On the profinite fundamental group of a connected Grothendieck topos

Clemens Berger

Louvain-La-Neuve, July 2-8, CT2023

joint work with Victor Iwaniack Université Côte d'Azur

- Finite objects in a Grothendieck topos
- 2 Pretopos spanned by finite objects
- Galois categories
- 4 Atomic Grothendieck toposes
- 5 Profinite fundamental group

- finite set = finite sum of singletons
- finite covering = covering map with finite fibres
- finite object in a topos = ?

Definition (an object X of a Grothendieck topos $\gamma:\mathscr{E} o\mathscr{S}$ is)

- *locally finite* if there is a cover $(U_i)_{i \in I}$ of $1_{\mathscr{E}}$ such that $X \times U_i \cong \gamma^*(\{1, \dots, n_i\}) \times U_i$ in \mathscr{E}/U_i for each $i \in I$;
- decomposition-finite if it is a finite sum of connected objects;
- finite if it is locally finite and decomposition-finite.

Theorem

- finite set = finite sum of singletons
- finite covering = covering map with finite fibres
- finite object in a topos = ?

Definition (an object X of a Grothendieck topos $\gamma:\mathscr{E} o\mathscr{S}$ is)

- *locally finite* if there is a cover $(U_i)_{i \in I}$ of $1_{\mathscr{E}}$ such that $X \times U_i \cong \gamma^*(\{1, \dots, n_i\}) \times U_i$ in \mathscr{E}/U_i for each $i \in I$;
- decomposition-finite if it is a finite sum of connected objects;
- finite if it is locally finite and decomposition-finite.

Theorem

- finite set = finite sum of singletons
- finite covering = covering map with finite fibres
- finite object in a topos = ?

- finite set = finite sum of singletons
- finite covering = covering map with finite fibres
- finite object in a topos = ?

Definition (an object X of a Grothendieck topos $\gamma:\mathscr{E} o\mathscr{S}$ is)

- *locally finite* if there is a cover $(U_i)_{i \in I}$ of $1_{\mathscr{E}}$ such that $X \times U_i \cong \gamma^*(\{1, \dots, n_i\}) \times U_i$ in \mathscr{E}/U_i for each $i \in I$:
- decomposition-finite if it is a finite sum of connected objects;
- finite if it is locally finite and decomposition-finite.

Theorem

- finite set = finite sum of singletons
- finite covering = covering map with finite fibres
- finite object in a topos = ?

Definition (an object X of a Grothendieck topos $\gamma:\mathscr{E}\to\mathscr{S}$ is)

- locally finite if there is a cover $(U_i)_{i \in I}$ of $1_{\mathscr{E}}$ such that $X \times U_i \cong \gamma^*(\{1, \dots, n_i\}) \times U_i$ in \mathscr{E}/U_i for each $i \in I$;
- decomposition-finite if it is a finite sum of connected objects;
- finite if it is locally finite and decomposition-finite.

Theorem

- finite set = finite sum of singletons
- finite covering = covering map with finite fibres
- finite object in a topos = ?

Definition (an object X of a Grothendieck topos $\gamma:\mathscr{E}\to\mathscr{S}$ is)

- locally finite if there is a cover $(U_i)_{i \in I}$ of $1_{\mathscr{E}}$ such that $X \times U_i \cong \gamma^*(\{1, \ldots, n_i\}) \times U_i$ in \mathscr{E}/U_i for each $i \in I$;
- decomposition-finite if it is a finite sum of connected objects;
- finite if it is locally finite and decomposition-finite.

Theorem

- finite set = finite sum of singletons
- finite covering = covering map with finite fibres
- finite object in a topos = ?

Definition (an object X of a Grothendieck topos $\gamma:\mathscr{E}\to\mathscr{S}$ is)

- locally finite if there is a cover $(U_i)_{i \in I}$ of $1_{\mathscr{E}}$ such that $X \times U_i \cong \gamma^*(\{1, \dots, n_i\}) \times U_i$ in \mathscr{E}/U_i for each $i \in I$;
- decomposition-finite if it is a finite sum of connected objects;
- finite if it is locally finite and decomposition-finite.

Theorem

- finite set = finite sum of singletons
- finite covering = covering map with finite fibres
- finite object in a topos = ?

Definition (an object X of a Grothendieck topos $\gamma:\mathscr{E}\to\mathscr{S}$ is)

- locally finite if there is a cover $(U_i)_{i \in I}$ of $1_{\mathscr{E}}$ such that $X \times U_i \cong \gamma^*(\{1, \dots, n_i\}) \times U_i$ in \mathscr{E}/U_i for each $i \in I$;
- decomposition-finite if it is a finite sum of connected objects;
- finite if it is locally finite and decomposition-finite.

Theorem

- finite set = finite sum of singletons
- finite covering = covering map with finite fibres
- finite object in a topos = ?

