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Abstract. We define several partially ordered sets with the equivariant ho-

motopy type of real configuration spaces F (Rn, p). The main tool is a general

method for constructing En-suboperads of a given E∞-operad by appropriate
cellular subdivision.

Introduction

The configuration space F (R∞, p) of p-tuples of pairwise distinct points of R∞
can serve as universal Sp-bundle, the symmetric group acting freely by permutation
of the p points. The main result of this paper is a combinatorial construction of
the natural filtration of F (R∞, p) induced by the finite-dimensional configuration
spaces.

More generally, an E∞-operad with some extra cell structure has a combina-
torially defined filtration by En-suboperads. As a byproduct, we obtain several
partially ordered sets with the equivariant homotopy type of F (Rn, p). In particu-
lar, we rediscover the Smith-filtration [19] of Barratt-Eccles’ Γ-functor [4] and also
Milgram’s permutohedral models of F (Rn, p) [17], [3].

We have tried to concentrate here on the combinatorial aspects of En-operads
and to trace connections to other similar developments (cf. [1], [11]) when we were
aware of them. We completely left out the application of En-operads to n-fold
iterated loop spaces and refer the interested reader to [15], [8], [5].

The combinatorial aspects of the theory of En-operads have perhaps been un-
derestimated for some time. This is quite surprising, if one considers F. Cohen’s
already classical computation [8] of the homology and cohomology of F (Rn+1, p)
which among others identifies (in modern language) the cohomology ring with the
Orlik-Solomon n-algebra of the complete graph on p vertices and the homology
with the multilinear part of the free Poisson n-algebra on p generators (cf. [11]).
It would be nice to have a purely combinatorial proof of this result (possibly along
these lines) relating it to some surprising combinatorial work (cf. [2]).

We have divided our exposition into two parts :
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2 CLEMENS BERGER

Part One introduces the language of cellular E∞-(pre)operads, defines their
combinatorial filtration and relates this filtration to the equivariant homotopy type
of the configuration spaces F (Rn, p).

Part Two discusses three basic examples : the configuration preoperad F itself,
the simplicial operad Γ and the permutohedral operad J .

I would like to thank Takuji Kashiwabara for helpful remarks and suggestions
and Zig Fiedorowicz for his careful and prompt reading of the first draft, which led
to an important comparison theorem.

1. Homotopy uniqueness of cellular En-operads.

Following Cohen, May and Taylor [9] we neglect at first the multiplicative
structure of an operad and retain only the “functorial” part of the structure which
will be sufficient to determine the homotopy types we are interested in.

Definition 1.1. Define Λ to be the category whose objects are the finite (non
empty) sets p = {1, 2, . . . , p} and whose morphisms are the injective maps.

A preoperad with values in the category C is a contravariant functor O : Λ → C,
written (Op)p>0 on objects and φ∗ : Oq → Op on morphisms φ ∈ Λ(p,q).

A map of preoperads is a natural transformation of functors. If there is a
notion of (weak) equivalence in C, we shall call (weak) Λ-equivalence any map of
preoperads f : O → O′ such that for each p > 0, the induced map fp : Op → O′p is
a (weak) equivalence. Two preoperads will then be called (weakly) Λ-equivalent if
they can be joined by a chain of not necessarily composable (weak) Λ-equivalences.

These notions apply in particular to partially ordered, simplicial and topologi-
cal preoperads. The nerve functor N : Poset → Set∆ transforms by composition
partially ordered preoperads into simplicial preoperads and the realization func-
tor | − | : Set∆ → Top transforms simplicial into topological preoperads. Both
transformations preserve weak equivalences.

Notation 1.2. Each morphism of the category Λ decomposes uniquely in a
bijection followed by an increasing map. For φ ∈ Λ(p,q), we write

φ = φinc ◦ φ \,

with φ \ ∈ Λ(p,p) and φinc ∈ Λinc(p,q) = {φ ∈ Λ(p,q)|φ(i) < φ(j) for i < j}.
For p distinct integers i1, . . . , ip in q we shall denote

φi1,...,ip : p → q

the morphism which maps (1, . . . , p) onto (i1, . . . , ip).

Examples 1.3. (a) The symmetric groups and their universal bundles.
The collection of symmetric groups Sp = Λ(p,p) defines a set-valued preoperad
S : Λ → Set by setting for φ ∈ Λ(p,q) :

φ∗ : Sq → Sp

σ 7→ (σ ◦ φ) \.

Composing S with the universal bundle construction W : Set → Set∆ one gets
a simplicial preoperad Γ = W ◦ S whose rich combinatorial structure has been
studied by Barratt-Eccles [4] and Smith [19].
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(b) The configuration preoperad.
The collection of configuration spaces Fp = F (R∞, p) defines a topological preop-
erad F : Λ → Top by setting for φ ∈ Λ(p,q) :

φ∗ : Fq → Fp
(x1, . . . , xq) 7→ (xφ(1), . . . , xφ(p)).

Like Γp each Fp is a universal Sp-bundle. This suggests some relationship between
the two. Indeed Smith [19] constructed a filtration Γ(n)

p of the simplicial set Γp
which was shown by Kashiwabara [14] to be homotopy equivalent to the geometric
filtration F

(n)
p = F (Rn, p) × R∞ of the configuration preoperad F . This result

was the starting point of our investigation, and we shall see below that this filtered
homotopy equivalence is based on some functorially constructed cell decompositions
of both preoperads.

(c) The complete graph preoperad.
Let N(p

2) denote the cartesian product of
(
p
2

)
copies of the set N of natural numbers.

An element µ ∈ N(p
2) will be written with a double index : µ = (µij)1≤i<j≤p. Such

an element is most naturally interpreted as an edge-labeling (by natural numbers) of
the complete graph on p vertices. The collection of these labeling sets N(p

2) extends
to a (set-valued) preoperad. For φ ∈ Λ(p,q) the induced map φ∗ : N(q

2) → N(p
2) is

given by the evident formula :

φ∗(µ)ij =

{
µφ(i),φ(j) if φ(i) < φ(j);
µφ(j),φ(i) if φ(j) < φ(i).

