Derived modular operads and metric ribbon graphs

Clemens Berger¹

University of Nice

Homotopical Algebra and Higher Structures Oberwolfach, September 20-25, 2021

- Motivation
- Graphs and ribbon graphs
- Grafting flags and contracting edges
- 4 Cyclic operads and modular operads
- 5 W-construction and moduli spaces

- $\mathcal{M}_{g,n}$ moduli space of *hyperbolic metrics* on a closed orientec surface of *genus* g with n punctures.
- $\mathcal{MRG}_{g,n}$ moduli space of admissible metrics on a ribbon graph of type (g,n).

Theorem (Mumford, Harer, Penner, Strebel, Kontsevich)

 $\mathcal{M}_{g,n} \simeq \mathcal{MRG}_{g,n}$ if n > 0 and 2 - 2g < n.

Purpose of the talk (cf. Igusa, Costello, Giansiracusa)

- $\mathcal{M}_{g,n}$ moduli space of *hyperbolic metrics* on a closed oriented surface of *genus g* with *n punctures*.
- $\mathcal{MRG}_{g,n}$ moduli space of admissible metrics on a ribbon graph of type (g, n).

Theorem (Mumford, Harer, Penner, Strebel, Kontsevich)

 $\mathcal{M}_{g,n} \simeq \mathcal{MRG}_{g,n}$ if n > 0 and 2 - 2g < n.

Purpose of the talk (cf. Igusa, Costello, Giansiracusa)

- $\mathcal{M}_{g,n}$ moduli space of *hyperbolic metrics* on a closed oriented surface of *genus g* with *n punctures*.
- $\mathcal{MRG}_{g,n}$ moduli space of admissible metrics on a ribbon graph of type (g, n).

Theorem (Mumford, Harer, Penner, Strebel, Kontsevich)

 $\mathcal{M}_{g,n} \simeq \mathcal{MRG}_{g,n}$ if n > 0 and 2 - 2g < n.

Purpose of the talk (cf. Igusa, Costello, Giansiracusa)

- $\mathcal{M}_{g,n}$ moduli space of *hyperbolic metrics* on a closed oriented surface of *genus g* with *n punctures*.
- $\mathcal{MRG}_{g,n}$ moduli space of admissible metrics on a ribbon graph of type (g, n).

Theorem (Mumford, Harer, Penner, Strebel, Kontsevich)

 $\mathcal{M}_{g,n} \simeq \mathcal{MRG}_{g,n}$ if n > 0 and 2 - 2g < n.

Purpose of the talk (cf. Igusa, Costello, Giansiracusa)

- $\mathcal{M}_{g,n}$ moduli space of *hyperbolic metrics* on a closed oriented surface of *genus g* with *n punctures*.
- $\mathcal{MRG}_{g,n}$ moduli space of admissible metrics on a ribbon graph of type (g, n).

Theorem (Mumford, Harer, Penner, Strebel, Kontsevich)

 $\mathcal{M}_{g,n} \simeq \mathcal{MRG}_{g,n}$ if n > 0 and 2 - 2g < n.

Purpose of the talk (cf. Igusa, Costello, Giansiracusa)

- $\mathcal{M}_{g,n}$ moduli space of *hyperbolic metrics* on a closed oriented surface of *genus g* with *n punctures*.
- $\mathcal{MRG}_{g,n}$ moduli space of admissible metrics on a ribbon graph of type (g, n).

Theorem (Mumford, Harer, Penner, Strebel, Kontsevich)

 $\mathcal{M}_{g,n} \simeq \mathcal{MRG}_{g,n}$ if n > 0 and 2 - 2g < n.

Purpose of the talk (cf. Igusa, Costello, Giansiracusa)

A graph is quadruple (V, F, ∂, ι) consisting of a vertex-set V, a flag-set F, a boundary map $\partial: F \to V$ and an involution $\iota: F \to F$

A two-element orbit of ι is called an *edge*, any fixpoint of ι an outer flag. For each vertex $v \in V$ the set $\partial^{-1}(v)$ is the flag-set of the $star *_{v}$ at v. Each graph decomposes into stars.

- A ribbon graph is a graph equipped with a cyclic flag-ordering for each vertex-star, i.e. equipped with a permutation $\sigma_0: F \to F$ whose orbits correspond to the vertex-stars.
- ullet A boundary cycle of a ribbon graph is an orbit of $\sigma_{\infty}=\sigma_0\iota$.
- A ribbon graph is said to be of type (g, n) if it has n boundary cycles and 2 2g = #V #E + n.

A graph is quadruple (V, F, ∂, ι) consisting of a vertex-set V, a flag-set F, a boundary map $\partial: F \to V$ and an involution $\iota: F \to F$

A two-element orbit of ι is called an *edge*, any fixpoint of ι an outer flag. For each vertex $v \in V$ the set $\partial^{-1}(v)$ is the flag-set of the $star *_{v}$ at v. Each graph decomposes into stars.

- A ribbon graph is a graph equipped with a cyclic flag-ordering for each vertex-star, i.e. equipped with a permutation
 σ₀: F → F whose orbits correspond to the vertex-stars.
- A boundary cycle of a ribbon graph is an orbit of $\sigma_{\infty} = \sigma_0 \iota$
- A ribbon graph is said to be of type (g, n) if it has n boundary cycles and 2 2g = #V #E + n.

A graph is quadruple (V, F, ∂, ι) consisting of a vertex-set V, a flag-set F, a boundary map $\partial : F \to V$ and an involution $\iota : F \to F$

A two-element orbit of ι is called an *edge*, any fixpoint of ι an outer flag. For each vertex $v \in V$ the set $\partial^{-1}(v)$ is the flag-set of the $star *_{V}$ at v. Each graph decomposes into stars.

Definition (ribbon graph)

A ribbon graph is a graph equipped with a cyclic flag-ordering for each vertex-star, i.e. equipped with a permutation σ₀: F → F whose orbits correspond to the vertex-stars.
A boundary cycle of a ribbon graph is an orbit of σ_∞ = σ₀ι.
A ribbon graph is said to be of type (g, n) if it has n boundary cycles and 2 - 2g = #V - #E + n.

