{Sets}$.

Proposition (Kaufmann-Ward)

Any Feynman functor $j:\mathfrak{F}\to\mathfrak{F}'$ induces an adjunction

$$j_!: \mathfrak{F}\text{-operads} \longrightarrow \mathfrak{F}'\text{-operads}: j^*$$

such that the left adjoint is given by pointwise left Kan extension

$$(j_!P)(A') = \operatorname{colim}_{j(-)\downarrow A'}P(-).$$

Proposition (B-K, cf. Street-Walters' comprehensive factorisation

Any Feynman functor $j: \mathfrak{F} \to \mathfrak{F}'$ factors essentially uniquely as a connected Feynman functor followed by a covering where j is connected (resp. a covering) iff $j_1(1) = 1$ (resp. $\mathfrak{F} \cong \operatorname{el}_{\mathfrak{F}'}(j_1(1))$)

Any \mathcal{O} -algebra extends to a strong sym. mon. functor $\mathfrak{F}_{\mathcal{O}} \to \operatorname{Sets}$.

Proposition (Kaufmann-Ward)

Any Feynman functor $j:\mathfrak{F}\to\mathfrak{F}'$ induces an adjunction

$$j_!: \mathfrak{F}\text{-operads} \longrightarrow \mathfrak{F}'\text{-operads}: j^*$$

such that the left adjoint is given by pointwise left Kan extension

$$(j_!P)(A') = \operatorname{colim}_{j(-)\downarrow A'}P(-).$$

Proposition (B-K, cf. Street-Walters' comprehensive factorisation)

Any Feynman functor $j: \mathfrak{F} \to \mathfrak{F}'$ factors essentially uniquely as a *connected* Feynman functor followed by a *covering* where j is connected (resp. a covering) iff h(1) = 1 (resp. $\mathfrak{F} \cong \operatorname{el}_{\mathfrak{F}}(h(1))$).

Any \mathcal{O} -algebra extends to a strong sym. mon. functor $\mathfrak{F}_{\mathcal{O}} \to \operatorname{Sets}$.

Proposition (Kaufmann-Ward)

Any Feynman functor $j:\mathfrak{F}\to\mathfrak{F}'$ induces an adjunction

$$j_!: \mathfrak{F}\text{-operads} \longrightarrow \mathfrak{F}'\text{-operads}: j^*$$

such that the left adjoint is given by pointwise left Kan extension

$$(j_!P)(A') = \operatorname{colim}_{j(-)\downarrow A'}P(-).$$

Proposition (B-K, cf. Street-Walters' comprehensive factorisation)

Any Feynman functor $j: \mathfrak{F} \to \mathfrak{F}'$ factors essentially uniquely as a connected Feynman functor followed by a covering where j is connected (resp. a covering) iff $j_!(1) = 1$ (resp. $\mathfrak{F} \cong \operatorname{el}_{\mathfrak{F}'}(j_!(1))$).

Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad $\mathcal S$ whose algebras are symmetric operads. Its associated Feynman category $\mathfrak F_{\mathcal S}=\mathfrak F_{\rm sym}$ has

w as objects disjoint unions or rooted coronas

as morphisms disjoint unions of rooted trees

composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathfrak{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion

Lemma (Ginzburg-Kapranov, B-Moerdijk, Kontsevich-Soibelman)

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathfrak{F}_S = \mathfrak{F}_{sym}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

The Feynman category \mathfrak{F}_{cyc} for cyclic operads has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion

There is a coloured operad $\mathcal S$ whose algebras are symmetric operads. Its associated Feynman category $\mathfrak F_{\mathcal S}=\mathfrak F_{sym}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathfrak{F}_S = \mathfrak{F}_{sym}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathfrak{F}_S = \mathfrak{F}_{sym}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathfrak{F}_S = \mathfrak{F}_{sym}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by *rooted* tree insertion

Lemma (Getzler-Kapranov)

- as morphisms disjoint unions of trees
- composition induced by tree insertion

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathfrak{F}_S = \mathfrak{F}_{sym}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathfrak{F}_S = \mathfrak{F}_{sym}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of *rooted* trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathfrak{F}_S = \mathfrak{F}_{sym}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of *rooted* trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion

There is a coloured operad S whose algebras are symmetric operads. Its associated Feynman category $\mathfrak{F}_S = \mathfrak{F}_{sym}$ has

- as objects disjoint unions of rooted corollas
- as morphisms disjoint unions of rooted trees
- composition induced by rooted tree insertion

Lemma (Getzler-Kapranov)

- as objects disjoint unions of corollas
- as morphisms disjoint unions of trees
- composition induced by tree insertion

There are Feynman functors $\mathfrak{F}_{sym} o \mathfrak{F}_{cyc} o \mathfrak{F}_{ctd}$ where \mathfrak{F}_{ctd} has