Definition (an object X of a Grothendieck topos $\gamma:\mathscr{E}\to\mathscr{S}$ is)

- locally finite if there is a cover $(U_i)_{i \in I}$ of $1_{\mathscr{E}}$ such that $X \times U_i \cong \gamma^*(\{1, \dots, n_i\}) \times U_i$ in \mathscr{E}/U_i for each $i \in I$;
- decomposition-finite if it is a finite sum of connected objects;
- *finite* if it is locally finite and decomposition-finite.

Theorem

- X locally finite
- there is a globally supported U such that $X \times U$ is a *finite* cardinal in \mathcal{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

- ullet the singleton map $\{-\}:X o\Omega^X$ factors through 2^X
- and the induced map $(X^*,\cdot) \to (2^X,\vee)$ is an epimorphism.

- locally finite if and only if $\mathrm{Et}(\mathcal{F}) \to E$ is a finite covering
- decomposition-finite if and only if $\pi_0 \mathrm{Et}(\mathcal{F})$ is finite

- X locally finite
- there is a globally supported U such that $X \times U$ is a finite cardinal in \mathscr{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

- ullet the singleton map $\{-\}:X o\Omega^X$ factors through 2^X
- ullet and the induced map $(X^*,\cdot) o (2^X,\vee)$ is an epimorphism.

- locally finite if and only if $\mathrm{Et}(\mathcal{F}) \to E$ is a finite covering
- decomposition-finite if and only if $\pi_0 Et(\mathcal{F})$ is finite

- X locally finite
- there is a globally supported U such that $X \times U$ is a finite cardinal in \mathcal{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

- ullet the singleton map $\{-\}:X o\Omega^X$ factors through 2^X
- ullet and the induced map $(X^*,\cdot) o (2^X,\vee)$ is an epimorphism

- ullet locally finite if and only if $\operatorname{Et}(\mathcal{F}) \to E$ is a finite covering
- decomposition-finite if and only if $\pi_0 Et(\mathcal{F})$ is finite

- X locally finite
- there is a globally supported U such that $X \times U$ is a *finite cardinal* in \mathscr{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

- X is decidable and Kuratowski-finite if and only if
 - ullet the singleton map $\{-\}:X o\Omega^X$ factors through 2^X
 - ullet and the induced map $(X^*,\cdot) o (2^X,\vee)$ is an epimorphism

- ullet locally finite if and only if $\operatorname{Et}(\mathcal{F}) \to E$ is a finite covering
- decomposition-finite if and only if $\pi_0 \mathrm{Et}(\mathcal{F})$ is finite

- X locally finite
- there is a globally supported U such that $X \times U$ is a *finite cardinal* in \mathcal{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

ullet the singleton map $\{-\}:X o\Omega^X$ factors through 2^X

ullet and the induced map $(X^*,\cdot) o (2^X,\vee)$ is an epimorphism.

Corollary (a sheaf \mathcal{F} on a topological space E is)

locally finite if and only if Et(F) → E is a finite covering
 decomposition-finite if and only if π₀Et(F) is finite

- X locally finite
- there is a globally supported U such that $X \times U$ is a *finite cardinal* in \mathcal{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

- the singleton map $\{-\}: X \to \Omega^X$ factors through 2^X
- and the induced map $(X^*, \cdot) \to (2^X, \vee)$ is an epimorphism.

- ullet locally finite if and only if $\operatorname{Et}(\mathcal{F}) o E$ is a finite covering
- decomposition-finite if and only if $\pi_0 \mathrm{Et}(\mathcal{F})$ is finite

- X locally finite
- there is a globally supported U such that $X \times U$ is a *finite cardinal* in \mathcal{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

- the singleton map $\{-\}: X \to \Omega^X$ factors through 2^X
- and the induced map $(X^*, \cdot) \to (2^X, \vee)$ is an epimorphism.

Corollary (a sheaf \mathcal{F} on a topological space E is)

locally finite if and only if Et(F) → E is a finite covering
 decomposition-finite if and only if π₀Et(F) is finite

- X locally finite
- there is a globally supported U such that $X \times U$ is a *finite cardinal* in \mathscr{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

- the singleton map $\{-\}: X \to \Omega^X$ factors through 2^X
- and the induced map $(X^*, \cdot) \to (2^X, \vee)$ is an epimorphism.

Corollary (a sheaf $\mathcal F$ on a topological space E is)

locally finite if and only if Et(F) → E is a finite covering
 decomposition-finite if and only if π₀Et(F) is finite

- X locally finite
- there is a globally supported U such that $X \times U$ is a *finite cardinal* in \mathscr{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

- the singleton map $\{-\}: X \to \Omega^X$ factors through 2^X
- ullet and the induced map $(X^*,\cdot) o (2^X,ee)$ is an epimorphism.

- ullet locally finite if and only if $\operatorname{Et}(\mathcal{F}) \to E$ is a finite covering
- decomposition-finite if and only if $\pi_0 \text{Et}(\mathcal{F})$ is finite

- X locally finite
- there is a globally supported U such that $X \times U$ is a *finite cardinal* in \mathcal{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

- the singleton map $\{-\}: X \to \Omega^X$ factors through 2^X
- and the induced map $(X^*,\cdot) \to (2^X,\vee)$ is an epimorphism.