A graph is quadruple (V, F, ∂, ι) consisting of a vertex-set V, a flag-set F, a boundary map $\partial : F \to V$ and an involution $\iota : F \to F$

A two-element orbit of ι is called an *edge*, any fixpoint of ι an outer flag. For each vertex $v \in V$ the set $\partial^{-1}(v)$ is the flag-set of the $star *_{V}$ at v. Each graph decomposes into stars.

- A ribbon graph is a graph equipped with a cyclic flag-ordering for each vertex-star, i.e. equipped with a permutation $\sigma_0: F \to F$ whose orbits correspond to the vertex-stars.
- A boundary cycle of a ribbon graph is an orbit of $\sigma_{\infty} = \sigma_0 \iota$.
- A ribbon graph is said to be of type (g, n) if it has n boundary cycles and 2 2g = #V #E + n.

A graph is quadruple (V, F, ∂, ι) consisting of a vertex-set V, a flag-set F, a boundary map $\partial : F \to V$ and an involution $\iota : F \to F$

A two-element orbit of ι is called an *edge*, any fixpoint of ι an outer flag. For each vertex $v \in V$ the set $\partial^{-1}(v)$ is the flag-set of the $star *_{V}$ at v. Each graph decomposes into stars.

- A ribbon graph is a graph equipped with a cyclic flag-ordering for each vertex-star, i.e. equipped with a permutation $\sigma_0: F \to F$ whose orbits correspond to the vertex-stars.
- A boundary cycle of a ribbon graph is an orbit of $\sigma_{\infty} = \sigma_0 \iota$.
- A ribbon graph is said to be of type (g, n) if it has n boundary cycles and 2 2g = #V #E + n.

A graph is quadruple (V, F, ∂, ι) consisting of a vertex-set V, a flag-set F, a boundary map $\partial : F \to V$ and an involution $\iota : F \to F$

A two-element orbit of ι is called an *edge*, any fixpoint of ι an outer flag. For each vertex $v \in V$ the set $\partial^{-1}(v)$ is the flag-set of the $star *_{V}$ at v. Each graph decomposes into stars.

- A ribbon graph is a graph equipped with a cyclic flag-ordering for each vertex-star, i.e. equipped with a permutation $\sigma_0: F \to F$ whose orbits correspond to the vertex-stars.
- A boundary cycle of a ribbon graph is an orbit of $\sigma_{\infty} = \sigma_0 \iota$.
- A ribbon graph is said to be of type (g, n) if it has n boundary cycles and 2 2g = #V #E + n.

A graph is quadruple (V, F, ∂, ι) consisting of a vertex-set V, a flag-set F, a boundary map $\partial : F \to V$ and an involution $\iota : F \to F$

A two-element orbit of ι is called an *edge*, any fixpoint of ι an outer flag. For each vertex $v \in V$ the set $\partial^{-1}(v)$ is the flag-set of the $star *_{V}$ at v. Each graph decomposes into stars.

- A ribbon graph is a graph equipped with a cyclic flag-ordering for each vertex-star, i.e. equipped with a permutation $\sigma_0: F \to F$ whose orbits correspond to the vertex-stars.
- A boundary cycle of a ribbon graph is an orbit of $\sigma_{\infty} = \sigma_0 \iota$.
- A ribbon graph is said to be of type (g, n) if it has n boundary cycles and 2 2g = #V #E + n.

For a finite graph G without outer flags TFAE

- G comes equipped with a ribbon structure of type (g, n);
- |G| embeds into a closed oriented surface S of genus g such that S |G| is a disjoint union of n discs.

Corollary (planar graphs)

A graph is planar (resp. a planar tree) if and only if it carries a ribbon structure of type (0, n) (resp. (0, 1)).

- \bullet The outer flags of a ribbon graph G form a polycyclic set.
- Gluing $G \cup G^{op}$ along outer flags yields an *unflagged* ribbon graph with an "orientation-reversing" involution.
- This yields an equivalence between *flagged* ribbon graphs and certain *involutive* unflagged ribbon graphs.

For a finite graph G without outer flags TFAE

- G comes equipped with a ribbon structure of type (g, n);
- |G| embeds into a closed oriented surface S of genus g such that S |G| is a disjoint union of n discs.

Corollary (planar graphs)

A graph is planar (resp. a planar tree) if and only if it carries a ribbon structure of type (0, n) (resp. (0, 1)).

- The outer flags of a ribbon graph G form a polycyclic set
- Gluing $G \cup G^{op}$ along outer flags yields an *unflagged* ribborn graph with an "orientation-reversing" involution.
- This yields an equivalence between *flagged* ribbon graphs and certain involutive unflagged ribbon graphs.

For a finite graph G without outer flags TFAE

- G comes equipped with a ribbon structure of type (g, n);
- |G| embeds into a closed oriented surface S of genus g such that S |G| is a disjoint union of n discs.

Corollary (planar graphs)

A graph is planar (resp. a planar tree) if and only if it carries a ribbon structure of type (0, n) (resp. (0, 1)).

- The outer flags of a ribbon graph G form a polycyclic set...
- Gluing G ∪ G^{op} along outer flags yields an unflagged ribbor graph with an "orientation-reversing" involution.
- This yields an equivalence between flagged ribbon graphs and certain involutive unflagged ribbon graphs

For a finite graph G without outer flags TFAE

- G comes equipped with a ribbon structure of type (g, n);
- |G| embeds into a closed oriented surface S of genus g such that S |G| is a disjoint union of n discs.

Corollary (planar graphs)

A graph is planar (resp. a planar tree) if and only if it carries a ribbon structure of type (0, n) (resp. (0, 1)).

- The outer flags of a ribbon graph G form a polycyclic set.
- Gluing $G \cup G^{op}$ along outer flags yields an *unflagged* ribbon graph with an "orientation-reversing" involution.
- This yields an equivalence between *flagged* ribbon graphs and certain *involutive* unflagged ribbon graphs.