Definition 1.4. LetK : Λ → Poset be the partially ordered preoperad defined
by Kp = N(p

2) ×Sp and for φ ∈ Λ(p,q) :

φ∗ : Kq → Kp
(µ, σ) 7→ (φ∗(µ), φ∗(σ)),

where the partial order on Kp is given by

(µ, σ) ≤ (ν, τ) ⇔ ∀i < j either φ∗ij(µ, σ) = φ∗ij(ν, τ) or µij < νij .

Remark 1.5. The universal S2-bundle can be realized as the unit-sphere S∞

in R∞, the non trivial element of S2 acting as antipodal map. The minimal CW -
structure of S∞ compatible with this action is given by the hemispheres of each
dimension. The set of these cells, ordered by inclusion, is canonically isomorphic to
K2. The partially ordered sets Kp serve to define analogous cell decompositions of
the universal Sp-bundles. Observe in particular that the partial order on Kp is the
least fine partial order such that all maps φ∗ : Kp → K2 are monotone. Formally,

(µ, σ) ≤ (ν, τ) ⇔ φ∗ij(µ, σ) ≤ φ∗ij(ν, τ) for all i, j.

Definition 1.6. Let A be a partially ordered set and X a topological space. A
collection (cα)α∈A of closed contractible subspaces (the “cells”) of X will be called
a cellular A-decomposition of X if the following three conditions hold :

(1) cα ⊆ cβ ⇔ α ≤ β ;
(2) the cell inclusions are (closed) cofibrations ;
(3) X = lim−→Acα, so X equals the union of its cells and has the weak topology

with respect to its cells.
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Lemma 1.7. If a topological space X admits a cellular A-decomposition, then
there is a cellular homotopy equivalence from X to |NA|.

Proof. – Since cell inclusions are closed cofibrations, the homotopy colimit
h-lim−→Acα contains the ordinary colimit lim−→Acα as a deformation retract. On the
other hand, contracting the cells to a point defines a homotopy equivalence from
the homotopy colimit to the realization of the nerve |NA| = h-lim−→A| ∗ |. �

Remark 1.8. Condition (1) of a cellular A-decomposition can be replaced by
a weaker condition without losing property (1.7). To this purpose let us formally
define the cell-interior c̆α to be the difference

c̆α = cα \ (
⋃
β<α

cβ).

Suppose now that instead of (1) we have only

α ≤ β ⇒ cα ⊆ cβ , while equivalence holds if c̆α 6= ∅.(1′)

By (1′) and (3), each cell is the union of cells with nonempty interior. Thus, X
is the colimit over A as well as the colimit over the partially ordered set A′ of cells
with nonempty interior. But for A′, condition (1) holds, so by Lemma 1.7, there is
a homotopy equivalence from X to |NA′|.

On the other hand, by Quillen’s Theorem A, the poset inclusion of A′ into
A induces a homotopy equivalence |NA′| ∼→ |NA| since the “homotopy fibers”
iα = {β ∈ A′|β ≤ α} are all contractible, again by Lemma 1.7 : cα

∼→ |N iα|, α ∈ A.
Hence, Lemma 1.7 remains valid for cellular A-decompositions which satisfy only
(1′), (2), (3).

To facilitate language we shall call cells with nonempty cell-interior proper cells
and those with empty cell-interior improper cells. What we have shown reads as
follows : only the poset of proper cells forms a cell-decomposition in the strict sense,
but adjoining improper cells does not modify the homotopy type of the poset as
long as the improper cells are contractible.

Definition 1.9. A topological preoperad O is called a cellular E∞-preoperad if
the S2-space O2 admits a cellular K2-decomposition (O(α)

2 )α∈K2 , compatible with
the action of S2, such that

(1) for each p > 0 and each α ∈ Kp the formally defined “cell”

O(α)
p =

⋂
1≤i<j≤p

(φ∗ij)
−1(Oφ

∗
ij(α)

2 )

is contractible, and for each α, β ∈ Kp with α ≤ β the natural “cell-
inclusion” O(α)

p ⊆ O(β)
p is a cofibration ;

(2) each Sp-orbit of Op contains an ordered point, i.e. a point x ∈ Op whose
projections φ∗ij(x) belong to cell-interiors of the form Ŏ(µ,id2)

2 .

Notation 1.10. A cellular E∞-preoperad O induces the partially ordered pre-
operad K(O) consisting of those elements of the complete graph preoperad K which
index the proper cells of O (cf. 1.8). The formally defined cell-interior Ŏ(α)

p can
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also be defined as an intersection of inverse images of cell-interiors :

Ŏ(α)
p =

⋂
1≤i<j≤p

(φ∗ij)
−1(Ŏφ

∗
ij(α)

2 ).

This shows that the partially ordered sets K(O)p = {α ∈ Kp | Ŏ(α)
p 6= ∅} are indeed

subposets of Kp closed under the operations of the category Λ.
On the other hand, the natural filtration of the complete graph preoperad K

by K(n) = {(µ, σ) ∈ K|µij < n for i < j} induces a filtration O(n) of the cellular
E∞-preoperad O; explicitly :

O(n)
p =

⋃
α∈K(n)

p

O(α)
p .

It follows at once that for each p, the filtration of Op is induced from the canonical
filtration of O2 through the projections φ∗ij .

Note the dimensional shift : O(n)
2 has the equivariant homotopy type of an

(n− 1)-dimensional sphere.
Topological preoperads of the form O(n) (for a cellular E∞-preoperad O) will

be called cellular En-preoperads.

Theorem 1.11. Let O be a cellular E∞-preoperad.
(a) For each p, the set of proper cells (O(α)

p )α∈K(O)p
defines a cellular K(O)p-

decomposition of Op.
(b) The inclusion of K(O) in K is a filtered Λ-equivalence of partially ordered

preoperads. In particular, there is a Λ-equivalence O(n) ∼→ |NK(n)|. Hence, any
two cellular En-preoperads are Λ-equivalent (1 ≤ n ≤ ∞).