- locally finite if and only if $\text{Et}(\mathcal{F}) \to E$ is a finite covering
- decomposition-finite if and only if $\pi_0 \text{Et}(\mathcal{F})$ is finite

- X locally finite
- there is a globally supported U such that $X \times U$ is a finite cardinal in \mathcal{E}/U (Johnstone)
- X decidable Kuratowski-finite (Kock-Lecouturier-Mikkelsen)

Lemma (in an elementary topos)

X is decidable and Kuratowski-finite if and only if

- the singleton map $\{-\}: X \to \Omega^X$ factors through 2^X
- and the induced map $(X^*, \cdot) \to (2^X, \vee)$ is an epimorphism.

- locally finite if and only if $Et(\mathcal{F}) \to E$ is a finite covering
- decomposition-finite if and only if $\pi_0 \text{Et}(\mathcal{F})$ is finite

Binary sums and binary products of finite objects are finite.

Lemma

Complemented subobjects of finite objects are finite. The image of a morphism between finite objects is complemented.

Definition

A *pretopos* is an exact and extensive category. A pretopos is *embedded* in a topos if the inclusion is full and exact.

Proposition (for any Grothendieck topos $\mathscr E$ with finite $1_{\mathscr E}$)

the full subcategory \mathscr{E}_f of finite objects of \mathscr{E} is an embedded pretopos in which all subobjects are complemented.

Binary sums and binary products of finite objects are finite.

Lemma

Complemented subobjects of finite objects are finite. The image of a morphism between finite objects is complemented.

Definition

A *pretopos* is an exact and extensive category. A pretopos is *embedded* in a topos if the inclusion is full and exact.

Proposition (for any Grothendieck topos $\mathscr E$ with finite $1_{\mathscr E}$)

the full subcategory \mathscr{E}_f of finite objects of \mathscr{E} is an embedded pretopos in which all subobjects are complemented.

Binary sums and binary products of finite objects are finite.

Lemma

Complemented subobjects of finite objects are finite. The image of a morphism between finite objects is complemented.

Definition

A *pretopos* is an exact and extensive category. A pretopos is *embedded* in a topos if the inclusion is full and exact.

Proposition (for any Grothendieck topos $\mathscr E$ with finite $1_{\mathscr E}$)

the full subcategory \mathcal{E}_f of finite objects of \mathcal{E} is an embedded pretopos in which all subobjects are complemented.

Binary sums and binary products of finite objects are finite.

Lemma

Complemented subobjects of finite objects are finite. The image of a morphism between finite objects is complemented.

Definition

A *pretopos* is an exact and extensive category. A pretopos is *embedded* in a topos if the inclusion is full and exact.

Proposition (for any Grothendieck topos $\mathscr E$ with finite $1_\mathscr E$)

the full subcategory \mathcal{E}_f of finite objects of \mathcal{E} is an embedded pretopos in which all subobjects are complemented.

Binary sums and binary products of finite objects are finite.

Lemma

Complemented subobjects of finite objects are finite. The image of a morphism between finite objects is complemented.

Definition

A *pretopos* is an exact and extensive category. A pretopos is *embedded* in a topos if the inclusion is full and exact.

Proposition (for any Grothendieck topos $\mathscr E$ with finite $1_{\mathscr E}$)

the full subcategory \mathscr{E}_f of finite objects of \mathscr{E} is an embedded pretopos in which all subobjects are complemented.

Binary sums and binary products of finite objects are finite.

Lemma

Complemented subobjects of finite objects are finite. The image of a morphism between finite objects is complemented.

Definition

A *pretopos* is an exact and extensive category. A pretopos is *embedded* in a topos if the inclusion is full and exact.

Proposition (for any Grothendieck topos $\mathscr E$ with finite $1_{\mathscr E}$)

the full subcategory \mathscr{E}_f of finite objects of \mathscr{E} is an embedded pretopos in which all subobjects are complemented.

A Galois category C is a pretopos with complemented subobjects and with an exact conservative fibre functor $F_C: C \to \mathscr{S}_f$.

Theorem (for any connected Grothendieck topos $\gamma:\mathscr{E}\to\mathscr{S}$) the pretopos \mathscr{E}_f of finite objects of \mathscr{E} is a Galois category for an essentially unique fibre functor $F_{\mathscr{E}_f}:\mathscr{E}_f\to\mathscr{S}_f$.

Definition (splitting Galois objects)

A Galois object is a connected, globally supported object A such that $A \times \gamma^*(\operatorname{Aut}(A)) \cong A \times A$.

A Galois object A is said to *split* X if $X \times A$ is constant in \mathcal{E}/A . Spl(A) is the full subcategory of objects of \mathcal{E} split by A.

A Galois category C is a pretopos with complemented subobjects and with an exact conservative fibre functor $F_C: C \to \mathscr{S}_f$.

Theorem (for any connected Grothendieck topos $\gamma: \mathscr{E} \to \mathscr{S}$) the pretopos \mathscr{E}_f of finite objects of \mathscr{E} is a Galois category for an essentially unique fibre functor $F_{\mathscr{E}_f}: \mathscr{E}_f \to \mathscr{S}_f$.

