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Abstract

We show that the nerve of a braided monoidal category carries a nat-
ural action of a simplicial E2-operad and is thus up to group completion a
double loop space. Shifting up dimension twice associates to each braided
monoidal category a 1-reduced lax 3-category whose nerve realizes an ex-
plicit double delooping whenever all cells are invertible. We deduce that
lax 3-groupoids are algebraic models for homotopy 3-types.

Introduction

The concept of braiding as a refinement of symmetry is the starting point of
a rich interplay between geometry (knot theory) and algebra (representation
theory). The underlying structure of a braided monoidal category reveals an
interest of its own in that it encompasses two at first sight different geometrical
objects : double loop spaces and homotopy 3-types. The link to double loop
spaces was pointed out by J. Stasheff [38] and made precise by Z. Fiedorowicz
[15], who proves that double loop spaces may be characterized (up to group
completion) as algebras over a contractible free braided operad. The link to
homotopy 3-types goes back to A. Grothendieck’s pursuit of stacks [20] and was
taken up by O. Leroy [29], who shows that a weak form of 3-groupoid, we call
here lax 3-groupoid, models homotopy 3-types; the laxness stems precisely from
“relaxing” a strict commutativity constraint to an interchange (i.e. braiding)
cell. Lax 3-groupoids are called semi-strict 3-groupoids by Baez-Neuchl [2], and
Gray groupoids by Gordon-Power-Street [17].

Our main concern here is to “tie together” these two aspects of the same
structure. In particular, we hope this might help to construct a general scheme
relating iterated loop spaces to homotopy n-types. The point is that the com-
binatorial structure of iterated loop spaces is by now quite well understood (cf.
[8], [3]), whereas the same is not true for homotopy n-types when n ≥ 4.

The text is divided into three parts :
• Part One proves the existence of a double delooping for braided monoidal

categories in the “realm” of simplicial E2-operads. In some precise sense, the
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braid groups are contained in the combinatorial structure of the symmetric
groups by means of the weak Bruhat order.

• Part Two fully embeds the category of braided monoidal categories into
the category of lax 3-categories thus providing an explicit double delooping for
braided monoidal groupoids. The main tool is a cosimplicial lax 3-categorical
object.

• Part Three proves the equivalence of the homotopy categories of simplicial
3-types and lax 3-groupoids on the basis of the following observation : the fun-
damental groupoid of the double loops on a simply connected 3-type is braided
monoidal.

I would like to take the opportunity to thank the members of Sydney’s Cat-
egory Seminar for their hospitality during my visit of the southern hemisphere.
The following text owes quite a lot to all of them.

1 Braided monoidal categories

Throughout, we shall adopt the following conventions and notations:
‘Monoidal’ always means ‘strict monoidal’.– A braiding is not assumed to be
invertible.– The class of n-cells of a (multiple) category C is written Cn.– The
symmetric group on a set I is denoted by SI . For S{1,...,n} we write Sn and the
permutation which maps (1, . . . , n) to (a1, . . . , an) is represented by [a1, . . . , an].

Definition 1.1. A braided monoidal category is a monoidal category (C,�, U)
endowed with a binatural family of morphisms cA,B : A�B → B�A, called
braidings, such that for all A,B,C ∈ C0 we have

i) cA,U = cU,A = 1A (unitarity),
ii) cA�B,C = (cA,C�1B) ◦ (1A�cB,C)

cA,B�C = (1B�cA,C) ◦ (cA,B�1C) (transitivity).

Naturality and transitivity of the braidings imply the commutativity of the
so called Yang-Baxter hexagon :
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A�B�C

B�A�C B�C�A

C�B�A

A�C�B C�A�B

1B�cA,C

cA,B�1C cB,C�1A

cA,C�1B

1A�cB,C 1C�cA,B

The purpose of this chapter is a new proof of the following theorem :
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Theorem 1.2. (Stasheff [39], Fiedorowicz [15])
The nerve of a braided monoidal category is up to group completion a double
loop space.

By virtue of P. May’s theory of En-operads [33],[12], it suffices to construct
an action of a simplicial E2-operad upon the nerve of a braided monoidal cat-
egory, which then implies the existence of a double delooping of its geometric
realization.

There are several convenient choices for such simplicial E2-actions. In [15],
Fiedorowicz introduces the notion of a braided operad as a braid analog of May’s
S-operads, and characterizes E2-operads (up to equivalence) as contractible
free braided operads. In [3], Balteanu, Fiedorowicz, Schwänzl and Vogt con-
struct categorical En-operads acting on n-fold monoidal categories and show
that braided monoidal categories are special 2-fold monoidal categories.

Here, we choose yet another approach, based on the weak Bruhat order of
the symmetric groups. On the categorical level, we get a non-S-operad action
which is merely a restatement of Joyal-Street’s Coherence Theorem for braided
monoidal categories [22]. On the simplicial level, this action induces a S-operad
action of the simplicial E2-operad ES(2) which is the second term of Smith’s
filtration of the simplicial E∞-operad ES [37],[4]. In the case of a symmetric
monoidal category (i.e. with invertible braidings satisfying c−1

A,B = cB,A), the
action extends canonically to the entire E∞-operad ES by MacLane’s classical
Coherence Theorem [30], and we recover P. May’s original line of argument
proving that the nerve of a symmetric monoidal category admits an infinite
delooping [34].

The Smith-filtration of ES was shown in [8] and [3] to define simplicial En-
operads ES(n) for all n. If n = 1, 2,∞, an action of ES(n) detects nerves
of monoidal, braided monoidal resp. symmetric monoidal categories. It seems
likely that for 2 < n < ∞, the categorical structure detected by an ES(n)-
action (and thus corresponding to an n-fold loop space) involves some higher
order analogue of braiding related to Manin-Schechtman’s (n − 1)-categorical
structure of the symmetric group Sn (cf. [32], [25]).

Let us fix some notation and recall the definition of the Smith-filtration.