Proof. – In view of Remark 1.8, it remains to show that the cellsO(α)
p , α ∈ Kp,

satisfy the weak form of a cell-decomposition, i.e. conditions (l′), (2), (3) of (1.6-
1.8). For this, let O(α)

p be a proper cell such that O(α)
p ⊆ O(β)

p and suppose (by
contraposition) that α does not precede β in Kp. Then there is a map φ ∈ Λ(2,p)
such that φ∗(α) does not precede φ∗(β) in K2; we thus have empty intersections
Ŏφ

∗(α)
2 ∩ Oφ

∗(β)
2 and Ŏ(α)

p ∩ O(β)
p , in contradiction with the hypothesis.

Furthermore, as each cell is the union of proper cells, the colimit condition (3)
is equivalent to the statement that the space Op decomposes into a disjoint union
of cell-interiors Ŏ(α)

p , α ∈ K(O)p. Now, given a point x ∈ Op, there are unique

indices (µxij , σ
x
ij) ∈ K2 such that φ∗ij(x) belongs to the cell-interior Ŏ(µx

ij ,σ
x
ij)

2 . By
condition (1.9.2) there is also a permutation σ ∈ Sp such that (σ−1)∗(x) is an
ordered point, which is unique because of the relation σxij = φ∗ij(σ) for all i, j. The

cell-interior Ŏ(α)
p containing x has thus index α = (µ, σ) with µ = (µxij)1≤i<j≤p and

σ = (σxij)1≤i<j≤p. �

Remark 1.12. The preceding theorem suggests a slight generalization of the
concept of a cellular E∞-preoperad O. All we need for the comparison with the
complete graph preoperad is the contractibility of the proper cells and the filtered
Λ-equivalence K(O)

∼
↪→ K. The contractibility of the improper cells is not the only

way of obtaining the latter equivalence, cf. Quillen’s Theorem B [18].
The configuration preoperad F is actually a cellular preoperad with contractible

proper cells but some noncontractible improper cells, yet the inclusion of K(F ) into
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K is a filtered Λ-equivalence. Moreover, the cell-structure of F gives Sp-equivariant
homeomorphisms F (n)

p
∼= F (Rn, p)×R∞ relating very naturally the filtration of the

complete graph preoperad to the finite-dimensional configuration spaces F (Rn, p).
On the other hand, the Smith-filtration [19] of Γp = WSp coincides with the

filtration Γ(n)
p formally derived from the cellular E∞-structure of Γ. The comparison

theorem thus gives the following corollary which was conjectured by Smith and
proved by Kashiwabara [14] :

Corollary 1.13. The realization of the simplicial set Γ(n)
p has the same Sp-

equivariant homotopy type as the real configuration space F (Rn, p).

The above corollary is true for each cellular En-preoperad O(n). In the next
chapter we shall examine several cellular En-preoperads from a combinatorial view-
point. Often, they come equipped with a combinatorially defined multiplication

mO(n)

i1...ip
: O(n)

p ×O(n)
i1
× · · · × O(n)

ip
→ O(n)

i1+···+ip
(z, z1, . . . , zp) 7→ z(z1, . . . , zp)

turning them into an En-operad. We refer the reader to [16], [15] or [5] for the
exact definition of an operad and more specifically for the relationship between
En-operads and n-fold iterated loop spaces. The degeneracy operators of a (unital)
operad define the actions by increasing maps of the category Λ so that each (unital)
operad has an underlying preoperad structure, see [16], Variant 4(iii).

Definition 1.14. An operad O is called a cellular E∞-operad if the underlying
preoperad is a cellular E∞-preoperad such that the multiplication mO

i1...ip
preserves

the cellular structure in the sense specified below (1.15b).
We then call the suboperads O(n) cellular En-operads.

Examples 1.15. (a) The permutation operad.
The set-valued preoperad S is in fact an operad with the obvious unit 1 ∈ S1 and
multiplication given by

mS
i1...ip

: Sp ×Si1 × · · · ×Sip → Si1+···+ip
(σ;σ1, . . . , σp) 7→ σ(i1, . . . , ip) ◦ (σ1 ⊕ · · · ⊕ σp),

where σ(i1, . . . , ip) permutes the p subsets ik ↪→ i1 + · · ·+ ip according to σ.

(b) The complete graph operad K.
The preoperad K is an operad with obvious unit 1 ∈ K1 and multiplication

mK
i1...ip

: Kp ×Ki1 × · · · × Kip → Ki1+···+ip
((µ, σ); (µ1, σ1), . . . , (µp, σp)) 7→ (µ(µ1, . . . , µp), σ(σ1, . . . , σp)),

where σ(σ1, . . . , σp) = σ(i1, . . . , ip) ◦ (σ1 ⊕ · · · ⊕ σp) as above, and where the edge-
labeling µ(µ1, . . . , µp) of the complete graph on i1 + · · ·+ ip vertices is defined by
the following formula (for sake of precision ψr : ir ↪→ i1 + · · ·+ ip denotes the
canonical inclusion) :

µ(µ1, . . . , µp)jk =

{
(µr)ψ−1

r (j),ψ−1
r (k) if j, k ∈ ψr(ir),

µrs if j ∈ ψr(ir) and k ∈ ψs(is), r < s.

In other words, on edges of the complete subgraph spanned by ψr(ir) the label-
ing µ(µ1, . . . , µp) coincides with µr, whereas on edges joining vertices of different
subsets ψr(ir) and ψs(is) the labeling µ(µ1, . . . , µp) is induced by µ.
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The complete graph operad K is thus a cellular E∞-operad, naturally filtered
by suboperads K(n). They will serve as universal models for cellular En-operads.
Indeed, given an arbitrary cellular E∞-operad O, we assume that the multiplica-
tion mO

i1...ip
sends each cell-product into the cell prescribed by the complete graph

operad:

mO
i1...ip(O(µ,σ)

p ×O(µ1,σ1)
i1

× · · · × O(µp,σp)
ip

) ⊆ O(µ(µ1,...,µp),σ(σ1,...,σp))
i1+···+ip

This implies that multiplication is filtration-preserving, making our definition of
a cellular En-operad meaningful. Both parts of the following theorem are due to
Zig Fiedorowicz and improve considerably an earlier “up to homotopy” version. In
particular, cellular En-operads are actually En-operads in May’s [15] sense endowed
with some extra cell-structure.