Proposition (Getzler-Kapranov)

The Feynman functor $h: \mathfrak{F}_{cyc} \to \mathfrak{F}_{ctd}$ factors as connected functor $j: \mathfrak{F}_{cyc} \to \mathfrak{F}_{mod}$ followed by a covering $k: \mathfrak{F}_{mod} \to \mathfrak{F}_{ctd}$ where \mathfrak{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

There are Feynman functors $\mathfrak{F}_{sym} o \mathfrak{F}_{cyc} o \mathfrak{F}_{ctd}$ where \mathfrak{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

$\mathsf{Proposition}\;(\mathsf{Getzler} ext{-}\mathsf{Kapranov})$

The Feynman functor $h: \mathfrak{F}_{cyc} \to \mathfrak{F}_{ctd}$ factors as connected functor $j: \mathfrak{F}_{cyc} \to \mathfrak{F}_{mod}$ followed by a covering $k: \mathfrak{F}_{mod} \to \mathfrak{F}_{ctd}$ where \mathfrak{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

There are Feynman functors $\mathfrak{F}_{sym} o \mathfrak{F}_{cyc} o \mathfrak{F}_{ctd}$ where \mathfrak{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

$\mathsf{Proposition}\;(\mathsf{Getzler} ext{-}\mathsf{Kapranov})$

The Feynman functor $h: \mathfrak{F}_{cyc} \to \mathfrak{F}_{ctd}$ factors as connected functor $j: \mathfrak{F}_{cyc} \to \mathfrak{F}_{mod}$ followed by a covering $k: \mathfrak{F}_{mod} \to \mathfrak{F}_{ctd}$ where \mathfrak{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

There are Feynman functors $\mathfrak{F}_{sym} o \mathfrak{F}_{cyc} o \mathfrak{F}_{ctd}$ where \mathfrak{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

$\mathsf{Proposition}\;(\mathsf{Getzler} ext{-}\mathsf{Kapranov})$

The Feynman functor $h: \mathfrak{F}_{cyc} \to \mathfrak{F}_{ctd}$ factors as connected functor $j: \mathfrak{F}_{cyc} \to \mathfrak{F}_{mod}$ followed by a covering $k: \mathfrak{F}_{mod} \to \mathfrak{F}_{ctd}$ where \mathfrak{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

There are Feynman functors $\mathfrak{F}_{sym} o \mathfrak{F}_{cyc} o \mathfrak{F}_{ctd}$ where \mathfrak{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

$\mathsf{Proposition}\;(\mathsf{Getzler} ext{-}\mathsf{Kapranov})$

The Feynman functor $h: \mathfrak{F}_{cyc} \to \mathfrak{F}_{ctd}$ factors as connected functor $j: \mathfrak{F}_{cyc} \to \mathfrak{F}_{mod}$ followed by a covering $k: \mathfrak{F}_{mod} \to \mathfrak{F}_{ctd}$ where \mathfrak{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

There are Feynman functors $\mathfrak{F}_{sym} o \mathfrak{F}_{cyc} o \mathfrak{F}_{ctd}$ where \mathfrak{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

$\mathsf{Proposition}$ ($\mathsf{Getzler} ext{-}\mathsf{Kapranov}$)

The Feynman functor $h: \mathfrak{F}_{cyc} \to \mathfrak{F}_{ctd}$ factors as connected functor $j: \mathfrak{F}_{cyc} \to \mathfrak{F}_{mod}$ followed by a covering $k: \mathfrak{F}_{mod} \to \mathfrak{F}_{ctd}$ where \mathfrak{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

There are Feynman functors $\mathfrak{F}_{sym} o \mathfrak{F}_{cyc} o \mathfrak{F}_{ctd}$ where \mathfrak{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

Proposition (Getzler-Kapranov)

The Feynman functor $h: \mathfrak{F}_{cyc} \to \mathfrak{F}_{ctd}$ factors as connected functor $j: \mathfrak{F}_{cyc} \to \mathfrak{F}_{mod}$ followed by a covering $k: \mathfrak{F}_{mod} \to \mathfrak{F}_{ctd}$ where \mathfrak{F}_{mod} is the Feynman category for modular operads.

Corollary (B-K)

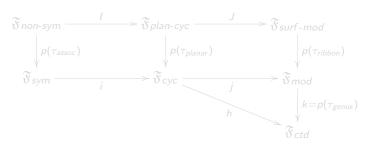
There are Feynman functors $\mathfrak{F}_{sym} o \mathfrak{F}_{cyc} o \mathfrak{F}_{ctd}$ where \mathfrak{F}_{ctd} has

- as objects disjoint unions of corollas
- as morphisms disjoint unions of connected graphs
- composition induced by graph insertion

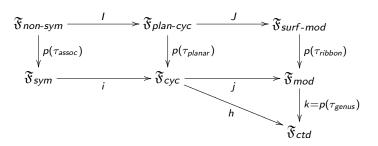
Proposition (Getzler-Kapranov)

The Feynman functor $h: \mathfrak{F}_{cyc} \to \mathfrak{F}_{ctd}$ factors as connected functor $j: \mathfrak{F}_{cyc} \to \mathfrak{F}_{mod}$ followed by a covering $k: \mathfrak{F}_{mod} \to \mathfrak{F}_{ctd}$ where \mathfrak{F}_{mod} is the Feynman category for modular operads.