Notation 1.3. We define ESk as the nerve of the translation category on the
symmetric group Sk. A d-simplex in ESk is thus a (d+1)-tuple of permutations
in Sk. There is a (diagonal) free Sk-action on ESk. The operad-structure on
the family (Sk)k≥1 defines a simplicial operad-structure on the family ES =
(ESk)k≥1. In particular, the multiplication of the permutation operad

mS
i1...ip

: Sp ×Si1 × · · · ×Sip → Si1+···+ip

(σ;σ1, . . . , σp) 7→ σ(i1, . . . , ip) ◦ (σ1 ⊕ · · · ⊕ σp),

(where σ(i1, . . . , ip) permutes the p “blocks” according to σ) defines diagonally
the multiplication of the simplicial E∞-operad ES = (ESk)k≥1.

For each couple of integers (i, j) such that 1 ≤ i < j ≤ k there is a mapping
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φ∗ij : Sk → S2

σ 7→

{
[1, 2] if σ(i) < σ(j),
[2, 1] if σ(j) < σ(i).

These mappings induce injective product mappings∏
1≤i<j≤k

φ∗ij : Sk → (S2)(
k
2) (1)

∏
1≤i<j≤k

Eφ∗ij : ESk →(ES2)(
k
2) (2)

Let S2 be ordered according to [1, 2] < [2, 1] and let ES2 be filtered by the
(n− 1)-skeleta ES

(n)
2 = skn−1ES2.

Definition 1.4. The (left) weak Bruhat order (Sk,≤) is the partial order on
Sk induced by the injective mapping (1) and the product order on (S2)(

k
2), i.e.

σ ≤ τ ⇔ φ∗ij(σ) ≤ φ∗ij(τ) for all i < j.

The Smith-filtration ES(n) of ES is the filtration induced by the injective map-
ping (2) and the diagonal filtration on (ES2)(

k
2), i.e.

ES
(n)
k =

⋂
1≤i<j≤k

φ∗−1
ij (ES

(n)
2 ).

Remark 1.5. The (left resp. right) weak Bruhat order on the symmetric group
Sk is usually defined as the partial order which underlies the Cayley graph on
Sk for (left resp. right) translation by the family of elementary transpositions
(i, i+1), i = 1, . . . , k−1. We leave it to the reader to check that this is equivalent
to our definition.

Lemma 1.6. A simplex (σ0, . . . , σd) ∈ ESk ending at σd = 1k belongs to ES
(2)
k

if and only if σ0 ≥ σ1 ≥ · · · ≥ σd−1 ≥ 1k.

Proof. – By definition of the Smith-filtration, the simplex (σ0, . . . , σd) belongs
to ES

(2)
k if and only if (φ∗ij(σ0), . . . , φ∗ij(σd)) belongs to ES

(2)
2 for each i < j,

which means that there is at most one change in each projected sequence of
permutations, necessarily of the form [2, 1] > [1, 2] as φ∗ij(1k) = 12. This in turn
is equivalent to the ordering σ0 ≥ σ1 ≥ · · · ≥ σd−1 ≥ 1k by our definition of the
weak Bruhat order.

Proposition 1.7. The nerve of a braided monoidal category carries a canonical
action of the simplicial E2-operad ES(2).

Proof. – The existence of a monoidal structure on the category C is equivalent
to the existence of an action by the permutation operad :

Sk × Ck → Ck

(σ;A1, . . . , Ak) 7→ Aσ−1(1)� · · ·�Aσ−1(k).
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The existence of braidings cA,B on the monoidal category (C,�, U) amounts
then to a uniquely determined extension of the above action to the weak Bruhat
orders (Sk,≤)k≥1 with braiding cA1,A2 : A1�A2 → A2�A1 given by the im-
age of the relator arrow [1, 2] → [2, 1]. The transitivity of the partial order
corresponds to the transitivity of the braiding. Indeed, in this strict setting,
Joyal-Street’s Coherence Theorem for braided monoidal categories [22] may be
restated as follows : On the set of k-fold products Aσ−1(1)� · · ·�Aσ−1(k), σ ∈ Sk

the set of braidings forms exactly the set of relators of a partial order, in fact
the weak Bruhat order (cf. remark 1.5).

The family of weak Bruhat orders (Sk,≤)k≥1 actually defines a categorical
non-S-operad since the multiplication of the permutation operad preserves the
weak Bruhat orders, whereas right translation does not (it only preserves adja-
cency, but not order). Taking nerves, we get a canonical non-S-operad action of
N (Sk,≤)k≥1 on NC. Furthermore, there is a partial action of Sk upon N (Sk)
which allows one to canonically extend the action to the following simplicial set:

E
(2)
k = (N (Sk,≤)×Sk)/(x, σ) ∼ (xσ, 1k),

where the relation holds whenever right translation of x ∈ N (Sk,≤) by σ is
well defined. Now, by lemma 1.6, there is a canonical simplicial isomorphism
ES

(2)
k

∼= E
(2)
k and the extended action on NC is compatible with the operad

structure of ES(2).

Theorem 1.2 follows now from the fact that ES(2) is a simplicial E2-operad
([9],[3]) by an immediate application of May’s theory of En-operads ([34],[12]).
The double delooping construction is provided by a generalized bar-construction
and only takes place after replacement of |NC| by a homotopy equivalent space
upon which the little squares operad of Boardman-Vogt acts [10]. This replace-
ment space depends on an explicit equivalence of operads between |ES(2)| and
the little squares operad.

Remark 1.8. According to the preceeding proof, the simplicial set ES
(2)
k is built

up out of k! copies of the nerve N (Sk,≤) by means of gluing relations deter-
mined through the partial Sk-action on N (Sk,≤). These gluing relations are
reminiscent of Milgram’s permutohedral model (Pk ×Sk)/ ∼ of the configura-
tion space F (R2, k) of ordered k-tuples of distinct points in the plane [35]. The
formal analogy between the two can be made precise and relies on the structure
of a cellular E2-preoperad (cf. [9]) shared as well by the family |ES

(2)
k |k≥1 as by

the family F (R2, k)k≥1. We obtain as corollary a homotopy equivalence between
|ES

(2)
k | and F (R2, k).