Definition (splitting Galois objects)

A Galois object is a connected, globally supported object A such that $A \times \gamma^*(\operatorname{Aut}(A)) \cong A \times A$.

A Galois object A is said to *split* X if $X \times A$ is constant in \mathcal{E}/A Spl(A) is the full subcategory of objects of \mathcal{E} split by A.

A Galois category $\mathcal C$ is a pretopos with complemented subobjects and with an exact conservative fibre functor $F_{\mathcal C}:\mathcal C\to\mathscr S_f$.

Theorem (for any connected Grothendieck topos $\gamma:\mathscr{E} o\mathscr{S})$

the pretopos \mathscr{E}_f of finite objects of \mathscr{E} is a Galois category for an essentially unique fibre functor $F_{\mathscr{E}_f}:\mathscr{E}_f\to\mathscr{S}_f$.

Definition (splitting Galois objects)

A *Galois object* is a connected, globally supported object A such that $A \times \gamma^*(\operatorname{Aut}(A)) \cong A \times A$.

A Galois object A is said to split X if $X \times A$ is constant in \mathcal{E}/A Spl(A) is the full subcategory of objects of \mathcal{E} split by A.

A Galois category $\mathcal C$ is a pretopos with complemented subobjects and with an exact conservative fibre functor $F_{\mathcal C}:\mathcal C\to\mathscr S_f$.

Theorem (for any connected Grothendieck topos $\gamma:\mathscr{E} o\mathscr{S})$

the pretopos \mathscr{E}_f of finite objects of \mathscr{E} is a Galois category for an essentially unique fibre functor $F_{\mathscr{E}_f}:\mathscr{E}_f\to\mathscr{S}_f$.

Definition (splitting Galois objects)

A *Galois object* is a connected, globally supported object A such that $A \times \gamma^*(\operatorname{Aut}(A)) \cong A \times A$.

A Galois object A is said to *split* X if $X \times A$ is constant in \mathscr{E}/A . $\mathrm{Spl}(A)$ is the full subcategory of objects of \mathscr{E} split by A.

A Galois category $\mathcal C$ is a pretopos with complemented subobjects and with an exact conservative fibre functor $F_{\mathcal C}:\mathcal C\to\mathscr S_f$.

Theorem (for any connected Grothendieck topos $\gamma:\mathscr{E} o\mathscr{S})$

the pretopos \mathscr{E}_f of finite objects of \mathscr{E} is a Galois category for an essentially unique fibre functor $F_{\mathscr{E}_f}:\mathscr{E}_f\to\mathscr{S}_f$.

Definition (splitting Galois objects)

A *Galois object* is a connected, globally supported object A such that $A \times \gamma^*(\operatorname{Aut}(A)) \cong A \times A$.

A Galois object A is said to *split* X if $X \times A$ is constant in \mathscr{E}/A . $\mathrm{Spl}(A)$ is the full subcategory of objects of \mathscr{E} split by A.

A Galois category $\mathcal C$ is a pretopos with complemented subobjects and with an exact conservative fibre functor $F_{\mathcal C}:\mathcal C\to\mathscr S_f$.

Theorem (for any connected Grothendieck topos $\gamma:\mathscr{E} o\mathscr{S})$

the pretopos \mathscr{E}_f of finite objects of \mathscr{E} is a Galois category for an essentially unique fibre functor $F_{\mathscr{E}_f}:\mathscr{E}_f\to\mathscr{S}_f$.

Definition (splitting Galois objects)

A *Galois object* is a connected, globally supported object A such that $A \times \gamma^*(\operatorname{Aut}(A)) \cong A \times A$.

A Galois object A is said to *split* X if $X \times A$ is constant in \mathscr{E}/A . $\mathrm{Spl}(A)$ is the full subcategory of objects of \mathscr{E} split by A.

Remark (intrinsic cardinality of finite connected objects)

The category $\mathrm{Spl}(A)$ is equivalent to the category $\mathbb{B}\mathrm{Aut}(A)$ of $\mathrm{Aut}(A)$ -sets via $M\mapsto X=A\times_{\mathrm{Aut}(A)}M$.

Each finite connected object X is contained in a "smallest" category $\mathrm{Spl}(A)$. The $\mathrm{Aut}(A)$ -set M may be identified with $\mathscr{E}(A,X)$ via a canonical isomorphism

 $\gamma^{\alpha}(\mathcal{E}(A,X)) \times A = \gamma^{\alpha}\gamma_{\alpha}(X^{\alpha}) \times A \xrightarrow{\Xi} X \times A.$

Remark (intrinsic cardinality of finite objects)

Each $B \twoheadrightarrow A$ induces $\mathrm{Spl}(A) \subset \mathrm{Spl}(B)$ and $\mathscr{E}(A,X) \cong \mathscr{E}(B,X)$.

