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Higher complements of combinatorial sphere arrangements

Hyperplane arrangements

A (central) hyperplane arrangement A in euclidean space V is a
finite family (Hα)α∈A of hyperplanes of V containing the origin.
The arrangement is essential if its center

⋂
α∈A Hα is trivial.

The complement M(A) = V \(
⋃

α∈A Hα) decomposes into path
components, called chambers (or topes): CA = π0(M(A)).

Denote by sα the orthogonal symmetry with respect to Hα. If
(Hα)α∈A is stable under sβ for all β ∈ A, the arrangement is called
a Coxeter arrangement. We write A = AW where W is the
subgroup W =< sα, α ∈ A > of On(R). This is justified by

Proposition (Coxeter,Tits)

There is a one-to-one correspondence between essential Coxeter
arrangements AW and finite Coxeter groups W . The latter are
classified by their Coxeter diagrams.

The Coxeter group W acts simply transitively on CAW
.
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Higher complements of combinatorial sphere arrangements

Hyperplane arrangements

Definition

The k-th complement of a hyperplane arrangement A is

Mk(A) = V k\
⋃

α∈A(Hα)k .

Example

V = Rn, A = (Hij)1≤i<j≤n where Hij = {x ∈ Rn|xi = xj}. This is
the Coxeter arrangement ASn for the symmetric group Sn. The
center is R.(1, . . . , 1). The higher complements are configuration
spaces: Mk(ASn) = F (Rk , n) = {(x1, . . . , xn) ∈ Rkn|xi 6= xj}.

Proposition (Brieskorn ’71)

π1(M2(AW )) = Ker(AW → W ) (the pure Artin group of W ).

Theorem (Deligne ’72)

For any simplicial arrangement, M2(A) is aspherical.
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Higher complements of combinatorial sphere arrangements

Hyperplane arrangements

Purpose of the talk

Define a finite cell complex S(k)
A of the homotopy type of Mk(A).

Fox-Neuwirth ’62 and Milgram ’66 construct S(k)
ASn

for any k;

Salvetti ’87 constructs S(2)
A for any arrangement A.

Theorem (Randell ’02, Dimca-Papadima ’03, S-S ’07)

The complement of a complex hyperplane arrangement admits a
minimal CW -structure. The minimal CW -structure of M2(A)

derives from S(2)
A through combinatorial Morse theory.

Remark (Gel’fand-Rybnikov ’90)

The complex S(2)
A only depends on the oriented matroid FA of A.
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Higher complements of combinatorial sphere arrangements

Oriented matroids

Orient a hyperplane arrangement A in V , by choosing for each Hα

two half-spaces H±
α such that H+

α ∩ H−
α = Hα and H+

α ∪ H−
α = V .

Then each point x ∈ V defines a sign vector sgnx ∈ {0,±}A by

sgnx(α) =

{
0 if x ∈ Hα;

± if x ∈ H±
α \Hα.

The oriented matroid FA ⊂ {0,±}A is the set of all such sign
vectors sgnx , x ∈ V , equipped with the partial order induced from
the product order on {0,±}A where 0 < + and 0 < −.

Each P ∈ FA defines a facet cP = {x ∈ V |sgnx = P}. The facets
are convex subsets of V , open in their closure. By definition,

cP ⊆ cQ in V iff P ≤ Q in FA.

The unit-sphere SV gets a CW-structure with cell poset FA\{0}.
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Higher complements of combinatorial sphere arrangements

Oriented matroids

For P,Q ∈ FA we define a sign vector PQ ∈ {0,±}A by

(PQ)(α) =

{
P(α) if P(α) 6= 0;

Q(α) if P(α) = 0.

The subset FA ⊂ {0,±}A of sign vectors of the arrangement A
fulfills the following defining properties of an oriented matroid:

1 0 ∈ FA;

2 P ∈ FA implies − P ∈ FA;

3 P,Q ∈ FA implies PQ ∈ FA;

4 Any α ∈ A which separates P,Q ∈ FA supports an R ∈ FA
sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

α separates P,Q if P(α)Q(α) = −1, and supports R if R(α) = 0.



Higher complements of combinatorial sphere arrangements

Oriented matroids

For P,Q ∈ FA we define a sign vector PQ ∈ {0,±}A by

(PQ)(α) =

{
P(α) if P(α) 6= 0;

Q(α) if P(α) = 0.

The subset FA ⊂ {0,±}A of sign vectors of the arrangement A
fulfills the following defining properties of an oriented matroid:

1 0 ∈ FA;

2 P ∈ FA implies − P ∈ FA;

3 P,Q ∈ FA implies PQ ∈ FA;

4 Any α ∈ A which separates P,Q ∈ FA supports an R ∈ FA
sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

α separates P,Q if P(α)Q(α) = −1, and supports R if R(α) = 0.



Higher complements of combinatorial sphere arrangements

Oriented matroids

For P,Q ∈ FA we define a sign vector PQ ∈ {0,±}A by

(PQ)(α) =

{
P(α) if P(α) 6= 0;

Q(α) if P(α) = 0.

The subset FA ⊂ {0,±}A of sign vectors of the arrangement A
fulfills the following defining properties of an oriented matroid:

1 0 ∈ FA;

2 P ∈ FA implies − P ∈ FA;

3 P,Q ∈ FA implies PQ ∈ FA;

4 Any α ∈ A which separates P,Q ∈ FA supports an R ∈ FA
sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

α separates P,Q if P(α)Q(α) = −1, and supports R if R(α) = 0.