The (algebraically defined) fundamental group of ES
(2)
k is thus isomorphic

to the fundamental group of F (R2, k) which (nearly by definition) is the pure
braid group on k strands. This induces a canonical representation of the pure
braid group in the automorphism group of each k-fold product A1� · · ·�Ak of
a braided monoidal category (cf. [26]).
Remark 1.9. The free braided monoidal category B on one generating object 1
(with invertible braidings) contains Artin’s braid groups Bk = π1(F (R2, k)/Sk)
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in the form of the automorphism groups AutB(1�k), as shown by Joyal-Street
[21]. For example, if k = 3 and 1 = A = B = C, then s1 = cA,B�1C and
s2 = 1A�cB,C form the generators for the “algebraic” braid group B3 and
the Yang-Baxter hexagon realizes the defining relation s2s1s2 = s1s2s1. The
preceeding remark can serve as a combinatorial proof that the geometric and
algebraic definitions of Bk coincide, which was one of E. Artin’s main initial
concerns (cf. [1]).

The nerve of B is a disjoint union of classifying spaces

NB =
⊔
k≥0

BBk

and is homotopy equivalent to the free |ES(2)|-space generated by a one-point
space. The group completion of the monad associated to |ES(2)| is equivalent to
the double looping of the double suspension functor so that the group completion
NB of NB is homotopy equivalent to Ω2S2, the double loop space of the 2-
sphere.

The group completion process can be realized as a homological completion
followed by Quillen’s plus-construction, which yields

NB ∼ Z× (BB∞)+ ∼ Ω2S2,

a classical result of F. Cohen [12] and G. Segal [36].

2 Lax 3-categories

The purpose of this chapter is to fully embed the category of braided monoidal
categories into the category 3-Cat⊗ of lax 3-categories by means of a categorical
double delooping. The subtle point is then the definition of a 3-nerve, which
was done by O. Leroy in [29]. We interpret his nerve through the construction of
a standard cosimplicial object in 3-Cat⊗ inducing a natural adjunction between
the category of simplicial sets and 3-Cat⊗.
Notation 2.1. A 2-category C is a category endowed with categorical hom-sets
C(A,B) in such a way that composition is a functor of categories

C(A,B)× C(B,C) → C(A,C).

The objects of C are also called 0-cells, the morphisms of C (identified with
objects of C(A,B)) are called 1-cells and the morphisms of C(A,B) 2-cells. We
represent 1-cells by arrows f : A→ B and 2-cells by double arrows φ : f ⇒ g.

Composition internal to hom-sets C(A,B) is called ”vertical” composition of
2-cells and denoted as usual by ◦. Composition internal to C is called ”horizon-
tal” composition and denoted by ? in the case of 2-cells and by juxtaposition in
the case of 1-cells (both from right to left).

The fact that horizontal composition is a functor amounts (beside the usual
unity and associativity constraints) to the following interchange relation : For
each diagram of the form

6



&%
'$

&%
'$r rr ?

6
?
6

--
ψ2φ2

ψ1φ1 ?
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?

?

we have

(ψ2 ? φ2) ◦ (ψ1 ? φ1) = (ψ2 ◦ ψ1) ? (φ2 ◦ φ1). (int)

In particular, for each 2-cell φ : f0 ⇒ f1 in C(A,B) and each 2-cell ψ : g0 ⇒ g1 in
C(B,C) we get for the horizontal composition ψ?φ the two following expressions

(ψ ? 1f1) ◦ (1g0 ? φ) = (1g1 ? φ) ◦ (ψ ? 1f0). (cmt)

Conversely, if the commutativity relation (cmt) holds for every horizontally
composable pair of 2-cells (φ, ψ) ∈ C(A,B) × C(B,C) then the interchange
relation (int) follows from the unity and associativity constraints in C(A,B)
and C(B,C).

Definition 2.2. ([18], [28])Given two 2-categories C,D Gray’s tensor product
C ⊗ D is defined to be the 2-category

• with 0-cells given by (formal) products A⊗A′ for all pairs (A,A′) ∈ C0×D0,

• with 1-cells given by products A⊗f ′ and f⊗A′ for all pairs (A, f ′) ∈ C0×D1

and (f,A′) ∈ C1 ×D0,

• with 2-cells generated by products A⊗φ′, f⊗f ′, φ⊗A′ for all pairs (A,φ′) ∈
C0 × D2, (f, f ′) ∈ C1 × D1, (φ,A′) ∈ C2 × D0, where f ⊗ f ′ denotes the
following 2-cell :

A⊗A′

?

A⊗ f ′

A⊗B′ -
f ⊗B′

B ⊗B′

?

B ⊗ f ′

B ⊗A′-
f ⊗A′

?
f ⊗ f ′

These cells are subject to the following three types of relations :

• The assignments (A ⊗ −) : D → C ⊗ D and (− ⊗ A′) : C → C ⊗ D are
2-functors for all (A,A′) ∈ C0 ×D0 (0-functoriality),
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• gf ⊗ f ′ = (g ⊗ f ′) ◦ (f ⊗ f ′)
f ⊗ g′f ′ = (f ⊗ g′) ◦ (f ⊗ f ′)
f ⊗ 1A′ = 1f⊗A′ = 1f ⊗A′

1A ⊗ f ′ = 1A⊗f ′ = A⊗ 1f ′

for all composable 1-cells f, g ∈ C1 and f ′, g′ ∈ D1 (1-functoriality),

• (g ⊗ f ′) ◦ (φ⊗A′) = (φ⊗B′) ◦ (f ⊗ f ′)
(f ⊗ g′) ◦ (A⊗ φ′) = (B ⊗ φ′) ◦ (f ⊗ f ′)
for all φ : f ⇒ g in C and φ′ : f ′ ⇒ g′ in D (2-functoriality).

The Cartesian product C×D carries a natural (diagonal) 2-categorical struc-
ture with respect to which there is a (strictifying) 2-functor C ⊗ D → C × D
sending (f ⊗ f ′) to 1(f,f ′).

Definition 2.3. A lax 3-category C is a category endowed with 2-categorical
hom-sets such that composition is a 2-functor C(A,B)⊗C(B,C) → C(A,C). A
lax 3-category is strict iff composition factorizes through the Cartesian product
C(A,B)× C(B,C).

The commutativity constraint for the horizontal composite of two 2-cells in
a strict 3-category is “relaxed” inside a lax 3-category C to an “interchange”
3-cell relating the two in general different composites :

g0f0

ψ ? 1f0

g1f0
1g1 ? φ

g1f1

ψ ? 1f1

g0f1
1g0 ? φ

?
-

?

-

?
φ⊗ ψ

We call this dimension raising composition of 2-cells in a lax 3-category the
Gray composition of 2-cells.