If $X = \coprod_{i \in \pi_0(X)} X_i$ and A_i splits X_i then each A splitting a connected component of $\prod A_i$ splits all X_i and

$$\mathscr{E}(A,X) = \coprod_{i \in \pi_0(X)} \mathscr{E}(A_i,X_i)$$

Remark (intrinsic cardinality of finite connected objects)

The category $\mathrm{Spl}(A)$ is equivalent to the category $\mathbb{B}\mathrm{Aut}(A)$ of $\mathrm{Aut}(A)$ -sets via $M\mapsto X=A\times_{\mathrm{Aut}(A)}M$.

Each finite connected object X is contained in a "smallest" category $\mathrm{Spl}(A)$. The $\mathrm{Aut}(A)$ -set M may be identified with $\mathscr{E}(A,X)$ via a canonical isomorphism

$\gamma^*(\mathcal{E}(A,X)) \times A = \gamma^*\gamma_*(X^A) \times A \xrightarrow{=} X \times A.$

Remark (intrinsic cardinality of finite objects)

Each
$$B woheadrightarrow A$$
 induces $\mathrm{Spl}(A) \subset \mathrm{Spl}(B)$ and $\mathscr{E}(A,X) \cong \mathscr{E}(B,X)$.

If $X = \coprod_{i \in \pi_0(X)} X_i$ and A_i splits X_i then each A splitting a connected component of $\prod A_i$ splits all X_i and

$$\mathscr{E}(A,X) = \coprod_{i \in \pi_0(X)} \mathscr{E}(A_i,X_i)$$

The category $\mathrm{Spl}(A)$ is equivalent to the category $\mathbb{B}\mathrm{Aut}(A)$ of $\mathrm{Aut}(A)$ -sets via $M\mapsto X=A\times_{\mathrm{Aut}(A)}M$.

Each finite connected object X is contained in a "smallest" category $\mathrm{Spl}(A)$. The $\mathrm{Aut}(A)$ -set M may be identified with $\mathscr{E}(A,X)$ via a canonical isomorphism

$$\gamma^*(\mathscr{E}(A,X)) \times A = \gamma^*\gamma_*(X^A) \times A \stackrel{\cong}{\longrightarrow} X \times A.$$

Remark (intrinsic cardinality of finite objects)

Each
$$B woheadrightarrow A$$
 induces $\mathrm{Spl}(A) \subset \mathrm{Spl}(B)$ and $\mathscr{E}(A,X) \cong \mathscr{E}(B,X)$.

$$\mathscr{E}(A,X) = \coprod_{i \in \pi_0(X)} \mathscr{E}(A_i,X_i)$$

The category $\mathrm{Spl}(A)$ is equivalent to the category $\mathbb{B}\mathrm{Aut}(A)$ of $\mathrm{Aut}(A)$ -sets via $M\mapsto X=A\times_{\mathrm{Aut}(A)}M$.

Each finite connected object X is contained in a "smallest" category $\mathrm{Spl}(A)$. The $\mathrm{Aut}(A)$ -set M may be identified with $\mathscr{E}(A,X)$ via a canonical isomorphism

$$\gamma^*(\mathscr{E}(A,X)) \times A = \gamma^*\gamma_*(X^A) \times A \stackrel{\cong}{\longrightarrow} X \times A.$$

Remark (intrinsic cardinality of finite objects)

Each
$$B woheadrightarrow A$$
 induces $\mathrm{Spl}(A) \subset \mathrm{Spl}(B)$ and $\mathscr{E}(A,X) \cong \mathscr{E}(B,X)$

$$\mathscr{E}(A,X) = \coprod_{i \in \pi_0(X)} \mathscr{E}(A_i,X_i)$$

The category $\mathrm{Spl}(A)$ is equivalent to the category $\mathbb{B}\mathrm{Aut}(A)$ of $\mathrm{Aut}(A)$ -sets via $M\mapsto X=A\times_{\mathrm{Aut}(A)}M$.

Each finite connected object X is contained in a "smallest" category $\mathrm{Spl}(A)$. The $\mathrm{Aut}(A)$ -set M may be identified with $\mathscr{E}(A,X)$ via a canonical isomorphism

$$\gamma^*(\mathscr{E}(A,X)) \times A = \gamma^*\gamma_*(X^A) \times A \stackrel{\cong}{\longrightarrow} X \times A.$$

Remark (intrinsic cardinality of finite objects)

Each $B \twoheadrightarrow A$ induces $\mathrm{Spl}(A) \subset \mathrm{Spl}(B)$ and $\mathscr{E}(A,X) \cong \mathscr{E}(B,X)$.

$$\mathscr{E}(A,X) = \coprod_{i \in \pi_0(X)} \mathscr{E}(A_i,X_i).$$

The category $\mathrm{Spl}(A)$ is equivalent to the category $\mathbb{B}\mathrm{Aut}(A)$ of $\mathrm{Aut}(A)$ -sets via $M\mapsto X=A\times_{\mathrm{Aut}(A)}M$.