Theorem 1.16. (Fiedorowicz). Any two cellular En-operads are multiplica-
tively Λ-equivalent (i.e. equivalent as operads). Moreover, the little n-cubes operad
of Boardman-Vogt has the structure of a cellular En-operad. (1 ≤ n ≤ ∞)

Proof. – The main lemma of Section 5 of [1] shows that the collection of
homotopy colimits (h-lim−→α∈Kp

O(α)
p )p>0 defines a topological operad. This operad

retracts by multiplicative Λ-equivalences onto the given E∞-operad O as well as
onto the complete graph operad |NK|, cf. 1.7-1.8. It follows that any cellular En-
operad is multiplicatively Λ-equivalent to the n-th filtration of the complete graph
operad, whence the first part of the theorem.

Let C([0, 1]n, p) denote the space of p-fold configurations of (open) “little n-
cubes” (cf. [7], [15]) and Cp the inductive limit lim−→nC([0, 1]n, p), where C([0, 1]n, p)

is embedded in C([0, 1]n+1, p) as the space of those little (n+ 1)-cubes having last
coordinate equal to id]0,1[.

For (c1, c2) ∈ C2 we write c12µc2 if c1 and c2 are separated by a hyperplane Hi

perpendicular to the i-th coordinate axis for some i ≤ µ + 1 such that, whenever
there is no separating hyperplane Hi for i < µ + 1, the left cube c1 lies on the
negative side of Hµ+1 and the right cube c2 on the positive side of Hµ+1. In the
latter case we write more precisely c1 �µ c2.

For (µ, σ) ∈ Kp we then define the associated cell by

C(µ,σ)
p = {(c1, c2, . . . , cp) ∈ Cp | ci 2

µij

cj if σ(i) < σ(j), and cj 2
µij

ci if σ(j) < σ(i)}.

These cells endow the little cubes operad (Cp)p>0 with the structure of a cellular
E∞-operad. In particular, the little cubes multiplication plainly preserves this
cellular structure in the aforementioned sense (1.15b). The only subtle point is the
contractibility of the cells; we shall sketch a proof.

Suppose first that the cell C(µ,σ)
p contains an interior point (c1, . . . , cp) ∈ C̆(µ,σ)

p .
By the definition of the cell-interior (1.8), this means that ci �µij

cj if σ(i) < σ(j),
and cj �µij

ci if σ(j) < σ(i). Furthermore, if (µ, σ) ∈ K(n)
p , the cell C(µ,σ)

p projects
onto C(µ,σ)

p ∩ C([0, 1]n, p) by a fibration with contractible fibers; it will thus be
sufficient to show the base is contractible. Indeed, the projected cell contracts to
the projected configuration (c̄1, . . . , c̄p) ∈ C̆(µ,σ)

p ∩ C([0, 1]n, p) by an n-step affine
contraction which deforms the little n-cubes coordinatewise, beginning with the
last coordinate and ending with the first. The descending order guarantees that
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the contraction stays within C(µ,σ)
p ∩ C([0, 1]n, p) since the appropriate separating

hyperplanes exist at each moment of the deformation.
It remains to show that improper cells are contractible. In our case, even more

is true ; each cell C(µ,σ)
p contains a unique maximal proper cell C(µ̂,σ̂)

p with which
it can be identified, or equivalently : the inclusion of K(C)p into Kp has a right
adjoint (µ, σ) 7→ (µ̂, σ̂). The explicit formula for this right adjoint is given by σ̂ = σ
and α̂ij = min{a |αi,i1 = αi1,i2 = · · · = αis,j = a for i < i1 < · · · < is < j}, where
we have used the indexing 2.2 for α = (µ, σ) and α̂ = (µ̂, σ̂).

The suboperad C(n) of the little cubes operad is thus a cellular En-operad
which projects, as above, onto the little n-cubes operad by a multiplicative Λ-
equivalence. �

2. On the combinatorial structure of cellular En-operads.

As Theorem 1.11 suggests there is some fruitful interplay between the combina-
torial structure and the geometry of a cellular En-operad O(n) because the subposet
K(O)(n)

p of K(n)
p defined by the proper cells represents in its own right a combina-

torial model of the equivariant homotopy type of the configuration space F (Rn, p).
So, there might be cellular En-operads which are “combinatorially smaller” than
others.

We shall compare here three cellular E∞-(pre)operads : the configuration pre-
operad F with its natural filtration by “dimension”, the simplicial operad Γ of
Barratt-Eccles with its Smith-filtration and the permutohedral operad J which is
based on Milgram’s combinatorial models of iterated loop spaces.

Example 2.1. The cell structure of the configuration preoperad F.
The points of R∞ will be written as real number series (x(i))i≥0 satisfying x(i) = 0
for large i. For x, y ∈ R∞ we introduce different semi-order relations by

x ≤
i
y iff x(i) ≤ y(i) and x(k) = y(k) for k > i,

and similarly for x <
i
y.

By the very definition of a cellular E∞-preoperad, the cell decomposition of
Fp relies on the cell decomposition of F2. It is often possible and convenient to
give explicit cell-decompositions for each p and to verify a posteriori that these
cell-decompositions satisfy the necessary properties and relations.

For (µ, σ) ∈ Kp we find :

F (µ,σ)
p = {(x1, . . . , xp) ∈ Fp |xi ≤

µij

xj if σ(i) < σ(j), and xj ≤
µij

xi if σ(j) < σ(i)}.

It is easy to check that for p = 2 this defines a cellular K2-decomposition of F2

which retracts by a S2-deformation onto the canonical K2-decomposition of the unit
sphere in R∞. Note that the (formal) cell-interior F̆ (σ,µ)

p is obtained by replacing
everywhere ≤ by <; in fact, this is true for p = 2 by direct verification and follows
for the general case from the definition of the cell-interiors (cf. 1.10).

In view of 2.3c and Remark 1.12, it is sufficient to show that proper cells
are contractible; there are actually improper cells with several components, for
example µ12 = µ13 = 0 , µ23 = 1 defines an improper cell F (µ,id3)

3 with two com-
ponents. Now, using 2.3b and the affine structure of Fp, each proper cell contracts
conically to any of its interior points. Moreover, proper cells are defined by in-
equalities of coordinates, so they are (up to a factor R∞) polyhedral cones in some
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finite dimensional euclidean space whence cell-inclusions are cofibrations. Finally,
condition 1.9.2 is also satisfied, since a point (x1, x2, . . . , xp) ∈ Fp is ordered iff
x1 <

µ12
x2 <

µ23
· · · <

µp−1,p

xp and 2.3b shows that each point of Fp is of this form up

to permutation.