Remark 2.4. There is a subtle point in the definition of a lax 3-category which
we passed over : the associativity of Gray’s tensor product of 2-categories which
is certainly a necessary condition for consistency [19]. A natural way to estab-
lish this associativity is to define n-fold Gray tensor products of 2-categories
independently of a chosen bracketing. This amounts essentially to giving a
bracketing independent description of all possible horizontal compositions of n
consecutive 2-cells in a lax 3-category.

So, let φi : fi ⇒ gi be 2-cells with fi, gi : Ai−1 → Ai for i = 1, . . . , n.
Then there are 2n different compositions of the 1-cells to define an arrow from
A0 to An. Regarding the 2-cells φi as directions of a n-cube, each of the 2n

compositions corresponds to a well defined vertex in the n-cube and conversely,
each edge of the cube to a well defined 2-cell in C. Hence, there are exactly n!
2-cells from fnfn−1 · · · f1 to gngn−1 . . . g1 obtained by composing the different
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φi in an arbitrary order. The crucial point now is that the interchange 3-cells
of the lax 3-category C partially order the set of 2-cells between fnfn−1 · · · f1
to gngn−1 . . . g1 according to the weak Bruhat order, and that conversely the
weak Bruhat order gives all of them independently of any chosen bracketing. To
see this, regard the interchange 3-cells as relators; the 1-functoriality of Gray’s
tensor product then states precisely that the so defined (reflexive) relation is
transitive and hence a partial order.

Notation 2.5. For a braided monoidal category (C,�, U), let Ω−2C denote the
1-reduced lax 3-category defined by shifting up dimension twice :

(Ω−2C)0 = {∗}, (Ω−2C)1 = {1∗}, (Ω−2C)2 = C0, (Ω−2C)3 = C1,

where vertical (and thus horizontal) composition of 2-cells in Ω−2C is given
by the monoidal structure on C and the interchange 3-cell between the two
different composites of 2-cells is given by the braiding. Naturality, transitivity
and unitarity of the braiding transform into 2-, 1- and 0-functoriality of Gray’s
tensor product under the assignment C 7→ Ω−2C. Braided monoidal functors
transform into 3-functors, so that this categorical double delooping Ω−2 defines
a fully faithful embedding of the category of braided monoidal categories into
the category of lax 3-categories. Indeed, the former category is equivalent to
the full subcategory of the latter formed by the 1-reduced lax 3-categories.

We saw in the first section that the geometric realization of a braided
monoidal category C admits a double delooping. We shall show below that
under favourable circumstances Ω−2C can be regarded as a categorical model of
such a double delooping. But, what’s the space or simplicial set represented by a
lax 3-category ? For strict 3-categories (resp. ω-categories), R. Street [40] gave
a very convincing answer, extending each ordinal [n] = {0 → 1 → 2 → . . .→ n}
to a 3-categorical object On (called n-th oriental) such that n-simplices in a
3-category D are just 3-functors On → D. In particular, the family (On)n≥0

defines a cosimplicial object in the category of 3-categories (resp. ω-categories).
In our lax setting, we have to replace Street’s 3-categorical orientals by lax

ones, which take into account the non-commutative horizontal composition of
2-cells in a lax 3-category. The geometric idea behind the following definition
of a cosimplicial object in 3-Cat⊗ is taken from O. Leroy’s paper [29] :

Definition 2.6. For 0 ≤ i < j ≤ n, let ‖n‖(i, j) be the following 2-categorical
(j − i− 1)-cube :

‖n‖(i, j)0 = {factorizations of i→ j in [n]}
‖n‖(i, j)1 = {refinement sequences}
‖n‖(i, j)2 ↔ weak Bruhat order

Composition ‖n‖(i, j) ⊗ ‖n‖(j, k) → ‖n‖(i, k) is defined by concatenation and
endows ‖n‖ with the structure of a lax 3-category.

The simplicial operators [m] → [n] canonically extend to 3-functors so as to
define a cosimplicial object (‖n‖)n≥0 in 3-Cat⊗.
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Some comments are in order :
Factorizations i → i1 → · · · → ik → j of i → j are in bijection with subsets
{i1, . . . , ik} ⊆ {i+ 1, i+ 2, . . . , j − 1} and thus naturally form the vertex-set of
a (j − i − 1)-cube whose edges are oriented by subset-inclusion. A refinement
sequence I1 → Ir is then a sequence of subsets

∅ ⊆ I1 ⊂ I2 ⊂ · · · ⊂ Ir ⊆ {i+ 1, i+ 2, . . . , j − 1}

such that |Ik| = |Ik−1|+1 for k = 2, . . . , r. Refinement sequences are in bijection
with (oriented) edge-paths in the (j − i− 1)-cube.
The weak Bruhat order on refinement sequences is finally given by the following
relators :

(I1 ⊂ I2 ⊂ · · · ⊂ Ir) ⇒ (J1 ⊂ J2 · · · ⊂ Jr)

if and only if I1 = J1 and Ir = Jr and

[I2\I1, I3\I2, . . . , Ir\Ir−1] ≤ [J2\J1, J3\J2, . . . , Jr\Jr−1] in (SIr\I1 ,≤).

The Gray composition I ⊗ J of 0-cells I ∈ ‖n‖(i, j)0, J ∈ ‖n‖(j, k)0 is simply
concatenation of the corresponding factorizations (in fact the disjoint union of
subsets); Gray composition of 1-cells is given by the following formula :

‖n‖(i, j)1 ⊗ ‖n‖(j, k)1 −→ ‖n‖(i, k)2
(I1 ⊂ · · · ⊂ Ir)⊗ (J1 ⊂ · · · ⊂ Jr) 7→ (I1 ⊗ J1 ⊂ · · · Ir ⊗ J1 ⊂ · · · Ir ⊗ Js)

⇒ (I1 ⊗ J1 ⊂ · · · I1 ⊗ Js ⊂ · · · Ir ⊗ Js)

Under the bijection between 2-cells and relators of the weak Bruhat order, Gray
composition corresponds to the multiplication of the permutation operad :

mS
|Ir\I1|,|Js\J1| : S2 ×S|Ir\I1| ×S|Js\J1| −→ SIr⊗Js\I1⊗J1

([1, 2] → [2, 1];σ1, σ2) 7→ (σ1 ⊕ σ2 → σ2 ⊕ σ1)

In particular, associativity (resp. monotony) of mS implies the 1- (resp. 2-)
functoriality of Gray composition.