Each finite connected object X is contained in a "smallest" category $\mathrm{Spl}(A)$. The $\mathrm{Aut}(A)$ -set M may be identified with $\mathscr{E}(A,X)$ via a canonical isomorphism

$$\gamma^*(\mathscr{E}(A,X)) \times A = \gamma^*\gamma_*(X^A) \times A \stackrel{\cong}{\longrightarrow} X \times A.$$

Remark (intrinsic cardinality of finite objects)

Each $B \twoheadrightarrow A$ induces $\mathrm{Spl}(A) \subset \mathrm{Spl}(B)$ and $\mathscr{E}(A,X) \cong \mathscr{E}(B,X)$.

$$\mathscr{E}(A,X) = \coprod_{i \in \pi_0(X)} \mathscr{E}(A_i,X_i).$$

atomic = locally connected and Boolean

Lemma

In an atomic Grothendieck topos each object is a sum of "atoms".

Proposition (Leroy, Moerdijk, Bunge, Dubuc)

For a pretopos $\mathscr P$ embedded in a connected Grothendieck topos $\mathscr E$ sth. each object of $\mathscr P$ is a sum of atoms and the latter form a set, the subcategory $s\mathscr P$ of $\mathscr E$ is an atomic Grothendieck topos and $s\mathscr P \hookrightarrow \mathscr E$ is the inverse image of a geometric morphism.

Theorem (for any connected Grothendieck topos \mathscr{E})

the subcategory \mathcal{E}_{sf} is a pointed, atomic Grothendieck topos.

The surjective "Galois point" $\mathcal{G}_{\mathcal{E}}: \mathcal{S}_{sf} \to \mathcal{E}_{sf}$ is right adjoint to the "fibre functor" $F_{\mathcal{E}}: \mathcal{E}_{sf} \to \mathcal{S}_{sf}$.

atomic = locally connected and Boolean

Lemma

In an atomic Grothendieck topos each object is a sum of "atoms".

Proposition (Leroy, Moerdijk, Bunge, Dubuc)

For a pretopos $\mathscr P$ embedded in a connected Grothendieck topos $\mathscr E$ sth. each object of $\mathscr P$ is a sum of atoms and the latter form a set, the subcategory $s\mathscr P$ of $\mathscr E$ is an atomic Grothendieck topos and $s\mathscr P \hookrightarrow \mathscr E$ is the inverse image of a geometric morphism.

Theorem (for any connected Grothendieck topos \mathscr{E})

the subcategory \mathcal{E}_{sf} is a pointed, atomic Grothendieck topos.

The surjective "Galois point" $\mathcal{G}_{\mathcal{E}}: \mathcal{S}_{sf} \to \mathcal{E}_{sf}$ is right adjoint to the "fibre functor" $F_{\mathcal{E}}: \mathcal{E}_{sf} \to \mathcal{S}_{sf}$.

atomic = locally connected and Boolean

Lemma

In an atomic Grothendieck topos each object is a sum of "atoms".

Proposition (Leroy, Moerdijk, Bunge, Dubuc)

For a pretopos $\mathscr P$ embedded in a connected Grothendieck topos $\mathscr E$ sth. each object of $\mathscr P$ is a sum of atoms and the latter form a set, the subcategory $s\mathscr P$ of $\mathscr E$ is an atomic Grothendieck topos and $s\mathscr P \hookrightarrow \mathscr E$ is the inverse image of a geometric morphism.

Theorem (for any connected Grothendieck topos \mathscr{E})

the subcategory \mathscr{E}_{sf} is a pointed, atomic Grothendieck topos

The surjective "Galois point" $\mathcal{G}_{\mathcal{E}}: \mathcal{S}_{sf} \to \mathcal{E}_{sf}$ is right adjoint to the "fibre functor" $F_{\mathcal{E}}: \mathcal{E}_{sf} \to \mathcal{S}_{sf}$.

On the profinite fundamental group of a connected Grothendieck topos

Atomic Grothendieck toposes

Definition

atomic = locally connected and Boolean

Lemma

In an atomic Grothendieck topos each object is a sum of "atoms".

Proposition (Leroy, Moerdijk, Bunge, Dubuc)

For a pretopos $\mathscr P$ embedded in a connected Grothendieck topos $\mathscr E$ sth. each object of $\mathscr P$ is a sum of atoms and the latter form a set, the subcategory $s\mathscr P$ of $\mathscr E$ is an atomic Grothendieck topos and $s\mathscr P \hookrightarrow \mathscr E$ is the inverse image of a geometric morphism.

Theorem (for any connected Grothendieck topos \mathscr{E})

the subcategory \mathscr{E}_{sf} is a pointed, atomic Grothendieck topos. The surjective "Galois point" $\mathscr{U}_{sf} = \mathscr{E}_{sf}$ is right adjoint

the "fibre functor" $F_{\mathscr{E}}:\mathscr{E}_{\mathsf{sf}} o\mathscr{S}_{\mathsf{sf}}$.

On the profinite fundamental group of a connected Grothendieck topos

Atomic Grothendieck toposes

Definition

atomic = locally connected and Boolean

Lemma

In an atomic Grothendieck topos each object is a sum of "atoms".