Notation 2.2. For α = (µ, σ) ∈ Kp it is often convenient to use the following
indexing : αij = (σ−1)∗(µ)ij , which is equivalent to α = σ∗((αij)1≤i<j≤p, idp).

Proposition 2.3. Let F be the configuration preoperad.
(a) The posets of proper cells are given by

K(F )p = {α ∈ Kp |αik = max(αij , αjk) for i < j < k}
= {α ∈ Kp |αij = max

i≤k<j
αkk+1}.

(b) The cell-interior F̆ (α)
p for α = (µ, σ) ∈ K(F )p is given by :

F̆ (α)
p = {(x1, . . . , xp) ∈ Fp |xσ−1(1) <

α12
xσ−1(2) <

α23
· · · <

αp−1,p

xσ−1(p)}

(c) The inclusion of K(F ) into K is a filtered Λ-equivalence of partially ordered
preoperads. Moreover, each intermediate preoperad K′ breaks the latter inclusion
into two filtered Λ-equivalences K(F )

∼
↪→ K′ ∼↪→ K.

Proof. – The existence of an interior point in F
(µ,σ)
p implies that for each

triple index (ijk) such that φ∗ij(σ) = φ∗jk(σ) we have either

xi <
µij

xj <
µjk

xk and xi <
µik

xk

or the opposite inequalities, thus in both cases µik = max(µij , µjk). This shows
that proper cells F (α)

p satisfy αik = max(αij , αjk) for all i < j < k. Conversely, if
the latter property holds for an index α ∈ Kp then the cell-interior F̆ (α)

p contains
all points of the form xσ−1(1) <

α12
xσ−1(2) <

α23
· · · <

αp−1,p

xσ−1(p), so it is clearly

nonempty, proving (a) and (b).
For (c), it will be sufficient to show that the induced inclusion of quotient

categories K(F )p/Sp → Kp/Sp admits a filtration-preserving right adjoint. Indeed,
since the action of the symmetric group is free, the nerve of the quotient map is
a Kan fibration, whence (by the five lemma) the inclusion of K(F )p into Kp is
an equivalence iff the quotient inclusion is. Furthermore, restriction of the right
adjoint to K′p/Sp yields the second part of (c).

The Sp-invariance of the indexing (αij)1≤i<j≤p for α = (µ, σ) ∈ Kp defines
a canonical bijection between “labelings” and Sp-orbits. Under this bijection the
morphisms α

ρ→ β of the quotient category Kp/Sp correspond to permutations
ρ ∈ Sp such that (α, idp) ≤ ρ∗(β, idp) in Kp.

We now define the right adjoint Kp/Sp → K(F )p/Sp : α 7→ α̂ by the compo-
nents of the counit of the adjunction, i.e. by a family of universal maps

α̂
id→ α, where α̂ij = max

i≤k<j
min
r≤k<s

αrs.

It follows from (a) that α̂ belongs to K(F )p/Sp and that for each β
ρ→ α such that

β ∈ K(F )p/Sp we get (β, idp) ≤ ρ∗(α̂, idp) ≤ ρ∗(α, idp) which gives the desired
universal property. �



10 CLEMENS BERGER

Remark 2.4. The poset K(F )(n)
p can be found in Getzler-Jones’ article [11]

under the name lexicographical cell-decomposition of F (Rn, p). As their description
is sligthly different from ours we shall recall it here, especially since this second
description will reappear quite naturally when dealing with the permutohedral op-
erad.

Definition 2.5. An ordered partition of an integer p > 0 is an ordered decom-
position p = i1 + · · ·+ ir into a sum of integers ik > 0.

We associate to an ordered partition three combinatorially equivalent objects:
(1) the direct sum decomposition i1 + · · ·+ ir ∼= p ;
(2) the subgroup S(i1,...,ir) of Sp consisting of all permutations of the form

mS
i1,...,ir

(1;σ1, . . . , σr), which is canonically isomorphic to Si1 ×· · ·×Sir ;
(3) the bar code (εi)1≤i<p ∈ [1]p−1 where εi is 1 (resp. 0) iff the ordered

partition separates (resp. does not separate) the integers i and i+ 1.
We partially order the set of ordered partitions by refinement. This order

is opposite to subgroup-inclusion but equals the product order on the bar codes
(εi)1≤i<p ∈ [1]p−1, where [1] = {0 < 1}. So we have

(i1, . . . , ir) � (j1, . . . , js)
iff one of the following three equivalent conditions is satisfied :

(1) there is an ordered partition s = k1 + · · ·+ kr such that

i1 = j1 + · · ·+ jk1 ,

i2 = jk1+1 + · · ·+ jk1+k2 ,

. . .

ir = jk1+···+kr−1+1 + · · ·+ jk1+···+kr
;

(2) S(i1,...,ir) ⊇ S(j1,...,js)

(3) the associated bar codes (εi)1≤i<p, (ζi)1≤i<p verify εi ≤ ζi for all i.
The correspondence between ordered partitions and bar codes extends naturally to
a correspondence

{ascending chains of ordered partitions} ↔ {multiple bar codes}
part1 � part2 � · · · � partl ↔ (εi)1≤i<p ∈ Np−1

where the multiple bar code is simply obtained by summing up the bar codes of the
chain-elements; conversely, partk is the least fine ordered partition separating all
couples i, i+ 1 such that εi > l − k.

Proposition 2.6. The natural bijection between K(F )(n)
p and [n − 1]p−1 ×

Sp identifies K(F )(n)
p with the covering category of a Sp-valued “shuffle” functor

Sh
(n)
p : [n− 1]p−1 → Set.