Example 2.7. The 2-categorical 3-cube ‖4‖(0, 4).

∅

?

{1} - {1, 2}
?

{2}-

{3}

?

{1, 3} - {1, 2, 3}
?

{2, 3}-

6

6

66
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�
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�
��

����
�

����
�
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Among the six faces of the cube, five are images of ‖3‖(0, 3) by simplicial
operators, and one (the right hand face) is the image of ‖4‖(0, 2) ⊗ ‖4‖(2, 4)
by Gray composition. We get the following commutative Yang-Baxter hexagon
of 2-cells of ‖4‖(0, 4) which illustrates well the intimate relationship between
braiding, Gray tensor product and weak Bruhat order (cf. 1.1, 2.4 and especially
Baues’ cellular string functor [6]) :

�
�

�

�
�

�� @
@

@

@
@

@R

-

@
@

@

@
@

@R
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�
�

�
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-

[1, 2, 3]

[2, 1, 3] [2, 3, 1]

[3, 2, 1]

[1, 3, 2] [3, 1, 2]

(012)⊗ (234)
(0124) (0234)

(0134)

(01)⊗ (1234) (0123)⊗ (34)

Remark 2.8. Stasheff’s associativity pentagon is obtained by contracting the
decomposable “interchange cell” (012) ⊗ (234) into an identity (cf. [38]). This
contraction is part of a natural strictifying 3-functor ‖n‖ → On which contracts
all interchange cells of ‖n‖ into identities ending up with Street’s 3-categorical
n-th oriental On. Extending the preceeding example, it follows from the defini-
tion that the category of 2-cells ‖n+ 1‖(0, n+ 1)(∅, {1, 2, . . . , n}) is canonically
isomorphic to the weak Bruhat order (Sn,≤), which is also the 1-skeleton of
Milgram’s permutohedron Pn (cf. [35], [32]). The strictifying 3-functor defines
then a surjective map of partially ordered sets

‖n+ 1‖(0, n+ 1)(∅, {1, 2, . . . , n}) −→ On+1(0, n+ 1)(∅, {1, 2, . . . , n})

whose image is exactly the 1-skeleton of Stasheff’s associahedron An+1. This
1-skeletal map extends to a convex map Pn → An+1, as shown by A. Tonks [41].
It seems likely that higher order categorical laxness is related to the geometry
of this convex projection. In particular, Kapranov-Voevodsky’s idea [25] of
deriving pasting schemes which is a categorical version of Baues’ cellular string
functor [6], may shed some light on this “relaxing” process from On to ‖n‖.

Lemma 2.9. The 3-nerve N3 : 3-Cat⊗ → SimpSets : D 7→ 3-Cat⊗(‖ − ‖,D)
has a left adjoint t3 : SimpSets → 3-Cat⊗ given by the coend formula :

t3(X) =
∫ n∈�

Xn ⊗ ‖n‖ = lim−→
∆[−]↓X

‖ − ‖

so that we have a natural bijection of morphism-sets

3-Cat⊗(t3(X),D) ∼↔ SimpSets(X,N3(D)).
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Proof. – The adjunction formula follows immediately from the universal prop-
erty of the coend (cf. [31]). It remains to show that colimits exist in 3-Cat⊗. A
powerful method to establish such existence results, consists in realizing (up to
equivalence) the category under consideration, as a category of T -algebras over
a cocomplete base category with respect to a filtered colimits preserving monad
T . We then dispose of an “algebraic” construction of colimits like for example
in the case of groups over sets, see M. Kelly [27].

In our case we have two possible choices : neglecting all compositional laws
defines a forgetful functor U into the category of (3-dimensional) globular sets
which is (as a presheaf category over sets) cocomplete. Forthcoming work of
M. Batanin [5] implies that U is monadic, i.e. lax 3-categories are T -algebras
for some monad T = UF on the category of globular sets, where F is a “free
functor” left adjoint to U . The monad T preserves filtered colimits since T can
be constructed as a coproduct of some finitely iterated pullback constructions.

Alternatively, one can neglect just the compositional laws of 3-cells which
defines a forgetful functor into the category of graphs enriched over 2−Cat⊗, the
category of 2-categories with the closed monoidal structure induced by Gray’s
tensor product. It is well known that categories are T -algebras over graphs for
some filtered colimits preserving monad T on the category of graphs, and this
remains true in our enriched context, cf. H. Wolff [44].

Recall that a simplicial set X is called a simplicial n-type if the homotopy
groups πk(|X|) are trivial for k > n. A small lax 3-category D whose cells
of positive dimension are (strictly) invertible is called a lax 3-groupoid. Since
the interchange cells of a lax 3-groupoid are invertible, lax 3-groupoids are
precisely semi-strict 3-groupoids in the terminology of Baez-Neuchl [2] and Gray
groupoids in the terminology of Gordon-Power-Street [17].

Proposition 2.10. The 3-nerve of a lax 3-groupoid is a fibrant simplicial 3-
type.

Proof. – Two n-simplices x, y : ‖n‖ → G of a lax 3-groupoid G which coincide on
their 3-skeleta are equal, since there exist no cells of dimension greater than 3 in
G. A fibrant simplicial set with this property is a simplicial 3-type. It remains
thus to show that N3G is fibrant, i.e. for all couples (k, n) with 0 ≤ k ≤ n, all
(k, n)-horns have fillers in N3(G) (cf. [16]).

If n ≤ 3, this is an easy consequence of the invertiblity of 1- and 2-cells in
G. If n ≥ 5, a (k, n)-horn in N3(G) defines by adjunction a partial map from
‖n‖ to G. The domain of this partial map (i.e. the lax 3-categorical (k, n)-
horn) contains the 3-skeleton of ‖n‖, so that the partial map extends uniquely
to ‖n‖ defining the required filler. If n = 4, a (k, n)-horn in N3(G) defines by
adjunction, a 2-functor on all but one face of the 3-cube ‖4‖(0, 4) (2.7). The
commutativity of this cube gives an equation for the missing face, which can be
solved thanks to the invertibility of the 3-cells in G.