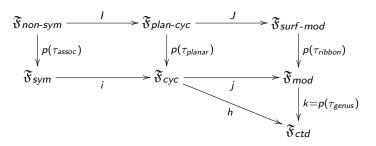
Corollary (B-K)



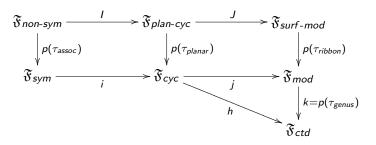
- \bullet au_{assoc} is the $ilde{v}_{sym}$ -operad for associative monoids
- \bullet au_{planar} is the \mathfrak{F}_{cyc} -operad for planar structures
- $i^*(\tau_{planar}) = \tau_{assoc}(\tau_{planar})$ is the "cyclic" version of τ_{assoc}
- $\tau_{ribbon} = j_!(\tau_{planar})$



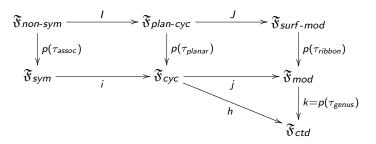
- τ_{assoc} is the \mathfrak{F}_{svm} -operad for associative monoids
- τ_{planar} is the \mathfrak{F}_{cvc} -operad for planar structures
- $i^*(\tau_{planar}) = \tau_{assoc} (\tau_{planar})$ is the "cyclic" version of τ_{assoc}
- $\tau_{ribbon} = j_!(\tau_{planar})$



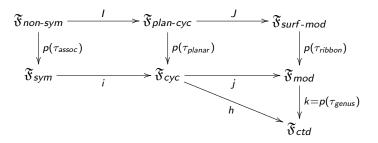
- ullet au_{assoc} is the \mathfrak{F}_{sym} -operad for associative monoids
- \bullet au_{planar} is the \mathfrak{F}_{cyc} -operad for planar structures
- $i^*(\tau_{planar}) = \tau_{assoc} (\tau_{planar})$ is the "cyclic" version of τ_{assoc}
- $\tau_{ribbon} = j_!(\tau_{planar})$



- ullet au_{assoc} is the \mathfrak{F}_{sym} -operad for associative monoids
- ullet $au_{ extit{planar}}$ is the $\mathfrak{F}_{ extit{cyc}} ext{-operad}$ for planar structures
- $i^*(\tau_{planar}) = \tau_{assoc} (\tau_{planar} \text{ is the "cyclic" version of } \tau_{assoc})$
- $\tau_{ribbon} = j_!(\tau_{planar})$



- ullet au_{assoc} is the \mathfrak{F}_{sym} -operad for associative monoids
- ullet $au_{\it planar}$ is the $\mathfrak{F}_{\it cyc}$ -operad for planar structures
- $i^*(\tau_{planar}) = \tau_{assoc} \ (\tau_{planar} \ \text{is the "cyclic" version of} \ \tau_{assoc})$
- $\tau_{ribbon} = j_!(\tau_{planar})$



- ullet au_{assoc} is the \mathfrak{F}_{sym} -operad for associative monoids
- ullet $au_{ extit{planar}}$ is the $\mathfrak{F}_{ extit{cyc}} ext{-operad}$ for planar structures
- $i^*(\tau_{planar}) = \tau_{assoc} (\tau_{planar} \text{ is the "cyclic" version of } \tau_{assoc})$
- $au_{ribbon} = j_!(au_{planar})$

The set $j_!(\tau_{planar})(\gamma, n)$ is in bijection with either

- ullet equ. cl. of one-vertex ribbon graphs with γ loops and n flags
- $\{(g, s; p_1, \dots, p_{\nu}) \mid n = p_1 + \dots + p_{\nu} \text{ and } 1 2g = \nu + s \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathfrak{F}_{surf-mod}$ can be considered as genus-labeled "polycyclic" graphs and $J(\mathtt{1})=\mathtt{1}$

$$J \downarrow (g, s; p_1, \ldots, p_{\nu}) \simeq \operatorname{rb}_{g, s}^{p_1, \ldots, p_{\nu}}$$