Proof. – By 2.3a, each index α = (µ, σ) ∈ K(F )(n)
p is uniquely determined by

the permutation σ and the integer-family (αk,k+1)1≤k<p ∈ [n − 1]p−1. It remains
to determine the order relation induced by K(F )(n)

p . The partial order on K(n)
p can

be characterized as follows, cf. 2.3c :

α = (µ, σ) ≤ β = (ν, τ) ⇔

{
αij ≤ βρ(i),ρ(j) if ρ(i) < ρ(j),
αij < βρ(j),ρ(i) if ρ(j) < ρ(i),
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where the permutation ρ is determined by τ = ρ ◦ σ.

This leads to the following category structure on [n− 1]p−1 :

[n− 1]p−1((εk)1≤k<p, (ζk)1≤k<p) =

{ρ ∈ Sp | max
i≤k<j

εk ≤ max
ρ(i)≤k<ρ(j)

ζk if ρ(i) < ρ(j), and

max
i≤k<j

εk < max
ρ(j)≤k<ρ(i)

ζk if ρ(j) < ρ(i)}

Indeed, the above characterization of the order relation identifies K(F )(n)
p with the

covering category (see [18]) of the functor

Sh
(n)
p : [n− 1]p−1 → Set

(εk)1≤k<p 7→ Sp

ρ 7→ ρ∗.

. �

Remark 2.7. The name “shuffle” functor is chosen because, for n = 2, adjacent
elements of the poset [1]p−1 define a morphism-set in [1]p−1 containing only shuffle-
orderings, i.e. inverses of shuffle-permutations.

The categories [n− 1]p−1 are models for the quotient spaces F (Rn, p)/Sp. In
particular, for n = 2, the nerve of [1]p−1 is a classifying space for the braid group
Bp on p strands; this model appears already in a paper of Greenberg [12], see also
Fox and Neuwirth’s combinatorial deduction of Artin’s presentation of the braid
groups Bp [10].

As an illustration, let us have a look at the category [1]2, whose nerve is thus
a classifying space for B3 (we use the bar code for the objects) :

−−−−−−−→−−−−−−−→
S1×S2 −−−−−−−→−−−−−−−→S2×S1

−−−−−−−→−−−−−−−→−−−−−−−→(1,2)−shuffles−1
−−−−−−−→−−−−−−−→−−−−−−−→(2,1)−shuffles−1

[1|2|3]

[1|2 3] [1 2|3]

[1 2 3]

Balteanu, Fiedorowicz, Schwänzl and Vogt [1] embed the covering category
K(F )(n)

p in the “multilinear part” Mn(p) of the free n-fold monoidal category gen-
erated by p objects. The collection of categories (Mn(p))p>0 defines a cellular
En-operad. In particular, nerves of connected n-fold monoidal categories are n-fold
iterated loop spaces. A central role in their proof is played by the so-called Co-
herence Theorem, which roughly states that the category Mn(p) underlies a poset.
Fiedorowicz pointed out that there is a natural poset-inclusion of Mn(p) into K(n)

p

compatible with the operad structure and generalizing the K(n)
2 -decomposition of
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the “octahedral” (n− 1)-sphere Mn(2). There is actually a chain of Λ-equivariant
poset-inclusions

K(F )(n)
p ⊂Mn(p) ⊂ K(C)(n)

p ⊂ K(n)
p

proving geometrically (1.16, [1]) as well as combinatorially (2.3c) that the n-fold
monoidal operad (Mn(p))p>0 is a cellular En-operad.

Getzler-Jones [11] also embed the poset K(F )(n)
p in a larger poset which corre-

sponds to the cell structure of Fulton-MacPherson’s compactification of F (Rn, p).
It turns out that the latter cell structure is in some precise sense “freely generated”
by the former via the formalism of planary trees (see also [7]). The underlying
combinatorics are intimately related to Stasheff’s associahedra.

There is a similar relationship between K(F )(n)
p and Mn(p) in the form of a

canonical surjective map K(F )(n)
p ×Ap � Mn(p), where Ap denotes the set of all

bracketings of a p-element set. The inclusion of K(F )(n)
p into Mn(p) endows each

element (µ, idp) ∈ K(F )(n)
p with a natural bracketing such as

((1 2
µ12

2) 2
µ23

(3 2
µ34
· · · (· · · 2

µp−2,p−1
p− 1) 2

µp−1,p

p)).

In this setting, Property 2.3a becomes equivalent to the condition that the indices
of the composition laws increase “from inside to outside” in the bracketing. If all
p− 1 composition indices are distinct, the permutation of the composition indices
defines a map Sp−1 → Ap studied in Tonk’s paper in this volume [20].

Example 2.8. The cell structure of the simplicial operad Γ.
As the universal bundle functor W commutes with cartesian products, unit and
multiplication of the permutation operad (1.15a) induce a unit and a multiplication
of the composite functor Γ = WS, turning it into a cellular E∞-operad, as we shall
see.

The cells of Γp = WSp are realized by certain simplicial subsets Γ(µ,σ)
p of Γp.

We recall that a k-simplex of Γp is written as a (k+1)-tuple of elements of Sp. We
shall write σx for the last component of the simplex x ∈ Γp. The n-skeleton of Γp
will be denoted by sknΓp. For (µ, σ) ∈ Kp we find :

Γ(µ,σ)
p = {x ∈ Γp |φ∗ij(x) ∈ skµij

Γ2 and φ∗ij(σx) = φ∗ij(σ) if φ∗ij(x) 6∈ skµij−1Γ2}

Condition (1.9.1) is satisfied, since there are simplicial contractions

γ : Γ(µ,σ)
p → Γ(µ,σ)

p

(σ0, . . . , σk) 7→ (σ0, . . . , σk, σ)

and geometric realization transforms cell-inclusions into closed cofibrations. Con-
dition (1.9.2) is also satisfied since a point in |Γp| is ordered iff it is contained in
the interior of a simplex of Γp whose last component is the neutral element of Sp.

The multiplicationmΓ
i1...ip

: Γp×Γi1×· · ·×Γip → Γi1+···+ip preserves the cellular
structure, since we deduce from mΓ

i1...ip
= WmS

i1...ip
the relations (cf. 1.15):

φ∗ψr(i),ψr(j)(m
Γ
i1...ip(x;x1, . . . , xp)) = φ∗ij(xr) for i, j ∈ ir, and

φ∗ψr(i),ψs(j)(m
Γ
i1...ip(x;x1, . . . , xp)) = φ∗rs(x) for i ∈ ir, j ∈ is, r < s.
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The cell-interior of |Γ(µ,σ)
p | is spanned by the interiors of the simplices of the

following subset (which is not a simplicial subset) :

Γ̆(µ,σ)
p = {x ∈ Γp |σx = σ and φ∗ij(x) ∈ skµij Γ2\skµij−1Γ2}.

