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Derived modular operads and metric ribbon graphs

Motivation

Definition (moduli space for oriented surfaces/ribbon graphs)

Mg ,n moduli space of hyperbolic metrics on a closed oriented
surface of genus g with n punctures.

MRGg ,n moduli space of admissible metrics on a ribbon
graph of type (g , n).

Theorem (Mumford, Harer, Penner, Strebel, Kontsevich)

Mg ,n 'MRGg ,n if n > 0 and 2− 2g < n.

Purpose of the talk (cf. Igusa, Costello, Giansiracusa)

Realise MRGg ,n as a “derived” modular envelope of the cyclic
operad CycAss of planar structures.
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Graphs and ribbon graphs

Definition (graph)

A graph is quadruple (V ,F , ∂, ι) consisting of a vertex-set V , a
flag-set F , a boundary map ∂ : F → V and an involution ι : F → F

A two-element orbit of ι is called an edge, any fixpoint of ι an
outer flag. For each vertex v ∈ V the set ∂−1(v) is the flag-set of
the star ∗v at v . Each graph decomposes into stars.

Definition (ribbon graph)

A ribbon graph is a graph equipped with a cyclic flag-ordering
for each vertex-star, i.e. equipped with a permutation
σ0 : F → F whose orbits correspond to the vertex-stars.

A boundary cycle of a ribbon graph is an orbit of σ∞ = σ0ι.

A ribbon graph is said to be of type (g , n) if it has n boundary
cycles and 2− 2g = #V −#E + n.
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Graphs and ribbon graphs

Proposition (unflagged ribbon graphs)

For a finite graph G without outer flags TFAE

G comes equipped with a ribbon structure of type (g , n);

|G | embeds into a closed oriented surface S of genus g such
that S − |G | is a disjoint union of n discs.

Corollary (planar graphs)

A graph is planar (resp. a planar tree) if and only if it carries a
ribbon structure of type (0, n) (resp. (0, 1)).

Remark (flagged ribbon graphs - doubling construction)

The outer flags of a ribbon graph G form a polycyclic set.

Gluing G ∪ G op along outer flags yields an unflagged ribbon
graph with an “orientation-reversing” involution.

This yields an equivalence between flagged ribbon graphs and
certain involutive unflagged ribbon graphs.
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Grafting flags and contracting edges

Definition (Borisov-Manin graph morphism)

A morphism G = (V ,F , ∂, ι)→ G ′ = (V ′,F ′, ∂′, ι′) consists of a
triple (φV , φ

F , γφ) where

φV : V → V ′ surjection;

φF : F ′ → F outer flag preserving injection;

γφ fixpoint-free involution on Fout\φF (F ′out)

such that ∂′ = φV ∂φ
F and φF ι′ = ιφF .

A morphism is called a grafting if φV and φF are bijections. A
morphism is called a virtual contraction if there is no grafting.

Lemma (unique factorisation system)

Each Borisov-Manin graph morphism factors essentially uniquely as
a grafting followed by a virtual contraction.
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Grafting flags and contracting edges

Definition (Feynman category Fagg of aggregates)

The objects of Fagg are finite coproducts of corollas.
The morphisms of Fagg are Borisov-Manin graph morphisms.

Γ(ψφ)
vc

((
Γ(φ)

gr 66

vc

((

Γ(ψ)
vc

((
?v1 t · · · t ?vm

φ //

gr 66

?w1 t · · · t ?wn

ψ //

gr 66

?u1 t · · · t ?up
where Γ(ψφ) is the graph obtained by inserting the n formal
components of Γ(φ) into the n vertices of Γ(ψ).

Remark (insertional classes C of graphs vs Feynman subcategories)

Each C induces a Feynman subcategory FC ⊂ Fagg and vice-versa.
For C =(connected graphs), we get a Feynman category Fctd where
the formal components of Γ(φ) coincide with its path components !
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Cyclic operads and modular operads

Proposition (Street-Walters, K-B)

Each (Feynman) functor factors essentially uniquely as a connected
(Feynman) functor followed by a covering.

Definition

Define Fcyc = F(trees) and Fmod by the connected/covering

factorisation F(trees)
connected−→ Fmod

covering−→ F(ctd graphs).

Proposition (Getzler-Kapranov)

Symmetric monoidal functors out of Fcyc (resp. Fmod) are
non-unital cyclic (resp. modular) operads.

Proposition (K-Lucas, K-B)

For each P ∈ Func⊗(F,Sets) there is a covering Fdec(P) → F
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Fplan-cyc
J

connected
//

CycAsscovering

��

Fsurf -mod

j!CycAsscovering

��
Fcyc

j

connected
// Fmod

k

covering
// Fctd

Example (Computation of j!CycAss, cf. Markl, Doubek, B-K)

(j!CycAss)(?γ,ν)
=colimj(−)↓?γ,νCycAss(−)
=(equ. cl. of ribbon graphs with γ loops and ν outer flags)
=(topological types (g , n,S1, . . . ,Sk) of bordered oriented surf.)

Corollary (B-K)

The morphisms of the Feynman category Fsurf -mod are
genus/puncture-labelled polycyclic graphs.
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Derived modular operads and metric ribbon graphs

W -construction and moduli spaces

Definition (K-Ward)

A Feynman category F is cubical if there is a degree function
deg : Mor(F)→ N0 such that

deg(φ⊗ ψ) = deg(φ) + deg(ψ)

deg(φ ◦ ψ) = deg(φ) + deg(ψ)

Degree 0 morphisms are invertible

Each degree n morphism factors (up to iso) in n! ways into
degree 1 morphisms “compatibly with composition”

Remark

The Feynman categories Fctd ,Fcyc ,Fmod ,Fplan-cyc ,Fsurf -mod are all
cubical. The degree of φ is the number of edges of the associated
graph Γ(φ). However, Fagg is not cubical.
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W -construction and moduli spaces

Definition (W -construction for P ∈ Func⊗(F, sSets), F cubical)

(WFP)(B) = ∆[1]deg(−) ⊗F↓B P ◦ dom(−)

where ∆[1]deg(−) are cube embeddings via 0-face.

Proposition (K-Ward, cf. Boardman-Vogt, B-Moerdijk for Fsym)

For any cubical Feynman category F, the category Func⊗(F, sSets)
admits a transferred model structure. If P has an underying
cofibrant V-collection then WFP is cofibrant in Func⊗(F, sSets).

Lemma (relative W -construction for cubical f : F→ F′)

(f!(WFP))(B) = ∆[1]deg(−) ⊗f (−)↓B P ◦ dom(−)
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W -construction and moduli spaces

Example (cubically subdivided convex polytopes)

WFsym(Ass)(rooted corolla)=associahedron

WFcyc (CycAss)(corolla)=cyclohedron

Theorem (B-K)

|J!(WFplan-cyc
1)(g , n,S•)| ' MRGg ,n,S•

Definition (Igusa)

The category rbg ,n,S• has at least trivalent ribbon graphs of type
(g , n, S•) as objects, and ribbon contractions as morphisms.

Theorem (Igusa, B-K)

MRGg ,n,S• ' |nerve(rbg ,n,S•)|

Thank you !
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