For a finite graph G without outer flags TFAE

- G comes equipped with a ribbon structure of type (g, n);
- |G| embeds into a closed oriented surface S of genus g such that S |G| is a disjoint union of n discs.

Corollary (planar graphs)

A graph is planar (resp. a planar tree) if and only if it carries a ribbon structure of type (0, n) (resp. (0, 1)).

- The outer flags of a ribbon graph G form a polycyclic set.
- Gluing $G \cup G^{op}$ along outer flags yields an *unflagged* ribbon graph with an "orientation-reversing" involution.
- This yields an equivalence between *flagged* ribbon graphs and certain *involutive* unflagged ribbon graphs.

For a finite graph G without outer flags TFAE

- G comes equipped with a ribbon structure of type (g, n);
- |G| embeds into a closed oriented surface S of genus g such that S |G| is a disjoint union of n discs.

Corollary (planar graphs)

A graph is planar (resp. a planar tree) if and only if it carries a ribbon structure of type (0, n) (resp. (0, 1)).

- The outer flags of a ribbon graph G form a polycyclic set.
- Gluing $G \cup G^{op}$ along outer flags yields an *unflagged* ribbon graph with an "orientation-reversing" involution.
- This yields an equivalence between *flagged* ribbon graphs and certain *involutive* unflagged ribbon graphs.

For a finite graph G without outer flags TFAE

- G comes equipped with a ribbon structure of type (g, n);
- |G| embeds into a closed oriented surface S of genus g such that S |G| is a disjoint union of n discs.

Corollary (planar graphs)

A graph is planar (resp. a planar tree) if and only if it carries a ribbon structure of type (0, n) (resp. (0, 1)).

- The outer flags of a ribbon graph G form a polycyclic set.
- Gluing $G \cup G^{op}$ along outer flags yields an *unflagged* ribbon graph with an "orientation-reversing" involution.
- This yields an equivalence between flagged ribbon graphs and certain involutive unflagged ribbon graphs.

A morphism $G = (V, F, \partial, \iota) \rightarrow G' = (V', F', \partial', \iota')$ consists of a triple $(\phi_V, \phi^F, \gamma_\phi)$ where

- \bullet $\phi_V:V\to V'$ surjection;
- $\phi^F: F' \to F$ outer flag preserving injection;
- γ_{ϕ} fixpoint-free involution on $F_{out} \backslash \phi^F(F'_{out})$ such that $\partial' = \phi_V \partial \phi^F$ and $\phi^F \iota' = \iota \phi^F$.

A morphism is called a *grafting* if ϕ_V and ϕ^F are bijections. A morphism is called a *virtual contraction* if there is no grafting.

Lemma (unique factorisation system)

A morphism $G=(V,F,\partial,\iota)\to G'=(V',F',\partial',\iota')$ consists of a triple $(\phi_V,\phi^F,\gamma_\phi)$ where

- $\phi_V: V \to V'$ surjection;
- $\phi^F : F' \to F$ outer flag preserving injection;
- γ_{ϕ} fixpoint-free involution on $F_{out} \setminus \phi^F(F'_{out})$ such that $\partial' = \phi_V \partial \phi^F$ and $\phi^F \iota' = \iota \phi^F$.

A morphism is called a *grafting* if ϕ_V and ϕ^F are bijections. A morphism is called a *virtual contraction* if there is no grafting.

Lemma (unique factorisation system)

A morphism $G=(V,F,\partial,\iota)\to G'=(V',F',\partial',\iota')$ consists of a triple $(\phi_V,\phi^F,\gamma_\phi)$ where

- $\phi_V:V\to V'$ surjection;
- $\phi^F : F' \to F$ outer flag preserving injection;
- γ_{ϕ} fixpoint-free involution on $F_{out} \setminus \phi^F(F'_{out})$ such that $\partial' = \phi_V \partial \phi^F$ and $\phi^F \iota' = \iota \phi^F$.

A morphism is called a *grafting* if ϕ_V and ϕ^F are bijections. A morphism is called a *virtual contraction* if there is no grafting.

Lemma (unique factorisation system)

A morphism $G = (V, F, \partial, \iota) \rightarrow G' = (V', F', \partial', \iota')$ consists of a triple $(\phi_V, \phi^F, \gamma_\phi)$ where

- $\phi_V:V\to V'$ surjection;
- $\phi^F: F' \to F$ outer flag preserving injection;
- γ_{ϕ} fixpoint-free involution on $F_{out} \setminus \phi^F(F'_{out})$ such that $\partial' = \phi_V \partial \phi^F$ and $\phi^F \iota' = \iota \phi^F$.

A morphism is called a *grafting* if ϕ_V and ϕ^F are bijections. A morphism is called a *virtual contraction* if there is no grafting.

Lemma (unique factorisation system)

A morphism $G = (V, F, \partial, \iota) \to G' = (V', F', \partial', \iota')$ consists of a triple $(\phi_V, \phi^F, \gamma_\phi)$ where

- $\phi_V:V\to V'$ surjection;
- $\phi^F: F' \to F$ outer flag preserving injection;
- γ_{ϕ} fixpoint-free involution on $F_{out} \backslash \phi^F(F'_{out})$

such that
$$\partial' = \phi_V \partial \phi^F$$
 and $\phi^F \iota' = \iota \phi^F$.

A morphism is called a *grafting* if ϕ_V and ϕ^F are bijections. A morphism is called a *virtual contraction* if there is no grafting.

Lemma (unique factorisation system)

A morphism $G = (V, F, \partial, \iota) \rightarrow G' = (V', F', \partial', \iota')$ consists of a triple $(\phi_V, \phi^F, \gamma_\phi)$ where

- $\phi_V: V \to V'$ surjection;
- $\phi^F: F' \to F$ outer flag preserving injection;
- γ_{ϕ} fixpoint-free involution on $F_{out} \backslash \phi^F(F'_{out})$

such that
$$\partial' = \phi_V \partial \phi^F$$
 and $\phi^F \iota' = \iota \phi^F$.

A morphism is called a *grafting* if ϕ_V and ϕ^F are bijections. A morphism is called a *virtual contraction* if there is no grafting.