So, a cell |Γ(µ,σ)
p | is proper iff there exists a simplex (σ0, σ1, . . . , σk) ∈ Γp such that

σ = σk and such that for each i < j, the image-sequence

(φ∗ij(σ0), . . . , φ∗ij(σk)) ∈ Γ2

contains exactly µij changes. This leads to the following proposition, for which a
proof can be found in [5].

Proposition 2.9. Let Γ be the simplicial E∞-operad of Barratt-Eccles. Then
the posets of proper cells are given by :

K(Γ)p = {α ∈ Kp | there exists a descending chain of labelings (α(r)
ij ) ∈ N(p

2)

beginning with (α(0)
ij ) = (αij) and ending at (0) such that

α
(r)
ij ≡ α

(r)
jk mod2 implies α(r)

ij ≡ α
(r)
jk ≡ α

(r)
ik mod2 and

0 ≤ α
(r)
ij − α

(r+1)
ij ≤ 1 for all i, j, r}.

Remark 2.10. The posets K(F )p and K(Γ)p are quite different, which explains
the difficulty in showing directly that F (n)

p and |Γ(n)
p | are homotopy equivalent (cf.

[14]). The importance of the Γ-construction comes from the fact that the Smith-
filtration

Γ(n)
p = {x ∈ Γp |φ∗ij(x) ∈ skn−1Γ2 for all i < j}

defines a family of cellular En-operads in the category of simplicial sets so that, by
Fiedorowicz’s comparison theorem, May’s entire theory of En-operads can be ap-
plied in this simplicial context, including the approximation and detection theorems,
cf. [15], [19] or [5]. The case n = ∞ was the initial motivation of Barratt-Eccles
[4]. Moreover, the operad structure of Γ is purely group-theoretic, so that the cel-
lular En-operads Γ(n) relate the homology of the symmetric groups rather directly
to universal phenomena occuring in the theory of n-fold iterated loop spaces.

Notation 2.11. As a last example of a cellular E∞-operad we present here
Milgram’s permutohedral models [17]. Like Kapranov [13] we shall write Pn for
the permutohedron embedded in Rn, i.e. for the convex hull of the point set

{(σ(1), . . . , σ(n)) ∈ Rn |σ ∈ Sn}.
The permutohedron Pn is a convex polytope whose face-poset is canonically isomor-
phic to the poset P(Sn) formed by all (right) cosets

S(i1,...,ir)σ ∈ S(i1,...,ir)\Sn,

with respect to subgroups of Sn of the form S(i1,...,ir), where (i1, . . . , ir) is an
ordered partition of n, cf. 2.5. Indeed, each coset S(i1,...,ir)σ corresponds to the
convex hull of the vertices (τ(1), . . . , τ(n)) ∈ Rn, as τ runs through S(i1,...,ir)σ.

In the literature ([17], [3], [13]), the faces of the permutohedra are labelled
by left cosets instead of right cosets and the symmetric group acts by left multi-
plication instead of right multiplication. Our convention follows the definition of
the category Λ where the permutations act on themselves by right multiplication.
There is however an easy way to switch between the two conventions by means
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of the involution inv : σ 7→ σ−1 which associates to a permutation its “ordering”
and vice versa (cf. [19], [14], [13]). In particular, our multiplication 1.15a of the
permutation operad also reflects this notational convention, so that a reader who
prefers left notation, has to change mS

i1...in
into inv ◦ mS

i1...in
◦ (inv × · · · × inv)

which corresponds to “place-permutation” rather than “element-permutation”.

The definition of the Milgram operads relies formally on the existence of an
operad structure on the collection of permutohedra (Pn)n>0 which

(a) restricts to the permutation operad on vertices, and

(b) satisfies the boundary condition, i.e. the multiplication mP
i1...in

sends the
boundary of Pn × Pi1 × · · · × Pin to the boundary of Pi1+···+in .

The affine extension of the permutation operad does not satisfy the boundary
condition, so that some additional combinatorial properties of the permutohedra
have to be used. I am indebted to Fiedorowicz for insisting on this point and for
sending me some helpful pictures.

There is actually a natural cubical subdivision of the permutohedron Pn in-
duced by simplicial stars with respect to the barycentric subdivision of Pn. This
cubical subdivision admits the following geometric description : Each vertex σ ∈ Pn
carries a natural (n−1)-frame fσ defined by the union of all σ-incident edges in the
barycentrically subdivided 1-skeleton of Pn. The simplicial hull of fσ (i.e. the co-
cell of fσ in the nerve of P(Sn)) yields a standard simplicial (n−1)-cube bipointed
by σ and the barycenter of Pn. The cubical decomposition of Pn thus corresponds
to a frame-decomposition of the barycentrically subdivided 1-skeleton of Pn.

We shall show below that the permutation operad is naturally “framed”: for
each vertex (σ;σ1, . . . σn) ∈ Pn × Pi1 × · · · × Pin the image of the product-frame
fσ × fσ1 × · · · × fσn under mS

i1...in
defines a frame f(σ;σ1,...,σn) in Pi1+···+in whose

simplicial hull is a (i1 + · · ·+ in−1)-cube. We then define the permutohedral operad
to be the cubical extension of this “framed” permutation operad. The underlying
preoperad coincides with the affine extension of the permutation preoperad, since
the image-frame induced by a Λ-action is the natural one.