Proposition (Leroy, Moerdijk, Bunge, Dubuc)

For a pretopos $\mathscr P$ embedded in a connected Grothendieck topos $\mathscr E$ sth. each object of $\mathscr P$ is a sum of atoms and the latter form a set, the subcategory $s\mathscr P$ of $\mathscr E$ is an atomic Grothendieck topos and $s\mathscr P \hookrightarrow \mathscr E$ is the inverse image of a geometric morphism.

Theorem (for any connected Grothendieck topos \mathscr{E})

the subcategory \mathscr{E}_{sf} is a pointed, atomic Grothendieck topos. The surjective "Galois point" $\mathscr{G}_{\mathscr{E}}:\mathscr{L}_{sf}\to\mathscr{E}_{sf}$ is right adjoint to the "fibre functor" $F_{\mathscr{E}}:\mathscr{E}_{sf}\to\mathscr{L}_{sf}$.

atomic = locally connected and Boolean

Lemma

In an atomic Grothendieck topos each object is a sum of "atoms".

Proposition (Leroy, Moerdijk, Bunge, Dubuc)

For a pretopos $\mathscr P$ embedded in a connected Grothendieck topos $\mathscr E$ sth. each object of $\mathscr P$ is a sum of atoms and the latter form a set, the subcategory $s\mathscr P$ of $\mathscr E$ is an atomic Grothendieck topos and $s\mathscr P \hookrightarrow \mathscr E$ is the inverse image of a geometric morphism.

Theorem (for any connected Grothendieck topos \mathscr{E})

the subcategory \mathscr{E}_{sf} is a pointed, atomic Grothendieck topos.

The surjective "Galois point" $\mathscr{G}_{\mathscr{E}}:\mathscr{S}_{sf}\to\mathscr{E}_{sf}$ is right adjoint to the "fibre functor" $F_{\mathscr{E}}:\mathscr{E}_{sf}\to\mathscr{S}_{sf}$.

atomic = locally connected and Boolean

Lemma

In an atomic Grothendieck topos each object is a sum of "atoms".

Proposition (Leroy, Moerdijk, Bunge, Dubuc)

For a pretopos $\mathscr P$ embedded in a connected Grothendieck topos $\mathscr E$ sth. each object of $\mathscr P$ is a sum of atoms and the latter form a set, the subcategory $s\mathscr P$ of $\mathscr E$ is an atomic Grothendieck topos and $s\mathscr P \hookrightarrow \mathscr E$ is the inverse image of a geometric morphism.

Theorem (for any connected Grothendieck topos \mathscr{E})

the subcategory \mathscr{E}_{sf} is a pointed, atomic Grothendieck topos. The surjective "Galois point" $\mathscr{G}_{\mathscr{E}}:\mathscr{S}_{sf}\to\mathscr{E}_{sf}$ is right adjoint to the "fibre functor" $F_{\mathscr{E}}:\mathscr{E}_{sf}\to\mathscr{S}_{sf}$.

The automorphism group $\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$ carries a unique profinite topology such that $\mathscr{E}_{sf} \simeq \mathbb{B}\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$.

Proof.

$$\mathscr{E}_{\mathit{fc}}$$
 is an atomic site: $\mathscr{E}_{\mathit{sf}} = \mathrm{Sh}(\mathscr{E}_{\mathit{fc}}) \simeq \mathbb{B}\mathrm{Aut}(\mathscr{G}_{\mathscr{E}}).$

Definition (profinite fundamental group)

$$\hat{\pi}(\mathscr{E}) = \operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$$

- ullet "finitely gen." iff $\mathscr{E}=\mathscr{E}_{sf}$ iff $\mathscr{E}=\mathbb{B} G$ for profinite group G
- $\hat{\pi}(\operatorname{Sh}(E)) = \hat{\pi}_1(E)$ (profinite completion)
- $\hat{\pi}(\mathrm{Et}(k)) = \mathrm{Gal}(\bar{k}/k)$ (with Krull topology)

The automorphism group $\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$ carries a unique profinite topology such that $\mathscr{E}_{sf} \simeq \mathbb{B}\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$.

Proof.

$$\mathscr{E}_{fc}$$
 is an atomic site: $\mathscr{E}_{sf} = \mathrm{Sh}(\mathscr{E}_{fc}) \simeq \mathbb{B}\mathrm{Aut}(\mathscr{G}_{\mathscr{E}})$.

Definition (profinite fundamental group)

$$\hat{\pi}(\mathscr{E}) = \operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$$

- & "finitely gen." iff & = &sf iff & = BG for profinite group G
 π̂(Sh(E)) = π̂₁(E) (profinite completion)
- $\hat{\pi}(\mathrm{Et}(k)) = \mathrm{Gal}(\bar{k}/k)$ (with Krull topology)

The automorphism group $\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$ carries a unique profinite topology such that $\mathscr{E}_{sf} \simeq \mathbb{B}\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$.