The set $j_!(\tau_{planar})(\gamma, n)$ is in bijection with either

- \bullet equ. cl. of one-vertex ribbon graphs with γ loops and n flags
- $\{(g, s; p_1, \dots, p_{\nu}) \mid n = p_1 + \dots + p_{\nu} \text{ and } 1 2g = \nu + s \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathfrak{F}_{surf-mod}$ can be considered as genus-labeled "polycyclic" graphs and $J(\mathfrak{1})=\mathfrak{1}$.

$$J\downarrow (g,s;p_1,\ldots,p_{\nu})\simeq {\mathrm{rb}}_{g,s}^{p_1,\ldots,p_{\nu}}$$

The set $j_!(\tau_{planar})(\gamma, n)$ is in bijection with either

- \bullet equ. cl. of one-vertex ribbon graphs with γ loops and \emph{n} flags
- $\{(g, s; p_1, \dots, p_{\nu}) \mid n = p_1 + \dots + p_{\nu} \text{ and } 1 2g = \nu + s \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathfrak{F}_{surf-mod}$ can be considered as genus-labeled "polycyclic" graphs and $J(\mathfrak{1})=\mathfrak{1}$.

$$J\downarrow (g,s;p_1,\ldots,p_{\nu})\simeq \mathrm{rb}_{g,s}^{p_1,\ldots,p_{\nu}}$$

The set $j_!(\tau_{planar})(\gamma, n)$ is in bijection with either

- \bullet equ. cl. of one-vertex ribbon graphs with γ loops and \emph{n} flags
- $\{(g, s; p_1, \dots, p_{\nu}) \mid n = p_1 + \dots + p_{\nu} \text{ and } 1 2g = \nu + s \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathfrak{F}_{surf-mod}$ can be considered as genus-labeled "polycyclic" graphs and $J(\mathfrak{1})=\mathfrak{1}$.

$$J\downarrow (g,s;p_1,\ldots,p_{\nu})\simeq \mathrm{rb}_{g,s}^{p_1,\ldots,p_{\nu}}$$

The set $j_!(\tau_{planar})(\gamma, n)$ is in bijection with either

- ullet equ. cl. of one-vertex ribbon graphs with γ loops and n flags
- $\{(g, s; p_1, \dots, p_{\nu}) \mid n = p_1 + \dots + p_{\nu} \text{ and } 1 2g = \nu + s \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathfrak{F}_{surf-mod}$ can be considered as genus-labeled "polycyclic" graphs and J(1)=1.

$$J\downarrow (g,s;p_1,\ldots,p_{\nu})\simeq {\mathrm{rb}}_{g,s}^{p_1,\ldots,p_{\nu}}$$

The set $j_!(\tau_{planar})(\gamma, n)$ is in bijection with either

- ullet equ. cl. of one-vertex ribbon graphs with γ loops and n flags
- $\{(g, s; p_1, \dots, p_{\nu}) \mid n = p_1 + \dots + p_{\nu} \text{ and } 1 2g = \nu + s \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathfrak{F}_{surf-mod}$ can be considered as genus-labeled "polycyclic" graphs and $J(\mathfrak{1})=\mathfrak{1}$.

$$J\downarrow (g,s;p_1,\ldots,p_{\nu})\simeq {\mathrm{rb}}_{g,s}^{p_1,\ldots,p_{\nu}}$$

The set $j_!(\tau_{planar})(\gamma, n)$ is in bijection with either

- ullet equ. cl. of one-vertex ribbon graphs with γ loops and n flags
- $\{(g, s; p_1, \dots, p_{\nu}) \mid n = p_1 + \dots + p_{\nu} \text{ and } 1 2g = \nu + s \gamma\}$
- topological types of bordered oriented surfaces of genus g with s punctures and ν boundaries having p_i marked points each

Corollary (Markl, B-K)

The morphisms of the Feynman category $\mathfrak{F}_{surf-mod}$ can be considered as genus-labeled "polycyclic" graphs and J(1)=1.

$$J\downarrow (g,s;p_1,\ldots,p_{\nu})\simeq {
m rb}_{g,s}^{p_1,\ldots,p_{\nu}}$$

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $deg(\phi \circ \psi) = deg(\phi) + deg(\psi)$
- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

In the non-unital case without constants, the Feynman categories $\mathfrak{F}_{sym}, \mathfrak{F}_{cyc}, \mathfrak{F}_{mod}, \mathfrak{F}_{non-sym}, \mathfrak{F}_{plan-cyc}, \mathfrak{F}_{surf-mod}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_{ϕ} .

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

In the non-unital case without constants, the Feynman categories $\mathfrak{F}_{\mathit{sym}}, \mathfrak{F}_{\mathit{cyc}}, \mathfrak{F}_{\mathit{mod}}, \mathfrak{F}_{\mathit{non-sym}}, \mathfrak{F}_{\mathit{plan-cyc}}, \mathfrak{F}_{\mathit{surf-mod}}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_{ϕ} .