Lemma (unique factorisation system)

A morphism $G=(V,F,\partial,\iota)\to G'=(V',F',\partial',\iota')$ consists of a triple $(\phi_V,\phi^F,\gamma_\phi)$ where

- $\phi_V:V\to V'$ surjection;
- $\phi^F: F' \to F$ outer flag preserving injection;
- γ_{ϕ} fixpoint-free involution on $F_{out} \backslash \phi^F(F'_{out})$

such that
$$\partial' = \phi_V \partial \phi^F$$
 and $\phi^F \iota' = \iota \phi^F$.

A morphism is called a *grafting* if ϕ_V and ϕ^F are bijections. A morphism is called a *virtual contraction* if there is no grafting.

Lemma (unique factorisation system)

A morphism $G = (V, F, \partial, \iota) \to G' = (V', F', \partial', \iota')$ consists of a triple $(\phi_V, \phi^F, \gamma_\phi)$ where

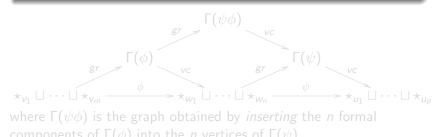
- $\phi_V: V \to V'$ surjection;
- $\phi^F: F' \to F$ outer flag preserving injection;
- γ_{ϕ} fixpoint-free involution on $F_{out} \backslash \phi^F(F'_{out})$

such that
$$\partial' = \phi_V \partial \phi^F$$
 and $\phi^F \iota' = \iota \phi^F$.

A morphism is called a *grafting* if ϕ_V and ϕ^F are bijections. A morphism is called a *virtual contraction* if there is no grafting.

Lemma (unique factorisation system)

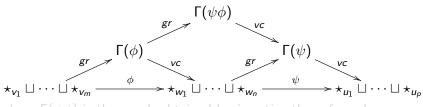
The objects of \mathfrak{F}_{agg} are finite coproducts of corollas. The morphisms of \mathfrak{F}_{agg} are Borisov-Manin graph morphisms.



Remark (insertional classes ¢ of graphs vs Feynman subcategories

Each $\mathfrak C$ induces a Feynman subcategory $\mathfrak F_{\mathfrak C} \subset \mathfrak F_{agg}$ and vice-versa. For $\mathfrak C =$ (connected graphs), we get a Feynman category $\mathfrak F_{ctd}$ where the formal components of $\Gamma(\phi)$ coincide with its path components !

The objects of \mathfrak{F}_{agg} are finite coproducts of corollas. The morphisms of \mathfrak{F}_{agg} are Borisov-Manin graph morphisms.

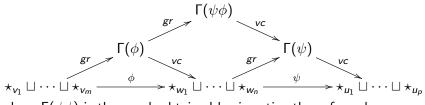


where $\Gamma(\psi\phi)$ is the graph obtained by *inserting* the *n* formal components of $\Gamma(\phi)$ into the *n* vertices of $\Gamma(\psi)$.

Remark (insertional classes & of graphs vs Feynman subcategories

Each $\mathfrak C$ induces a Feynman subcategory $\mathfrak F_{\mathfrak C} \subset \mathfrak F_{agg}$ and vice-versa. For $\mathfrak C =$ (connected graphs), we get a Feynman category $\mathfrak F_{ctd}$ where the formal components of $\Gamma(\phi)$ coincide with its path components !

The objects of \mathfrak{F}_{agg} are finite coproducts of corollas. The morphisms of \mathfrak{F}_{agg} are Borisov-Manin graph morphisms.

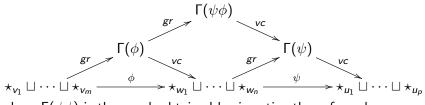


where $\Gamma(\psi\phi)$ is the graph obtained by *inserting* the *n* formal components of $\Gamma(\phi)$ into the *n* vertices of $\Gamma(\psi)$.

Remark (insertional classes & of graphs vs Feynman subcategories

Each \mathfrak{C} induces a Feynman subcategory $\mathfrak{F}_{\mathfrak{C}} \subset \mathfrak{F}_{agg}$ and vice-versa. For $\mathfrak{C} =$ (connected graphs), we get a Feynman category \mathfrak{F}_{ctd} where the formal components of $\Gamma(\phi)$ coincide with its path components !

The objects of \mathfrak{F}_{agg} are finite coproducts of corollas. The morphisms of \mathfrak{F}_{agg} are Borisov-Manin graph morphisms.

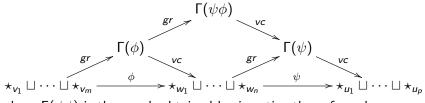


where $\Gamma(\psi\phi)$ is the graph obtained by *inserting* the *n* formal components of $\Gamma(\phi)$ into the *n* vertices of $\Gamma(\psi)$.

Remark (insertional classes $\mathfrak C$ of graphs vs Feynman subcategories)

Each $\mathfrak C$ induces a Feynman subcategory $\mathfrak F_{\mathfrak C}\subset \mathfrak F_{agg}$ and vice-versa. For $\mathfrak C$ =(connected graphs), we get a Feynman category $\mathfrak F_{ctd}$ where the formal components of $\Gamma(\phi)$ coincide with its path components!

The objects of \mathfrak{F}_{agg} are finite coproducts of corollas. The morphisms of \mathfrak{F}_{agg} are Borisov-Manin graph morphisms.



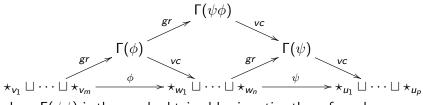
where $\Gamma(\psi\phi)$ is the graph obtained by *inserting* the *n* formal components of $\Gamma(\phi)$ into the *n* vertices of $\Gamma(\psi)$.

Remark (insertional classes $\mathfrak C$ of graphs vs Feynman subcategories)

Each ${\mathfrak C}$ induces a Feynman subcategory ${\mathfrak F}_{\mathfrak C} \subset {\mathfrak F}_{agg}$ and vice-versa.