Proposition 2.11. Let C be a braided monoidal category whose categorical dou-
ble delooping Ω−2C is a lax 3-groupoid. Then the nerve of C is homotopy equiv-
alent to the double loop space of the 3-nerve of Ω−2C.
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Proof. – Since N3(Ω−2C) is fibrant, the simplicial functional object

SimpSets∗(S
2,N3(Ω−2C))

has the homotopy type of Ω2|N3(Ω−2C)|, where S2 denotes the reduced simpli-
cial 2-sphere ∆[2]/∆̇[2] (cf. [16]). By adjunction, the same functional object
can be defined over 3-Cat⊗∗(t3(S

2),Ω−2C) where the simplicial structure is in-
duced by the cosimplicial object t3(S2 ⇒ S2×∆[1] · · · ) in 3-Cat⊗. Since the lax
3-groupoid Ω−2C is 1-reduced, we can identify 3-functors t3(S2×∆[n]) → Ω−2C
with simplicial collections of 3-cells in Ω−2C or equivalently (by shifting down
dimension twice) with simplicial collections of 1-cells in C. More precisely, the
simplicial functional object SimpSets∗(S

2,N3(Ω−2C)) is isomorphic to the sim-
plicial subdivision of the nerve NC induced by the cosimplicial object S−2(S2 ⇒
S2 × ∆[1]/{∗} × ∆[1] · · · ) in SimpSets. Since simplicial subdivision preserves
the homotopy type we get the required homotopy equivalence.

Remark 2.12. A braided monoidal category C whose double delooping Ω−2C is a
lax 3-groupoid is precisely what Joyal-Street [22] call a strict braided categorical
group. We shall call it here (for shortness) a braided groupoid. A braided
groupoid is thus a group in the category of groupoids endowed with a natural
family of braidings in the sense of definition 1.1.

It is shown in [22] that the category of braided groupoids is equivalent to
the category of Whitehead’s crossed modules endowed with a bracket operation
in Conduché’s sense [13]. This category is equivalent to the category of stable
crossed modules, which in turn models (n− 2)-connected homotopy n-types for
n ≥ 3. Our functor N3Ω−2 defines a realization functor from braided groupoids
into 1-reduced simplicial 3-types and the preceeding proof implies that the alge-
braically defined π0 and π1 of the braided groupoid are canonically isomorphic
to the geometrically defined π2 and π3 of the associated 1-reduced 3-type.

3 Algebraic 3-type of space

There is a vast literature on algebraic models of homotopy n-types, beginning
with the pioneering work of H. Poincaré and J.H.C. Whitehead [43]. As our
concern is merely to point out some relationship between the combinatorics of
2-fold iterated loop spaces and of homotopy 3-types, this chapter will be rather
sketchy and primarily intends to give some complementary details to O. Leroy’s
paper [29]. We believe that lax 3-groupoids are “good” models for homotopy
3-types insofar as they furnish “fibrant” models out of some natural “cellular
bases”. R. Brown’s and also A. Grothendieck’s emphasis on the wellsuitedness
of groupoids for homotopy types gets full justification here : we reduce the
required equivalence of homotopy categories to a structural statement about
the fundamental groupoid of the double loop space of a simply connected 3-
type : it is braided in the sense of remark 2.12.

Conduché’s crossed modules of length 2 [13] and Baues’ quadratic modules [7]
are closely related to lax 3-groupoids as suggested by the work of Brown-Gilbert
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[11] on automorphism structures of crossed modules [43]. In fact, to each vertex
of a lax 3-groupoid G is associated a 3-stage differential group

π3(G3,G2) → π2(G2,G1) → π1(G1),

which turns out to be a “2-nilpotent” crossed module of length 2, i.e. it carries
a natural structure of quadratic module.

Let 3-Grp⊗ denote the category of lax 3-groupoids and t̂3 : SimpSets →
3-Grp⊗ denote the composition of t3 : SimpSets → 3-Cat⊗ with the reflection
into 3-Grp⊗ (defined by formally inverting all cells). Recall then the following
corollary of a theorem of Sjoerd Crans [14] about the transfer of closed model
structures along an adjunction :

Proposition 3.1. The category 3-Grp⊗ of lax 3-groupoids carries a Quillen
closed model structure [42] induced by the closed structure of SimpSets through
the adjunction t̂3 a N3.
Fibrations (resp. weak equivalences) are those 3-functors φ for which N3(φ) is a
Kan fibration (resp. weak equivalence) in SimpSets. Cofibrations are 3-functors
which have the right lifting property with respect to trivial fibrations.

Proof. – All we need to check is that the composite functor N3t̂3 : SimpSets →
SimpSets transforms trivial cofibrations of into weak equivalences. This follows
from the fact that trivial cofibrations in SimpSets are “generated” by the set
of inclusions of (k, n)-horns into ∆[n], and that for the latter, the statement is
true.

Proposition 3.2. The unit ηX : X → N3t̂3(X) is a weak equivalence if and
only if X is a simplicial 3-type.

Proof. – The necessity for X to be a 3-type follows from proposition 2.10. The
sufficiency is at the heart of the comparison between our geometric and algebraic
homotopy categories. We shall sketch a proof.

The first step is a reduction to simply connected 3-types. Indeed, there
is a natural fibration from each lax 3-groupoid G to its underlying fundamen-
tal groupoid G[1] defined by “contracting” all 2- and 3-cells of G into identi-
ties. For a simplicial set X, this defines precisely the fundamental groupoid
Π(X) = t̂3(X)[1] of Gabriel-Zisman [16]. The unit ηX is a weak equivalence iff

the homotopy fiber X ′ of the composite X
ηx→ N3t̂3

p[1]→ N3t̂3(X)[1] is weakly
equivalent (via ηX) to the fiber of p[1], but this amounts to proving that ηX′ is
a weak equivalence for the simply connected 3-type X ′. So assume X = X ′.

The second step is a reduction to minimal fibrant models. This is possible
because each simplicial set is contained in a fibrant model which in turn contains
a minimal fibrant one as a simplicial deformation retract [16]. Minimality means
that two simplices in X coincide as soon as they are homotopic relative to
the boundary. Minimal fibrant models X of simply connected spaces are in
particular 1-reduced, i.e. X0 = X1 = {∗}.