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

In the non-unital case without constants, the Feynman categories $\mathfrak{F}_{sym}, \mathfrak{F}_{cyc}, \mathfrak{F}_{mod}, \mathfrak{F}_{non-sym}, \mathfrak{F}_{plan-cyc}, \mathfrak{F}_{surf-mod}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_{ϕ} .

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $deg(\phi \circ \psi) = deg(\phi) + deg(\psi)$
- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

In the non-unital case without constants, the Feynman categories $\mathfrak{F}_{\mathit{sym}}, \mathfrak{F}_{\mathit{cyc}}, \mathfrak{F}_{\mathit{mod}}, \mathfrak{F}_{\mathit{non-sym}}, \mathfrak{F}_{\mathit{plan-cyc}}, \mathfrak{F}_{\mathit{surf-mod}}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_{ϕ} .

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $deg(\phi \circ \psi) = deg(\phi) + deg(\psi)$
- $deg(\phi \otimes \psi) = deg(\phi) + deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

In the non-unital case without constants, the Feynman categories $\mathfrak{F}_{sym}, \mathfrak{F}_{cyc}, \mathfrak{F}_{mod}, \mathfrak{F}_{non-sym}, \mathfrak{F}_{plan-cyc}, \mathfrak{F}_{surf-mod}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_{ϕ} .

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- $deg(\phi \otimes \psi) = deg(\phi) + deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

In the non-unital case without constants, the Feynman categories $\mathfrak{F}_{sym}, \mathfrak{F}_{cyc}, \mathfrak{F}_{mod}, \mathfrak{F}_{non-sym}, \mathfrak{F}_{plan-cyc}, \mathfrak{F}_{surf-mod}$ are cubical. The degree of ϕ is the number of edges of the representing graph Γ_{ϕ} .

Definition ($W_{\mathcal{R}}$ -construction)

Let P be an operad over a cubical Feynman category \mathfrak{F} . Put

$$(W_{\mathfrak{F}}P)(B) = \left(\coprod_{\phi \in \mathfrak{F}(A,B)} P(A) \times_{\operatorname{Aut}_{\mathfrak{F}}(\phi)} [0,1]^{\operatorname{deg}(\phi)}\right) / \sim$$

where identifications are on faces of $[0,1]^{\deg(\phi)}$ according to coarser factorisations of ϕ . Aut $_{\mathfrak{F}}(\phi)$ acts on both sides.

Proposition (Kaufmann-Ward, cf. Boardman-Vogt, B-Moerdijk)

For any cubical Feynman category \mathfrak{F} , the category of topological \mathfrak{F} -operads admits a *transferred model structure*. If P has an underlying cofibrant \mathcal{V} -collection then $W_{\mathfrak{F}}P$ is a *cofibrant* \mathfrak{F} -operad

Definition ($W_{\mathfrak{F}}$ -construction)

Let P be an operad over a cubical Feynman category \mathfrak{F} . Put

$$(W_{\mathfrak{F}}P)(B) = \left(\coprod_{\phi \in \mathfrak{F}(A,B)} P(A) \times_{\operatorname{Aut}_{\mathfrak{F}}(\phi)} [0,1]^{\operatorname{deg}(\phi)}\right) / \sim$$

where identifications are on faces of $[0,1]^{\deg(\phi)}$ according to coarser factorisations of ϕ . Aut_{\mathfrak{F}} (ϕ) acts on both sides.

For "graphical" Feynman categories: $\operatorname{Aut}_{\mathfrak{F}}(\phi) \cong \operatorname{Aut}(\Gamma_{\phi})$.

Proposition (Kaufmann-Ward, cf. Boardman-Vogt, B-Moerdijk)

For any cubical Feynman category \mathfrak{F} , the category of topological \mathfrak{F} -operads admits a *transferred model structure*. If P has an underlying cofibrant \mathcal{V} -collection then $W_{\mathfrak{F}}P$ is a *cofibrant* \mathfrak{F} -operad.

Definition ($W_{\mathfrak{F}}$ -construction)

Let P be an operad over a cubical Feynman category \mathfrak{F} . Put

$$(W_{\mathfrak{F}}P)(B) = \left(\coprod_{\phi \in \mathfrak{F}(A,B)} P(A) imes_{\operatorname{Aut}_{\mathfrak{F}}(\phi)} [0,1]^{\operatorname{deg}(\phi)}
ight) / \sim$$

where identifications are on faces of $[0,1]^{\deg(\phi)}$ according to coarser factorisations of ϕ . $\operatorname{Aut}_{\mathfrak{F}}(\phi)$ acts on both sides. For "graphical" Feynman categories: $\operatorname{Aut}_{\mathfrak{F}}(\phi) \cong \operatorname{Aut}(\Gamma_{\phi})$.