Proof.

$$\mathscr{E}_{\mathit{fc}}$$
 is an atomic site: $\mathscr{E}_{\mathit{sf}} = \mathrm{Sh}(\mathscr{E}_{\mathit{fc}}) \simeq \mathbb{B}\mathrm{Aut}(\mathscr{G}_{\mathscr{E}}).$

Definition (profinite fundamental group)

$$\hat{\pi}(\mathscr{E}) = \operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$$

Examples

& "finitely gen." iff & = &_{sf} iff & = BG for profinite group G
π̂(Sh(E)) = π̂₁(E) (profinite completion)

• $\hat{\pi}(\text{Et}(k)) = \text{Gal}(\bar{k}/k)$ (with Krull topology)

The automorphism group $\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$ carries a unique profinite topology such that $\mathscr{E}_{sf} \simeq \mathbb{B}\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$.

Proof.

 $\mathscr{E}_{\mathit{fc}}$ is an atomic site: $\mathscr{E}_{\mathit{sf}} = \mathrm{Sh}(\mathscr{E}_{\mathit{fc}}) \simeq \mathbb{B}\mathrm{Aut}(\mathscr{G}_{\mathscr{E}}).$

Definition (profinite fundamental group)

$$\hat{\pi}(\mathscr{E}) = \operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$$

The automorphism group $\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$ carries a unique profinite topology such that $\mathscr{E}_{sf} \simeq \mathbb{B}\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$.

Proof.

$$\mathscr{E}_{\mathsf{fc}}$$
 is an atomic site: $\mathscr{E}_{\mathsf{sf}} = \mathrm{Sh}(\mathscr{E}_{\mathsf{fc}}) \simeq \mathbb{B}\mathrm{Aut}(\mathscr{G}_{\mathscr{E}}).$

Definition (profinite fundamental group)

$$\hat{\pi}(\mathscr{E}) = \operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$$

- ullet "finitely gen." iff $\mathscr{E} = \mathscr{E}_{sf}$ iff $\mathscr{E} = \mathbb{B} G$ for profinite group G
- $\hat{\pi}(\operatorname{Sh}(E)) = \hat{\pi}_1(E)$ (profinite completion)
- $\hat{\pi}(\text{Et}(k)) = \text{Gal}(\bar{k}/k)$ (with Krull topology)

The automorphism group $\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$ carries a unique profinite topology such that $\mathscr{E}_{sf} \simeq \mathbb{B}\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$.

Proof.

$$\mathscr{E}_{fc}$$
 is an atomic site: $\mathscr{E}_{sf} = \mathrm{Sh}(\mathscr{E}_{fc}) \simeq \mathbb{B}\mathrm{Aut}(\mathscr{G}_{\mathscr{E}}).$

Definition (profinite fundamental group)

$$\hat{\pi}(\mathscr{E}) = \operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$$

- $\mathscr E$ "finitely gen." iff $\mathscr E=\mathscr E_{sf}$ iff $\mathscr E=\mathbb B G$ for profinite group G
- $\hat{\pi}(\operatorname{Sh}(E)) = \hat{\pi}_1(E)$ (profinite completion)
- $\hat{\pi}(\text{Et}(k)) = \text{Gal}(\bar{k}/k)$ (with Krull topology)

The automorphism group $\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$ carries a unique profinite topology such that $\mathscr{E}_{sf} \simeq \mathbb{B}\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$.

Proof.

$$\mathscr{E}_{\mathsf{fc}}$$
 is an atomic site: $\mathscr{E}_{\mathsf{sf}} = \mathrm{Sh}(\mathscr{E}_{\mathsf{fc}}) \simeq \mathbb{B}\mathrm{Aut}(\mathscr{G}_{\mathscr{E}}).$

Definition (profinite fundamental group)

$$\hat{\pi}(\mathscr{E}) = \operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$$

- ullet "finitely gen." iff $\mathscr{E}=\mathscr{E}_{sf}$ iff $\mathscr{E}=\mathbb{B} G$ for profinite group G
- $\hat{\pi}(\operatorname{Sh}(E)) = \hat{\pi}_1(E)$ (profinite completion)
- $\hat{\pi}(\text{Et}(k)) = \text{Gal}(\bar{k}/k)$ (with Krull topology)

The automorphism group $\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$ carries a unique profinite topology such that $\mathscr{E}_{sf} \simeq \mathbb{B}\operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$.

Proof.

$$\mathscr{E}_{\mathit{fc}}$$
 is an atomic site: $\mathscr{E}_{\mathit{sf}} = \mathrm{Sh}(\mathscr{E}_{\mathit{fc}}) \simeq \mathbb{B}\mathrm{Aut}(\mathscr{G}_{\mathscr{E}}).$

Definition (profinite fundamental group)

$$\hat{\pi}(\mathscr{E}) = \operatorname{Aut}(\mathscr{G}_{\mathscr{E}})$$

- ullet "finitely gen." iff $\mathscr{E}=\mathscr{E}_{sf}$ iff $\mathscr{E}=\mathbb{B} G$ for profinite group G
- $\hat{\pi}(\operatorname{Sh}(E)) = \hat{\pi}_1(E)$ (profinite completion)
- $\hat{\pi}(\text{Et}(k)) = \text{Gal}(\bar{k}/k)$ (with Krull topology)