The third step is a double looping process. For a 1-reduced simplicial set X,
the simplicial functional object SimpSets∗(S

2, X) is (as in proposition 2.11) a
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subdivision of a simplicial set Ω2X which has the homotopy type of the double
loops on X for fibrant X. The lax 3-groupoid t̂3(X) is also 1-reduced. Dou-
ble looping of ηX : X → N3t̂3(X) yields thus a canonical inclusion of Ω2X
into the nerve of Ω2t̂3(X). It remains to show that this inclusion is a weak
equivalence. The universal property of t̂3 together with the full embedding of
braided groupoids (cf. 2.12) into 3-Grp⊗ (via Ω−2) implies that Ω2t̂3(X) is
actually the free braided groupoid generated by Ω2X. Since braided groupoids
form an algebraic enrichment of groupoids, the inclusion into the free braided
groupoid factors through the free groupoid on Ω2X which is simply the funda-
mental groupoid of Ω2X. We are thus finally reduced to showing that for Ω2X,
the inclusion of the fundamental groupoid into the free braided groupoid is a
weak equivalence. This will follow from a natural family of braidings on the
fundamental groupoid of Ω2X for minimal fibrant 1-reduced X.

Indeed, the 2-skeleton of X is a bunch of 1-reduced 2-spheres being in one-
to-one correspondence with the vertices of Ω2X. By minimality of X, each
arrow of the fundamental groupoid on Ω2X corresponds to a unique 3-simplex
of X obtained by “composition of homotopies”. The group structure on π2(X)
induces (again by minimality) a group structure on the 2-spheres in X and
hence on the vertices of Ω2X, natural with respect to arrows of the fundamen-
tal groupoid. The braiding cA,B : A�B → B�A is defined by the following
geometric construction: represent the corresponding 2-spheres S2

A, S
2
B of X as

loops γA, γB on ΩX. Then there is a commuting homotopy from γA ? γB to
γB ?γA which yields a simplicial homotopy from S2

A +S2
B to S2

B +S2
A and hence

an arrow cA,B in the fundamental groupoid. This arrow defines an invertible
braiding, which in general is not symmetric, i.e. c−1

A,B 6= cB,A.
The fundamental groupoid is thus a braided subgroupoid of the free braided

groupoid on Ω2X. In particular, the inclusion admits a canonical retraction,
which is easily identified with the counit of the adjunction between groupoids
and braided groupoids. This counit is a weak equivalence by formal reasons
similar to those used in the proof of the following theorem.

Theorem 3.3. (Leroy [29], Joyal-Tierney [23])
The adjunction t̂3 a N3 induces an equivalence between the homotopy category
Ho(3-Grp⊗) of lax 3-groupoids and the homotopy category Ho(SimpSets[3]) of
simplicial 3-types.

Proof. According to Quillen [42], we have to check that
– the functor t̂3 preserves cofibrations and weak equivalences between cofibrant
objects (this follows by adjunction from the definition of the closed structure of
3-Grp⊗ together with proposition 3.2),
– the functor N3 preserves fibrations and weak equivalences between fibrant
objects (immediate),
– the unit maps ηX : X → N3t̂3(X) and counit maps εG : t̂3N3(G) → G are
weak equivalences (again proposition 3.2 joined to the fact that it is enough
to show that N3εG is a weak equivalence, which follows from the adjunction
formula N3εG ◦ ηN3G = 1G).
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Corollary 3.4. A connected homotopy 3-type X is represented by a strict 3-
groupoid if and only if the third Postnikov invariant k3

X ∈ H4(X[2], π3(X))
vanishes, i.e. iff X is homotopy equivalent to the Cartesian product of the
underlying 2-type X[2] with the Eilenberg-MacLane space K(π3(X), 3).

Proof. – The double loop space of the universal cover of X has a braided fun-
damental groupoid weakly equivalent to the braided groupoid derived from the
representing lax 3-groupoid GX by shifting down dimension twice after passage
to the universal cover (cf. 3.2). Hence, GX is strictifiable iff all braidings are
symmetric iff the derived braided groupoid is symmetric iff the double loop
space of the universal cover of X is a product of (abelian) Eilenberg-MacLane
spaces iff k3

X = 0.

Remark 3.5. For a lax 3-groupoid G the homotopy groups with respect to a
base point ∗ ∈ G0 can be defined algebraically by

π1(G) = AutG(∗)/ ∼,
π2(G) = AutG(1∗)/ ∼,
π3(G) = AutG(11∗),

where the equivalence relation is induced by the cells of the next higher dimen-
sion. The compatibility of this definition with the 3-nerve functor follows from
proposition 2.10 and Kan’s definition [24] of the homotopy groups of a fibrant
simplicial set. The homotopy groups can also be defined as homology groups of
the 3-stage differential group

π3(G3,G2)
src2→ π2(G2,G1)

src1→ π1(G1), where

π3(G3,G2) = {x ∈ G3 | trg2(x) = 11∗},
π2(G2,G1) = {x ∈ G2 | trg1(x) = 1∗},

π1(G1) = {x ∈ G1 | trg0(x) = ∗ = src0(x)}.

We denote by srcn(x) (resp. trgn(x)) the n-dimensional source (resp. target) of
the (n+1)-cell x. The group structures of π3(G3,G2) and π2(G2,G1) are induced
by horizontal composition in G and thus governed by Gray’s tensor product of
2-categories. For 2-cells x, y ∈ π2(G2,G1), the interchange 3-cell x ⊗ y induces
actually two different group structures on π2(G2,G1) which we denote by

y a x = src2(x⊗ y) = (y ? 1trg1(x)) ◦ (1src1(y) ? x) and
y ` x = trg2(x⊗ y) = (1trg1(y) ? x) ◦ (y ? 1src1(x)).

Both group structures share the same unit 11∗ and are related by the commu-
tation formula y a x = src1(y)x ` y, where horizontal conjugation is defined to
be src1(y)x = 1src1(y) ? x ? 1src1(y)−1 . In particular, horizontal conjugation in-
duces group actions of π1(G1) on π2(G2,G1) and on π3(G3,G2) as well as a group
action of π2(G2,G1) on π3(G3,G2). These group actions endow the differentials
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src1 and src2 with the structure of precrossed modules (see [13], [43]). The
second differential src2 is even a crossed module endowed with a generalized
bracket operation (cf. [13], [22] and remark 2.12) :

{−,−} : π2(G2,G1)× π2(G2,G1) → π3(G3,G2)
(x, y) 7→ (x⊗ y) ` x−1 ` y−1.