Proposition (Kaufmann-Ward, cf. Boardman-Vogt, B-Moerdijk)

For any cubical Feynman category \mathfrak{F} , the category of topological \mathfrak{F} -operads admits a *transferred model structure*. If P has an underlying cofibrant \mathcal{V} -collection then $W_{\mathfrak{F}}P$ is a *cofibrant* \mathfrak{F} -operad

Definition ($W_{\mathfrak{F}}$ -construction)

Let P be an operad over a cubical Feynman category \mathfrak{F} . Put

$$(W_{\mathfrak{F}}P)(B) = \left(\coprod_{\phi \in \mathfrak{F}(A,B)} P(A) imes_{\operatorname{Aut}_{\mathfrak{F}}(\phi)} [0,1]^{\operatorname{deg}(\phi)}
ight) / \sim$$

where identifications are on faces of $[0,1]^{\deg(\phi)}$ according to coarser factorisations of ϕ . $\operatorname{Aut}_{\mathfrak{F}}(\phi)$ acts on both sides. For "graphical" Feynman categories: $\operatorname{Aut}_{\mathfrak{F}}(\phi) \cong \operatorname{Aut}(\Gamma_{\phi})$.

Proposition (Kaufmann-Ward, cf. Boardman-Vogt, B-Moerdijk)

For any cubical Feynman category \mathfrak{F} , the category of topological \mathfrak{F} -operads admits a *transferred model structure*. If P has an underying cofibrant \mathcal{V} -collection then $W_{\mathfrak{F}}P$ is a *cofibrant* \mathfrak{F} -operad.

- $W_{sym}(\tau_{assoc})$ (rooted corolla)=associahedron
- $W_{cyc}(\tau_{planar})$ (corolla)=cyclohedron

Proposition (B-K)

Let $\phi: \mathfrak{F} \to \mathfrak{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathfrak{F}^{1}})(B) \simeq |\operatorname{nerve}(\mathfrak{F} \downarrow B)|$
- $\phi_!(W_{\mathfrak{F}}1)(B') \simeq |\operatorname{nerve}(\phi \downarrow B')|$

$$J_!(W_{plan-cyc}1)(g,s;p_1,\ldots,p_{\nu})\simeq |\mathrm{rb}_{g,s}^{p_1,\ldots,p_{\nu}}|\simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_{\nu}}$$

- $W_{sym}(\tau_{assoc})$ (rooted corolla)=associahedron
- $W_{cyc}(\tau_{planar})$ (corolla)=cyclohedron

Proposition (B-K)

Let $\phi: \mathfrak{F} \to \mathfrak{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathfrak{F}}1)(B) \simeq |\operatorname{nerve}(\mathfrak{F} \downarrow B)|$
- $\phi_!(W_{\mathfrak{F}}\mathbf{1})(B') \simeq |\operatorname{nerve}(\phi \downarrow B')|$

$$J_!(W_{plan-cyc}1)(g,s;p_1,\ldots,p_{
u})\simeq |\mathrm{rb}_{g,s}^{p_1,\ldots,p_{
u}}|\simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_{
u}}$$

- $W_{sym}(au_{assoc})$ (rooted corolla)=associahedron
- $W_{cyc}(\tau_{planar})$ (corolla)=cyclohedron

Proposition (B-K)

Let $\phi: \mathfrak{F} \to \mathfrak{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathfrak{F}}1)(B) \simeq |\operatorname{nerve}(\mathfrak{F} \downarrow B)|$
- $\phi_!(W_{\mathfrak{F}^1})(B') \simeq |\operatorname{nerve}(\phi \downarrow B')|$

$$J_!(\mathit{W}_{\mathit{plan-cyc}} \mathtt{1})(\mathit{g}, \mathit{s}; \mathit{p}_1, \ldots, \mathit{p}_{\nu}) \simeq |\mathrm{rb}_{\mathit{g}, \mathit{s}}^{\mathit{p}_1, \ldots, \mathit{p}_{\nu}}| \simeq \mathcal{M}_{\mathit{g}, \mathit{s}}^{\mathit{p}_1, \ldots, \mathit{p}_{\nu}}$$

- $W_{sym}(\tau_{assoc})$ (rooted corolla)=associahedron
- $W_{cyc}(\tau_{planar})$ (corolla)=cyclohedron

Proposition (B-K)

Let $\phi:\mathfrak{F} o\mathfrak{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathfrak{F}}1)(B) \simeq |\operatorname{nerve}(\mathfrak{F} \downarrow B)|$
- $\phi_!(W_{\mathfrak{F}^1})(B') \simeq |\operatorname{nerve}(\phi \downarrow B')|$

$$J_!(W_{ extit{plan-cyc}} extbf{1})(g,s;p_1,\ldots,p_
u) \simeq |\mathrm{rb}_{g,s}^{p_1,\ldots,p_
u}| \simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_
u}$$