For \mathfrak{C} =(connected graphs), we get a Feynman category \mathfrak{F}_{ctd} where the formal components of $\Gamma(\phi)$ coincide with its path components !

The objects of \mathfrak{F}_{agg} are finite coproducts of corollas. The morphisms of \mathfrak{F}_{agg} are Borisov-Manin graph morphisms.



where $\Gamma(\psi\phi)$ is the graph obtained by *inserting* the *n* formal components of $\Gamma(\phi)$ into the *n* vertices of $\Gamma(\psi)$.

Remark (insertional classes $\mathfrak C$ of graphs vs Feynman subcategories)

Each $\mathfrak C$ induces a Feynman subcategory $\mathfrak F_{\mathfrak C}\subset\mathfrak F_{agg}$ and vice-versa. For $\mathfrak C$ =(connected graphs), we get a Feynman category $\mathfrak F_{ctd}$ where the formal components of $\Gamma(\phi)$ coincide with its path components!

Each (Feynman) functor factors essentially uniquely as a connected (Feynman) functor followed by a covering.

Definition

Define $\mathfrak{F}_{cyc} = \mathfrak{F}_{(trees)}$ and \mathfrak{F}_{mod} by the connected/covering factorisation $\mathfrak{F}_{(trees)} \xrightarrow{connected} \mathfrak{F}_{mod} \xrightarrow{covering} \mathfrak{F}_{(ctd\ graphs)}$.

Proposition (Getzler-Kapranov)

Symmetric monoidal functors out of \mathfrak{F}_{cyc} (resp. \mathfrak{F}_{mod}) are non-unital cyclic (resp. modular) operads.

Proposition (K-Lucas, K-B)

For each $P \in \operatorname{Func}_{\otimes}(\mathfrak{F},\operatorname{Sets})$ there is a covering $\mathfrak{F}_{\operatorname{dec}(P)} \to \mathfrak{F}$ inducing an equivalence $\operatorname{Func}_{\otimes}(\mathfrak{F},\operatorname{Sets})/P \simeq \operatorname{Func}_{\otimes}(\mathfrak{F}_{\operatorname{dec}(P)},\operatorname{Sets})$

Each (Feynman) functor factors essentially uniquely as a connected (Feynman) functor followed by a covering.

Definition

Define
$$\mathfrak{F}_{cyc} = \mathfrak{F}_{(trees)}$$
 and \mathfrak{F}_{mod} by the connected/covering factorisation $\mathfrak{F}_{(trees)} \stackrel{connected}{\longrightarrow} \mathfrak{F}_{mod} \stackrel{covering}{\longrightarrow} \mathfrak{F}_{(ctd\ graphs)}$.

Proposition (Getzler-Kapranov)

Symmetric monoidal functors out of \mathfrak{F}_{cyc} (resp. \mathfrak{F}_{mod}) are non-unital cyclic (resp. modular) operads.

Proposition (K-Lucas, K-B)

For each $P \in \operatorname{Func}_{\otimes}(\mathfrak{F},\operatorname{Sets})$ there is a covering $\mathfrak{F}_{\operatorname{dec}(P)} \to \mathfrak{F}$ inducing an equivalence $\operatorname{Func}_{\otimes}(\mathfrak{F},\operatorname{Sets})/P \simeq \operatorname{Func}_{\otimes}(\mathfrak{F}_{\operatorname{dec}(P)},\operatorname{Sets})$.

Each (Feynman) functor factors essentially uniquely as a connected (Feynman) functor followed by a covering.

Definition

Define $\mathfrak{F}_{cyc} = \mathfrak{F}_{(trees)}$ and \mathfrak{F}_{mod} by the connected/covering factorisation $\mathfrak{F}_{(trees)} \stackrel{connected}{\longrightarrow} \mathfrak{F}_{mod} \stackrel{covering}{\longrightarrow} \mathfrak{F}_{(ctd\ graphs)}$.

Proposition (Getzler-Kapranov)

Symmetric monoidal functors out of \mathfrak{F}_{cyc} (resp. \mathfrak{F}_{mod}) are non-unital cyclic (resp. modular) operads.

Proposition (K-Lucas, K-B)

For each $P \in \operatorname{Func}_{\otimes}(\mathfrak{F},\operatorname{Sets})$ there is a covering $\mathfrak{F}_{\operatorname{dec}(P)} \to \mathfrak{F}$ inducing an equivalence $\operatorname{Func}_{\otimes}(\mathfrak{F},\operatorname{Sets})/P \simeq \operatorname{Func}_{\otimes}(\mathfrak{F}_{\operatorname{dec}(P)},\operatorname{Sets})$.

Each (Feynman) functor factors essentially uniquely as a connected (Feynman) functor followed by a covering.

Definition

Define $\mathfrak{F}_{cyc} = \mathfrak{F}_{(trees)}$ and \mathfrak{F}_{mod} by the connected/covering factorisation $\mathfrak{F}_{(trees)} \xrightarrow{connected} \mathfrak{F}_{mod} \xrightarrow{covering} \mathfrak{F}_{(ctd\ graphs)}$.

Proposition (Getzler-Kapranov)

Symmetric monoidal functors out of \mathfrak{F}_{cyc} (resp. \mathfrak{F}_{mod}) are non-unital cyclic (resp. modular) operads.

Proposition (K-Lucas, K-B)

For each $P \in \operatorname{Func}_{\otimes}(\mathfrak{F},\operatorname{Sets})$ there is a covering $\mathfrak{F}_{\operatorname{dec}(P)} \to \mathfrak{F}$ inducing an equivalence $\operatorname{Func}_{\otimes}(\mathfrak{F},\operatorname{Sets})/P \simeq \operatorname{Func}_{\otimes}(\mathfrak{F}_{\operatorname{dec}(P)},\operatorname{Sets})$

Each (Feynman) functor factors essentially uniquely as a connected (Feynman) functor followed by a covering.

Definition

Define $\mathfrak{F}_{cyc} = \mathfrak{F}_{(trees)}$ and \mathfrak{F}_{mod} by the connected/covering factorisation $\mathfrak{F}_{(trees)} \stackrel{connected}{\longrightarrow} \mathfrak{F}_{mod} \stackrel{covering}{\longrightarrow} \mathfrak{F}_{(ctd\ graphs)}$.