The definition of the image-frames uses an alternative description of the face-
poset P(Sn) based on the beautiful theorem of Blind and Mani [6] that the face-
poset of a simple polytope is uniquely determined by its 1-skeleton. The permuto-
hedron is simple and its (oriented) 1-skeleton coincides with the (left) weak Bruhat
order on the symmetric group Sn. To be more precise : each cell of the per-
mutohedron Pn has a canonical initial (resp. final) vertex given by the unique
permutation τ ∈ S(i1,...,ir)σ such that τ−1 is increasing (resp. decreasing) on sub-
sets ik of i1 + · · ·+ ir, cf. [3]. This orientation of the 1-skeleton of Pn defines
precisely the weak Bruhat order on Sn, and each coset in P(Sn) is an interval
for the weak Bruhat order. In other words, cells of the permutohedron correspond
bijectively to “admissible” intervals [τ1, τ2] of the weak Bruhat order on Sn, where
admissible means that the lower and upper bounds are the initial and final vertices
of some coset in P(Sn).

The permutation operad preserves the weak Bruhat order, i.e. the multiplica-
tion mS

i1...in
embeds Sn×Si1 ×· · ·×Sin in Si1+···+in as a subposet. Furthermore,

we define the geodesic between two comparable vertices of the permutohedron Pn
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to be the barycenter of all oriented edge-paths between them, and the barycenter of
an arbitrary interval [τ1, τ2] to be the middle of the geodesic between τ1 and τ2. The
barycenter of an admissible interval coincides with the barycenter of the associated
cell. The extremal vertices of the (n− 1)-frame fσ at σ ∈ Pn are now precisely the
barycenters of the 2-element intervals of Sn containing σ. More generally, the ex-
tremal vertices of the product-frame fσ×fσ1×· · ·×fσn

are precisely the barycenters
of the 2-element intervals of Sn ×Si1 × · · · ×Sin containing (σ;σ1, . . . , σn). The
multiplication mS

i1...in
sends these intervals to well defined intervals of Si1+···+in

containing σ(σ1, . . . , σn). The image-frame f(σ;σ1,...,σn) is then by definition the
union of the geodesics between σ(σ1, . . . , σn) and the barycenters of these image-
intervals. The simplicial hull of f(σ;σ1,...,σn) is an (i1 + · · ·+ in − 1)-cube bipointed
by σ(σ1, . . . , σn) and the barycenter of Pi1+···+in , actually isomorphic to a well de-
fined subdivision of the standard simplicial (i1 + · · ·+ in− 1)-cube, see [5] for more
details.

Finally we need the convex projectors

D(i1,...,ir) = ψ∗1 × · · · × ψ∗r : Pn → Pi1 × · · · × Pir
∼= c(i1,...,ir),

where ψk is the canonical inclusion of ik in n = i1 + · · ·+ ir, and where the convex
hull c(i1,...,ir) of the subgroup S(i1,...,ir) is identified with the cartesian product of
the corresponding permutohedra by affine extension of the canonical isomorphism

Si1 × · · · ×Sir
∼= S(i1,...,ir).

For each coset S(i1,...,ir)τ ∈ P(Sn) such that τ is initial, this defines a convex
projector Dτ

(i1,...,ir) = τ∗D(i1,...,ir)(τ∗)−1 onto the corresponding cell of the permu-
tohedron. The map which associates to a coset its convex projector “transforms”
the permutation operad into the permutohedral operad.

Definition 2.12. Milgram’s Ek-operads are defined as quotient spaces

J
(k)
n = (Pn)k−1 ×Sn/ ∼

where the equivalence relation identifies certain boundary cells of the cartesian
product. Explicitly, for each point (τ∗(x1), . . . , τ∗(xk−1);σ) ∈ (Pn)k−1 ×Sn such
that xs belongs to the convex hull of a proper subgroup S(i1,...,ir) of Sn and such
that τ is the initial vertex of the coset S(i1,...,ir)τ , we have the relation

(τ∗(x1), . . . , τ∗(xk−1);σ) ∼
(x1, . . . , xs, D(i1,...,ir)(xs+1), . . . , D(i1,...,ir)(xk−1); τσ).

The action of φ ∈ Λ(m,n) is induced by
φ∗ : (Pn)k−1 ×Sn → (Pm)k−1 ×Sm

(x1, . . . , xk−1; τ) 7→ (((τφ)inc)∗(x1), . . . , ((τφ)inc)∗(xk−1); (τφ) \).

The space J (k)
n embeds in J

(k+1)
n by identifying (Pn)k−1 with the subset of (Pn)k

formed by the points whose first component is the barycenter of the permutohedron,
i.e. the fixed point under the action of Sn.

The previously defined Λ-structure as well as the diagonal multiplication on
(Pn)k−1 ×Sn are compatible with the equivalence relation and induce thus a nat-
ural operad structure on the spaces (J (k)

n )n>0. The boundary condition of the
permutohedral operad is crucial at this point, since it implies that the gluing of
the cells is preserved under multiplication. The associated monad can be identified
with Milgram’s construction Jk which models for connected CW -spaces the functor



16 CLEMENS BERGER

ΩkSk [17]. The cellular Ek-structure of (J (k)
n )n>0 is based on the following lemma,

which relates our equivalence relation to that of Baues [3], [5] :

Lemma 2.13. Each point x ∈ J (k)
n has a unique representative

xcan = (x1, . . . , xk−1;σ) ∈ (Pn)k−1 ×Sn,
such that the minimal cells ci whose cell-interiors contain xi are convex hulls of a
decreasing chain of subgroups of Sn, in particular c1 ⊃ c2 ⊃ · · · ⊃ ck−1.

The collection of these cells c1 × · · · × ck−1 × σ induces a cell-decomposition of
J

(k)
n whose poset is antiisomorphic to K(F )(k)n , cf. 2.5.

Theorem 2.14. Milgram’s operads J (k) form the natural filtration of a cellular
E∞-operad. In particular, the space J

(k)
n has the Sn-equivariant homotopy type

of the real configuration space F (Rk, n). The posets of proper cells are given by
K(J)(k)n = K(F )(k)n .

Proof. – By the comparison theorem it remains to define the underlying cell
structure beginning with a cellular K2-decomposition of the inductive limit J2 =
lim−→kJ

(k)
2 . But the previous lemma shows that we have only to dualize the cell-

decompositions defined by the cartesian products, which is possible because of
the compactness of the J (k)

2 and the underlying affine structure. This dualization
process works Λ-equivariantly for all n and gives thus the asserted posets of proper
cells. �
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Valrose, F-06108 Nice Cedex 2, France.
E-mail address: cberger@math.unice.fr