- $W_{sym}(\tau_{assoc})$ (rooted corolla)=associahedron
- $W_{cyc}(\tau_{planar})$ (corolla)=cyclohedron

Proposition (B-K)

Let $\phi: \mathfrak{F} \to \mathfrak{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathfrak{F}}1)(B) \simeq |\operatorname{nerve}(\mathfrak{F} \downarrow B)|$
- $\phi_!(W_{\mathfrak{F}}1)(B') \simeq |\operatorname{nerve}(\phi \downarrow B')|$

$$J_!(\mathit{W}_{\mathit{plan-cyc}} \mathtt{1})(\mathit{g}, \mathit{s}; \mathit{p}_1, \ldots, \mathit{p}_{\nu}) \simeq |\mathrm{rb}_{\mathit{g}, \mathit{s}}^{\mathit{p}_1, \ldots, \mathit{p}_{\nu}}| \simeq \mathcal{M}_{\mathit{g}, \mathit{s}}^{\mathit{p}_1, \ldots, \mathit{p}_{\nu}}$$

- $W_{sym}(\tau_{assoc})$ (rooted corolla)=associahedron
- $W_{cyc}(\tau_{planar})$ (corolla)=cyclohedron

Proposition (B-K)

Let $\phi: \mathfrak{F} \to \mathfrak{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathfrak{F}}1)(B) \simeq |\operatorname{nerve}(\mathfrak{F} \downarrow B)|$
- $\phi_!(W_{\mathfrak{F}}1)(B') \simeq |\operatorname{nerve}(\phi \downarrow B')|$

$$J_!(\mathit{W}_{\mathit{plan-cyc}} \mathtt{1})(\mathit{g}, \mathit{s}; \mathit{p}_1, \ldots, \mathit{p}_{\nu}) \simeq |\mathrm{rb}_{\mathit{g}, \mathit{s}}^{\mathit{p}_1, \ldots, \mathit{p}_{\nu}}| \simeq \mathcal{M}_{\mathit{g}, \mathit{s}}^{\mathit{p}_1, \ldots, \mathit{p}_{\nu}}$$

- $W_{sym}(\tau_{assoc})$ (rooted corolla)=associahedron
- $W_{cyc}(\tau_{planar})$ (corolla)=cyclohedron

Proposition (B-K)

Let $\phi: \mathfrak{F} \to \mathfrak{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathfrak{F}}1)(B) \simeq |\operatorname{nerve}(\mathfrak{F} \downarrow B)|$
- $\phi_!(W_{\mathfrak{F}}1)(B') \simeq |\operatorname{nerve}(\phi \downarrow B')|$

$$J_!(\mathit{W}_{\mathit{plan-cyc}} \mathtt{1})(\mathit{g}, \mathit{s}; \mathit{p}_1, \ldots, \mathit{p}_{\nu}) \simeq |\mathrm{rb}_{\mathit{g}, \mathit{s}}^{\mathit{p}_1, \ldots, \mathit{p}_{\nu}}| \simeq \mathcal{M}_{\mathit{g}, \mathit{s}}^{\mathit{p}_1, \ldots, \mathit{p}_{\nu}}$$

- $W_{sym}(\tau_{assoc})$ (rooted corolla)=associahedron
- $W_{cyc}(\tau_{planar})$ (corolla)=cyclohedron

Proposition (B-K)

Let $\phi: \mathfrak{F} \to \mathfrak{F}'$ be a functor of cubical Feynman categories.

- $(W_{\mathfrak{F}}1)(B) \simeq |\operatorname{nerve}(\mathfrak{F} \downarrow B)|$
- $\phi_!(W_{\mathfrak{F}^1})(B') \simeq |\operatorname{nerve}(\phi \downarrow B')|$

$$J_!(W_{ extit{plan-cyc}} extbf{1})(g,s;p_1,\ldots,p_
u) \simeq |\mathrm{rb}_{g,s}^{p_1,\ldots,p_
u}| \simeq \mathcal{M}_{g,s}^{p_1,\ldots,p_
u}$$

- $J_!(W_{plan-cyc}1) = (\mathbb{L}J_!)(1)$? no for transferred *projective* model structure, but yes for transferred *equivariant* model structure, cf. Vogt.
- Since $p_!(\mathbf{1}_{plan-cyc}) = \tau_{planar}$, $j_!(W\tau_{planar})$ decomposes according to $p_!J_!(W_{plan-cyc}\mathbf{1})$. What about derived modular envelopes of other cyclic operads ?
- $\chi_{orbi}(\mathcal{M}_{g,1}) = \chi_{orbi}(\mathrm{rb}_{g,1}) = \zeta(1-2g) = \zeta(\chi(S_{g,1}))$ (Harer-Zagier). What about $\chi_{orbi}(\mathrm{rb}_{g,s}^{p_1,\dots,p_{\nu}})$? Relationship with multi-zeta functions?
- Relationship with Kontsevich's graph homology or a flagged version of it?