The interchange 3-cell x⊗y from y a x to y ` x simultanously induces a bracket
operation on src2 and measures the failure of src1 to be crossed; indeed, the
bracket {x, y} yields a 3-cell from src1(y)x ` y ` x−1 ` y−1 to 11∗ , i.e. a lifting of
a categorical Peiffer commutator. Its being an identity for all x, y ∈ π2(G2,G1)
is equivalent to src1 being crossed, which occurs precisely in the case of a strict
3-groupoid. We leave it to the reader to check that the relations between the
different source-target functions as well as the 0- and 1-functoriality of Gray’s
tensor product lead exactly to what Conduché [13] calls a crossed module of
length 2. The 2-functoriality of Gray’s tensor product moreover implies the 2-
nilpotency of π2(G2,G1) with respect to Peiffer commutators src2{−,−} so that
we actually have defined a quadratic module in the sense of Baues [7].

The results of Conduché and Baues imply that the 3-type defined by a con-
nected lax 3-groupoid G is already contained in the associated quadratic module
(π3(G3,G2) → π2(G2,G1) → π1(G1), {−,−} : π2 × π2 → π3). We conjecture that
a groupoid object in the category of quadratic modules naturally gives rise to
a lax 3-groupoid, inducing thus an explicit equivalence of the corresponding
homotopy categories.

Example 3.6. – The homotopy 3-type of the 2-sphere.
The adjunction t̂3 a N3 implies that for each simplicial setX, the lax 3-groupoid
t̂3(X) models the homotopy 3-type of the geometric realization of X. We shall
explicitly describe the lax 3-groupoid defined by the reduced simplicial 2-sphere
S2 = ∆[2]/∆̇[2].

The colimit presentation of t3(S2) shows that the generating cells of t̂3(S2)
are those which correspond either to non-degenerate simplices of S2 or to Gray-
composites of the latter, so that we get :

t̂3(S2)0 = {∗}, t̂3(S2)1 = {1∗}, t̂3(S2)2 = {σk, k ∈ Z},
t̂3(S2)3(11∗ , 11∗) = {{σ, σ}k, k ∈ Z},

where the interchange 3-cell σk ⊗ σm is a horizontal translate of the bracket-
power {σ, σ}km, due to the bilinearity of the bracket {−,−}, (cf. remark 3.5 and
[13]). We see in particular that this model of the 3-type of S2 incorporates in a
comparatively simple way the basic facts that π3(S2) ∼= Z and that the generator
[η] of the latter group (represented by the Hopf fibration η : S3 → S2) induces
for each space X a quadratic map η∗ : π2(X) → π3(X).

Remark 3.7. – We conclude with a few speculations about possible generaliza-
tions to higher dimension. What follows is much influenced by conversations
with M. Batanin and S. Crans. A lax 3-category is probably the most restrictive
extension of the concept of 3-category, for which the associated groupoid models
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homotopy 3-types. We recall that the basic idea is to replace the commutativity
constraint for the horizontal composite of two 2-cells by an interchange 3-cell,
whose source and target cells form thus a sort of duplication of horizontal com-
position. Forthcoming work of M. Batanin [5] shows that there is indeed some
operadic tree-calculus which allows one to deduce all axioms of a lax 3-category
from this idea of duplication together with a suitable contractibility condition.

In the same spirit, there should be an essentially unique notion of lax n-
category in which all associativities are strict and in which horizontal compo-
sition is governed by some higher-dimensional interchange cells. The involved
combinatorics however become more and more complicated with increasing n,
since there is a whole hierarchy of horizontal compositions depending on the
degree of internality (i.e. the dimension of the intersection cell). M. Batanin’s
tree-calculus and S. Crans’ higher-order laxness conditions suggest that the hor-
izontal composite of an n-cell and an m-cell along a k-cell should be governed
by an (n + m − k − 1)-dimensional interchange cell. In particular, this would
imply that the “correct” definition of the horizontal composite of two 3-cells
only takes place inside a lax 5-category, so that the 2-categorical braid analogue
(we looked for in the introduction) is probably given by shifting down three
times a 2-reduced lax 5-category.

We conjecture that in general the action of the n-th filtration-term ES(n) of
the universal simplicial E∞-operad ES detects nerves of n-times shifted down
(n− 1)-reduced lax (2n− 1)-categories.

For the moment, we only have some indication on the possible definition of
a lax 4-category. Indeed, braided monoidal 2-categories have been studied by
Kapranov-Voevodsky [26] and Baez-Neuchl [2] and should correspond to twice
shifted down 1-reduced lax 4-categories with invertible interchange cells. Since
in our setting the interchange cells are not assumed invertible, some of the
defining 2-cells of a braided monoidal 2-category are forced to be identities in
order to obtain a coherent definiton; actually the transitivity of the braiding
has to be strict in our setting, whereas the naturality of the braiding is replaced
by a 2-cell like in Kapranov-Voevodsky’s approach. The Yang-Baxter hexagon
is then commutative only up to a well defined 2-cell which, according to the
“two proofs of the Yang-Baxter-hexagon”, is given by the equality of 2-cells
cA,cB,C

= ccA,B ,C . Here, some principle of orientation has to be found, implicitly
contained in the 2-categorical structure of the permutohedra (cf. [32], [26]).
Finally, this should define an associative horizontal composition of 2-cells in a
lax 4-category. It still remains to define coherently the horizontal composition
of 3- and 4-cells in a lax 4-category. We hope to come back to this topic in a
subsequent paper.
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topologie et géometrie diff. catégoriques 32 (1991), pp. 11-27.

[26] M. M. Kapranov and V. A. Voevodsky – Braided monoidal 2-categories and
Manin-Schechtman higher braid groups, J. Pure Appl. Math. 92 (1994), pp.
241-267.

[27] G. M. Kelly – A unified treatment of transfinite construtions for free alge-
bras, free monoids, colimits, associated sheaves and so on, Bull. Australian
Math. Soc. 22 (1980), pp. 1-84.

[28] G. M. Kelly and R. Street – Review of the elements of 2-categories, Lecture
Notes in Math. 420 (1974).

[29] O. Leroy – Sur une notion de 3-catégorie adaptée a l’homotopie, prepub.
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