Proposition (Getzler-Kapranov)

Symmetric monoidal functors out of \mathfrak{F}_{cyc} (resp. \mathfrak{F}_{mod}) are non-unital cyclic (resp. modular) operads.

Proposition (K-Lucas, K-B)

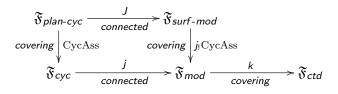
For each $P \in \operatorname{Func}_{\otimes}(\mathfrak{F},\operatorname{Sets})$ there is a covering $\mathfrak{F}_{\operatorname{dec}(P)} \to \mathfrak{F}$ inducing an equivalence $\operatorname{Func}_{\otimes}(\mathfrak{F},\operatorname{Sets})/P \simeq \operatorname{Func}_{\otimes}(\mathfrak{F}_{\operatorname{dec}(P)},\operatorname{Sets})$.

$$\begin{array}{c|c} \mathfrak{F}_{plan-cyc} & \xrightarrow{J} \mathfrak{F}_{surf-mod} \\ covering & \text{CycAss} & covering & j_{!}\text{CycAss} \\ & \mathfrak{F}_{cyc} & \xrightarrow{j} & \mathfrak{F}_{mod} & \frac{k}{covering} > \mathfrak{F}_{ctd} \end{array}$$

$$(j_! \operatorname{CycAss})(\star_{\gamma,\nu})$$

= $\operatorname{colim}_{j(-)\downarrow\star_{\gamma,\nu}}\operatorname{CycAss}(-)$
=(equ. cl. of ribbon graphs with γ loops and ν outer flags)
=(topological types (g,n,S_1,\ldots,S_k) of bordered oriented surf.)

Corollary (B-K)



$$(j_! \operatorname{CycAss})(\star_{\gamma,\nu})$$

= $\operatorname{colim}_{j(-)\downarrow\star_{\gamma,\nu}}\operatorname{CycAss}(-)$
=(equ. cl. of ribbon graphs with γ loops and ν outer flags)
=(topological types (g,n,S_1,\ldots,S_k) of bordered oriented surf.)

Corollary (B-K)

$$\begin{split} \mathfrak{F}_{plan-cyc} & \xrightarrow{J} \mathfrak{F}_{surf-mod} \\ covering & \text{CycAss} & covering & j_! \text{CycAss} \\ \mathfrak{F}_{cyc} & \xrightarrow{j} \mathfrak{F}_{mod} & \xrightarrow{k} \\ \hline \mathfrak{F}_{covering} & > \mathfrak{F}_{ctd} \end{split}$$

$$\begin{array}{l} (j_! \operatorname{CycAss})(\star_{\gamma,\nu}) \\ = \operatorname{colim}_{j(-)\downarrow\star_{\gamma,\nu}} \operatorname{CycAss}(-) \end{array}$$

- =(equ. cl. of ribbon graphs with γ loops and u outer flags)
- =(topological types (g, n, S_1, \ldots, S_k) of bordered oriented surf.)

Corollary (B-K)

$$\begin{split} \mathfrak{F}_{plan-cyc} & \xrightarrow{J} \mathfrak{F}_{surf-mod} \\ covering & \text{CycAss} & covering & j_! \text{CycAss} \\ \mathfrak{F}_{cyc} & \xrightarrow{j} \mathfrak{F}_{mod} & \xrightarrow{k} \\ \mathfrak{F}_{covering} & > \mathfrak{F}_{ctd} \end{split}$$

$$(j_! \operatorname{CycAss})(\star_{\gamma,\nu})$$

= $\operatorname{colim}_{j(-)\downarrow\star_{\gamma,\nu}}\operatorname{CycAss}(-)$
=(equ. cl. of ribbon graphs with γ loops and ν outer flags)
=(topological types (g, n, S_1, \dots, S_k) of bordered oriented surf.

Corollary (B-K)

$$\begin{split} \mathfrak{F}_{plan-cyc} & \xrightarrow{J} \mathfrak{F}_{surf-mod} \\ covering & \text{CycAss} & covering & j_! \text{CycAss} \\ \mathfrak{F}_{cyc} & \xrightarrow{j} \mathfrak{F}_{mod} & \xrightarrow{k} \\ \mathfrak{F}_{covering} & > \mathfrak{F}_{ctd} \end{split}$$

$$(j_! \operatorname{CycAss})(\star_{\gamma,\nu})$$

= $\operatorname{colim}_{j(-)\downarrow\star_{\gamma,\nu}}\operatorname{CycAss}(-)$
=(equ. cl. of ribbon graphs with γ loops and ν outer flags)
=(topological types (g, n, S_1, \ldots, S_k) of bordered oriented surf.)

Corollary (B-K)

$$\begin{array}{c|c} \mathfrak{F}_{plan-cyc} & \xrightarrow{J} \mathfrak{F}_{surf-mod} \\ covering & \text{CycAss} & covering & j_! \text{CycAss} \\ \mathfrak{F}_{cyc} & \xrightarrow{j} \mathfrak{F}_{mod} & \xrightarrow{k} \\ \hline \mathfrak{F}_{covering} & > \mathfrak{F}_{covering} & > \mathfrak{F}_{ctd} \end{array}$$

$$(j_! \operatorname{CycAss})(\star_{\gamma,\nu})$$

= $\operatorname{colim}_{j(-)\downarrow\star_{\gamma,\nu}}\operatorname{CycAss}(-)$
=(equ. cl. of ribbon graphs with γ loops and ν outer flags)
=(topological types (g, n, S_1, \ldots, S_k) of bordered oriented surf.)