- $J_!(W_{plan-cyc}1) = (\mathbb{L}J_!)(1)$? no for transferred *projective* model structure, but yes for transferred *equivariant* model structure, cf. Vogt.
- Since $p_!(\mathbf{1}_{plan-cyc}) = \tau_{planar}$, $j_!(W\tau_{planar})$ decomposes according to $p_!J_!(W_{plan-cyc}\mathbf{1})$. What about derived modular envelopes of other cyclic operads ?
- $\chi_{orbi}(\mathcal{M}_{g,1}) = \chi_{orbi}(\mathrm{rb}_{g,1}) = \zeta(1-2g) = \zeta(\chi(S_{g,1}))$ (Harer-Zagier). What about $\chi_{orbi}(\mathrm{rb}_{g,s}^{p_1,\dots,p_{\nu}})$? Relationship with multi-zeta functions?
- Relationship with Kontsevich's graph homology or a flagged version of it?

- $J_!(W_{plan-cyc}1) = (\mathbb{L}J_!)(1)$? no for transferred *projective* model structure, but yes for transferred *equivariant* model structure, cf. Vogt.
- Since $p_!(\mathbf{1}_{plan-cyc}) = \tau_{planar}$, $j_!(W\tau_{planar})$ decomposes according to $p_!J_!(W_{plan-cyc}\mathbf{1})$. What about derived modular envelopes of other cyclic operads ?
- $\chi_{orbi}(\mathcal{M}_{g,1}) = \chi_{orbi}(\mathrm{rb}_{g,1}) = \zeta(1-2g) = \zeta(\chi(S_{g,1}))$ (Harer-Zagier). What about $\chi_{orbi}(\mathrm{rb}_{g,s}^{p_1,\dots,p_{\nu}})$? Relationship with multi-zeta functions ?
- Relationship with Kontsevich's graph homology or a flagged version of it?

- $J_!(W_{plan-cyc}1) = (\mathbb{L}J_!)(1)$? no for transferred *projective* model structure, but yes for transferred *equivariant* model structure, cf. Vogt.
- Since $p_!(\mathbf{1}_{plan-cyc}) = \tau_{planar}$, $j_!(W\tau_{planar})$ decomposes according to $p_!J_!(W_{plan-cyc}\mathbf{1})$. What about derived modular envelopes of other cyclic operads ?
- $\chi_{orbi}(\mathcal{M}_{g,1}) = \chi_{orbi}(\mathrm{rb}_{g,1}) = \zeta(1-2g) = \zeta(\chi(S_{g,1}))$ (Harer-Zagier). What about $\chi_{orbi}(\mathrm{rb}_{g,s}^{p_1,\dots,p_{\nu}})$? Relationship with multi-zeta functions ?
- Relationship with Kontsevich's graph homology or a flagged version of it?

- $J_!(W_{plan-cyc}1) = (\mathbb{L}J_!)(1)$? no for transferred *projective* model structure, but yes for transferred *equivariant* model structure, cf. Vogt.
- Since $p_!(\mathbf{1}_{plan-cyc}) = \tau_{planar}$, $j_!(W\tau_{planar})$ decomposes according to $p_!J_!(W_{plan-cyc}\mathbf{1})$. What about derived modular envelopes of other cyclic operads ?
- $\chi_{orbi}(\mathcal{M}_{g,1}) = \chi_{orbi}(\mathrm{rb}_{g,1}) = \zeta(1-2g) = \zeta(\chi(\mathcal{S}_{g,1}))$ (Harer-Zagier). What about $\chi_{orbi}(\mathrm{rb}_{g,s}^{p_1,\ldots,p_{\nu}})$? Relationship with multi-zeta functions ?
- Relationship with Kontsevich's graph homology or a flagged version of it?

- $J_!(W_{plan-cyc}1) = (\mathbb{L}J_!)(1)$? no for transferred *projective* model structure, but yes for transferred *equivariant* model structure, cf. Vogt.
- Since $p_!(\mathbf{1}_{plan-cyc}) = \tau_{planar}$, $j_!(W\tau_{planar})$ decomposes according to $p_!J_!(W_{plan-cyc}\mathbf{1})$. What about derived modular envelopes of other cyclic operads ?
- $\chi_{orbi}(\mathcal{M}_{g,1}) = \chi_{orbi}(\mathrm{rb}_{g,1}) = \zeta(1-2g) = \zeta(\chi(\mathcal{S}_{g,1}))$ (Harer-Zagier). What about $\chi_{orbi}(\mathrm{rb}_{g,s}^{p_1,\ldots,p_{\nu}})$? Relationship with multi-zeta functions ?
- Relationship with Kontsevich's graph homology or a flagged version of it?