Corollary (B-K)

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $deg(\phi \otimes \psi) = deg(\phi) + deg(\psi)$
- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree n morphism factors (up to iso) in n! ways into degree 1 morphisms "compatibly with composition"

Remark

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

A Feynman category \mathfrak{F} is *cubical* if there is a degree function $\deg: Mor(\mathfrak{F}) \to \mathbb{N}_0$ such that

- $\deg(\phi \otimes \psi) = \deg(\phi) + \deg(\psi)$
- $\deg(\phi \circ \psi) = \deg(\phi) + \deg(\psi)$
- Degree 0 morphisms are invertible
- Each degree *n* morphism factors (up to iso) in *n*! ways into degree 1 morphisms "compatibly with composition"

Remark

Definition (W-construction for $P \in \operatorname{Func}_{\otimes}(\mathfrak{F}, s\operatorname{Sets})$, \mathfrak{F} cubical)

$$(W_{\mathfrak{F}}P)(B) = \Delta[1]^{\deg(-)} \otimes_{\mathfrak{F} \downarrow B} P \circ dom(-)$$

where $\Delta[1]^{\deg(-)}$ are cube embeddings via 0-face.

Proposition (K-Ward, cf. Boardman-Vogt, B-Moerdijk for $\mathfrak{F}_{\mathit{sym}})$

For any cubical Feynman category \mathfrak{F} , the category $\operatorname{Func}_{\otimes}(\mathfrak{F},s\operatorname{Sets})$ admits a transferred model structure. If P has an underlying cofibrant \mathcal{V} -collection then $W_{\mathfrak{F}}P$ is cofibrant in $\operatorname{Func}_{\otimes}(\mathfrak{F},s\operatorname{Sets})$.

Lemma (relative W-construction for cubical $f:\mathfrak{F} o\mathfrak{F}')$

$$(f_!(W_{\mathfrak{F}}P))(B) = \Delta[1]^{\deg(-)} \otimes_{f(-) \downarrow B} P \circ dom(-)$$

Definition (*W*-construction for $P \in \operatorname{Func}_{\otimes}(\mathfrak{F}, s\operatorname{Sets})$, \mathfrak{F} cubical)

$$(W_{\mathfrak{F}}P)(B) = \Delta[1]^{\deg(-)} \otimes_{\mathfrak{F} \downarrow B} P \circ dom(-)$$

where $\Delta[1]^{\deg(-)}$ are cube embeddings via 0-face.

Proposition (K-Ward, cf. Boardman-Vogt, B-Moerdijk for \mathfrak{F}_{svm})

For any cubical Feynman category \mathfrak{F} , the category $\mathrm{Func}_{\otimes}(\mathfrak{F},s\mathrm{Sets})$ admits a transferred model structure. If P has an underlying cofibrant \mathcal{V} -collection then $W_{\mathfrak{F}}P$ is cofibrant in $\mathrm{Func}_{\otimes}(\mathfrak{F},s\mathrm{Sets})$.

Lemma (relative W-construction for cubical $f:\mathfrak{F} o\mathfrak{F}'$)

$$(f_!(W_{\mathfrak{F}}P))(B) = \Delta[1]^{\deg(-)} \otimes_{f(-) \mid B} P \circ dom(-)$$

Definition (*W*-construction for $P \in \text{Func}_{\otimes}(\mathfrak{F}, s\text{Sets})$, \mathfrak{F} cubical)

$$(W_{\mathfrak{F}}P)(B) = \Delta[1]^{\deg(-)} \otimes_{\mathfrak{F}\downarrow B} P \circ dom(-)$$

where $\Delta[1]^{\deg(-)}$ are cube embeddings via 0-face.

Proposition (K-Ward, cf. Boardman-Vogt, B-Moerdijk for \mathfrak{F}_{sym})

For any cubical Feynman category \mathfrak{F} , the category $\operatorname{Func}_{\otimes}(\mathfrak{F}, s\operatorname{Sets})$ admits a *transferred model structure*. If P has an underlying cofibrant \mathcal{V} -collection then $W_{\mathfrak{F}}P$ is *cofibrant* in $\operatorname{Func}_{\otimes}(\mathfrak{F}, s\operatorname{Sets})$.

Lemma (relative
$$W$$
-construction for cubical $f:\mathfrak{F} o\mathfrak{F}'$)

$$(f_!(W_{\mathfrak{F}}P))(B) = \Delta[1]^{\deg(-)} \otimes_{f(-) \downarrow B} P \circ dom(-)$$

Definition (*W*-construction for $P \in \operatorname{Func}_{\otimes}(\mathfrak{F}, s\operatorname{Sets})$, \mathfrak{F} cubical)

$$(W_{\mathfrak{F}}P)(B) = \Delta[1]^{\deg(-)} \otimes_{\mathfrak{F}\downarrow B} P \circ dom(-)$$

where $\Delta[1]^{\deg(-)}$ are cube embeddings via 0-face.

Proposition (K-Ward, cf. Boardman-Vogt, B-Moerdijk for \mathfrak{F}_{sym})

For any cubical Feynman category \mathfrak{F} , the category $\operatorname{Func}_{\otimes}(\mathfrak{F}, s\operatorname{Sets})$ admits a *transferred model structure*. If P has an underlying cofibrant \mathcal{V} -collection then $W_{\mathfrak{F}}P$ is *cofibrant* in $\operatorname{Func}_{\otimes}(\mathfrak{F}, s\operatorname{Sets})$.

Lemma (relative W-construction for cubical $f:\mathfrak{F} o\mathfrak{F}'$)

$$(f_!(W_{\mathfrak{F}}P))(B) = \Delta[1]^{\deg(-)} \otimes_{f(-) \downarrow B} P \circ dom(-)$$

- $W_{\widetilde{S}_{SVM}}(\mathrm{Ass})$ (rooted corolla)=associahedron
- W_{3cvc} (CycAss)(corolla)=cyclohedron

Theorem (B-K)

$$|J_!(\mathit{W}_{\mathfrak{F}_{\mathit{plan-cyc}}} 1)(g, n, S_{\bullet})| \simeq \mathcal{MRG}_{g, n, S_{\bullet}}$$

Definition (Igusa)

The category ${\rm rb}_{g,n,S_{\bullet}}$ has at least trivalent ribbon graphs of type (g,n,S_{\bullet}) as objects, and ribbon contractions as morphisms.

$$\mathcal{MRG}_{g,n,S_{\bullet}} \simeq |\mathit{nerve}(\mathrm{rb}_{g,n,S_{\bullet}})|$$

- $W_{\widetilde{i}_{SVm}}(Ass)$ (rooted corolla)=associahedron
- $W_{\mathfrak{F}_{cvc}}(CycAss)(corolla)=cyclohedron$

Theorem (B-K)

$$|J_!(W_{\mathfrak{F}_{plan-cyc}}\mathbf{1})(g,n,S_ullet)|\simeq\mathcal{MRG}_{g,n,S_ullet}$$

Definition (Igusa)

The category ${\rm rb}_{g,n,S_{\bullet}}$ has at least trivalent ribbon graphs of type (g,n,S_{\bullet}) as objects, and ribbon contractions as morphisms.

$$\mathcal{MRG}_{g,n,S_{\bullet}} \simeq |nerve(rb_{g,n,S_{\bullet}})|$$

- $W_{\mathfrak{F}_{sym}}(\mathrm{Ass})$ (rooted corolla)=associahedron
- $W_{\mathfrak{F}_{cvc}}(CycAss)(corolla)=cyclohedron$

Theorem (B-K)

$$|J_!(\mathit{W}_{\mathfrak{F}_{\mathit{plan-cyc}}} \mathbf{1})(g, n, S_{\bullet})| \simeq \mathcal{MRG}_{g, n, S_{\bullet}}$$

Definition (Igusa)

The category ${\rm rb}_{g,n,S_{\bullet}}$ has at least trivalent ribbon graphs of type (g,n,S_{\bullet}) as objects, and ribbon contractions as morphisms.

$$\mathcal{MRG}_{g,n,S_{\bullet}} \simeq |nerve(\mathrm{rb}_{g,n,S_{\bullet}})|$$

- $W_{\mathfrak{F}_{sym}}(\mathrm{Ass})$ (rooted corolla)=associahedron
- $W_{\mathfrak{F}_{cvc}}(CycAss)(corolla)=cyclohedron$

Theorem (B-K)

$$|J_!(W_{\mathfrak{F}_{\textit{plan-cyc}}} \textbf{1})(g, n, S_{\bullet})| \simeq \mathcal{MRG}_{g, n, S_{\bullet}}$$

Definition (Igusa)

The category $\mathrm{rb}_{g,n,S_{\bullet}}$ has at least trivalent ribbon graphs of type (g,n,S_{\bullet}) as objects, and ribbon contractions as morphisms.

$$\mathcal{MRG}_{g,n,S_{\bullet}} \simeq |\mathit{nerve}(\mathrm{rb}_{g,n,S_{\bullet}})|$$

- $W_{\mathfrak{F}_{sym}}(\mathrm{Ass})$ (rooted corolla)=associahedron
- $W_{\mathfrak{F}_{cvc}}(\mathrm{CycAss})(\mathsf{corolla})=\mathsf{cyclohedron}$

Theorem (B-K)

$$|J_!(W_{\mathfrak{F}_{\textit{plan-cyc}}}\textbf{1})(g,n,S_\bullet)| \simeq \mathcal{MRG}_{g,n,S_\bullet}$$

Definition (Igusa)

The category ${\rm rb}_{g,n,S_{\bullet}}$ has at least trivalent ribbon graphs of type (g,n,S_{\bullet}) as objects, and ribbon contractions as morphisms.

$$\mathcal{MRG}_{g,n,S_{\bullet}} \simeq |\mathit{nerve}(\mathrm{rb}_{g,n,S_{\bullet}})|$$

- $W_{\mathfrak{F}_{sym}}(\mathrm{Ass})$ (rooted corolla)=associahedron
- $W_{\mathfrak{F}_{cvc}}(CycAss)(corolla)=cyclohedron$

Theorem (B-K)

$$|J_!(W_{\mathfrak{F}_{\mathit{plan-cyc}}} \mathbf{1})(g, n, S_{ullet})| \simeq \mathcal{MRG}_{g, n, S_{ullet}}$$

Definition (Igusa)

The category $\mathrm{rb}_{g,n,S_{\bullet}}$ has at least trivalent ribbon graphs of type (g,n,S_{\bullet}) as objects, and ribbon contractions as morphisms.

$$\mathcal{MRG}_{g,\eta,S_{\bullet}} \simeq |\mathit{nerve}(\mathrm{rb}_{g,\eta,S_{\bullet}})|$$

- $W_{\mathfrak{F}_{sym}}(\mathrm{Ass})$ (rooted corolla)=associahedron
- $W_{\mathfrak{F}_{cvc}}(CycAss)(corolla)=cyclohedron$

Theorem (B-K)

$$|J_!(W_{\mathfrak{F}_{\textit{plan-cyc}}} \mathbf{1})(g, n, S_{\bullet})| \simeq \mathcal{MRG}_{g, n, S_{\bullet}}$$

Definition (Igusa)

The category ${\rm rb}_{g,n,S_{\bullet}}$ has at least trivalent ribbon graphs of type (g,n,S_{\bullet}) as objects, and ribbon contractions as morphisms.

$$\mathcal{MRG}_{g,n,S_{\bullet}} \simeq |nerve(\mathrm{rb}_{g,n,S_{\bullet}})|$$

- $W_{\mathfrak{F}_{sym}}(\mathrm{Ass})$ (rooted corolla)=associahedron
- $W_{\mathfrak{F}_{cvc}}(CycAss)(corolla)=cyclohedron$

Theorem (B-K)

$$|J_!(W_{\mathfrak{F}_{\textit{plan-cyc}}} \iota)(g,n,S_{\bullet})| \simeq \mathcal{MRG}_{g,n,S_{\bullet}}$$

Definition (Igusa)

The category $\mathrm{rb}_{g,n,S_{\bullet}}$ has at least trivalent ribbon graphs of type (g,n,S_{\bullet}) as objects, and ribbon contractions as morphisms.

$$\mathcal{MRG}_{g,n,S_{\bullet}} \simeq |nerve(\mathrm{rb}_{g,n,S_{\bullet}})|$$