Higher complements of combinatorial sphere arrangements

Oriented matroids

For P,Q ∈ FA we define a sign vector PQ ∈ {0,±}A by

(PQ)(α) =

{
P(α) if P(α) 6= 0;

Q(α) if P(α) = 0.

The subset FA ⊂ {0,±}A of sign vectors of the arrangement A
fulfills the following defining properties of an oriented matroid:

1 0 ∈ FA;

2 P ∈ FA implies − P ∈ FA;

3 P,Q ∈ FA implies PQ ∈ FA;

4 Any α ∈ A which separates P,Q ∈ FA supports an R ∈ FA
sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

α separates P,Q if P(α)Q(α) = −1, and supports R if R(α) = 0.



Higher complements of combinatorial sphere arrangements

Oriented matroids

For P,Q ∈ FA we define a sign vector PQ ∈ {0,±}A by

(PQ)(α) =

{
P(α) if P(α) 6= 0;

Q(α) if P(α) = 0.

The subset FA ⊂ {0,±}A of sign vectors of the arrangement A
fulfills the following defining properties of an oriented matroid:

1 0 ∈ FA;

2 P ∈ FA implies − P ∈ FA;

3 P,Q ∈ FA implies PQ ∈ FA;

4 Any α ∈ A which separates P,Q ∈ FA supports an R ∈ FA
sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

α separates P,Q if P(α)Q(α) = −1, and supports R if R(α) = 0.



Higher complements of combinatorial sphere arrangements

Oriented matroids

For P,Q ∈ FA we define a sign vector PQ ∈ {0,±}A by

(PQ)(α) =

{
P(α) if P(α) 6= 0;

Q(α) if P(α) = 0.

The subset FA ⊂ {0,±}A of sign vectors of the arrangement A
fulfills the following defining properties of an oriented matroid:

1 0 ∈ FA;

2 P ∈ FA implies − P ∈ FA;

3 P,Q ∈ FA implies PQ ∈ FA;

4 Any α ∈ A which separates P,Q ∈ FA supports an R ∈ FA
sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

α separates P,Q if P(α)Q(α) = −1, and supports R if R(α) = 0.



Higher complements of combinatorial sphere arrangements

Oriented matroids

For P,Q ∈ FA we define a sign vector PQ ∈ {0,±}A by

(PQ)(α) =

{
P(α) if P(α) 6= 0;

Q(α) if P(α) = 0.

The subset FA ⊂ {0,±}A of sign vectors of the arrangement A
fulfills the following defining properties of an oriented matroid:

1 0 ∈ FA;

2 P ∈ FA implies − P ∈ FA;

3 P,Q ∈ FA implies PQ ∈ FA;

4 Any α ∈ A which separates P,Q ∈ FA supports an R ∈ FA
sth. R(β) = (PQ)(β) = (QP)(β) for non separating β ∈ A.

α separates P,Q if P(α)Q(α) = −1, and supports R if R(α) = 0.



Higher complements of combinatorial sphere arrangements

Oriented matroids

A sphere arrangement in V is a collection (Sα)α∈A of centrally
symmetric subspheres of codimension one of SV such that

1 The closures S±α of the two components of SV \Sα are balls;

2 any intersection of the S±α is either a ball, a sphere or empty.

A sphere arrangement (Sα)α∈A defines an oriented matroid
FA ⊂ {0,±}A with respect to (R.Sα)α∈A.

Theorem (Folkman-Lawrence ’78, Edmonds-Mandel ’78)

Any simple oriented matroid FA ⊂ {0,±}A is the oriented matroid
of an essentially unique sphere arrangement in V = Rrk(FA).

Definition

The k-th complement of a sphere arrangement (Sα)α∈A in V is

Mk(A) = V k\
⋃

α∈A
(R.Sα)k ' SV ∗ · · · ∗ SV︸ ︷︷ ︸

k

\
⋃

α∈A
Sα ∗ · · · ∗ Sα︸ ︷︷ ︸

k

.
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Higher complements of combinatorial sphere arrangements

Higher Salvetti complexes

Throughout, A denotes a hyperplane or sphere arrangement in V .

The chamber system CA is the discrete subposet of FA consisting
of the maximal facets. In particular, |CA| ' M(A).

FA ×FA = FA⊕A where A⊕A = (A× V ) ∪ (V ×A) in V × V .

Definition (Orlik ’91)

C(2)
A := {(P,Q) ∈ FA ×FA |PQ ∈ CA}op

(P,Q) 6∈ C(2)
A iff ∃α ∈ A : P(α) = Q(α) = 0.

For subcomplexes K1,K2 of a simplicial complex L sth.
Vert(L) = Vert(K1) t Vert(K2), one has: |L|\|K1| ' |K2|. Thus,

Proposition (Orlik ’91)

|C(2)
A | ' M2(A)
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Higher complements of combinatorial sphere arrangements

Higher Salvetti complexes

Definition (Salvetti ’87)

S(2)
A = {(P,C ) ∈ FA × CA |P ≤ C}

(P,C ) ≥ (P ′,C ′) iff P ≤ P ′ and P ′C = C ′.

Theorem (Salvetti ’87, Arvola ’91)

|S(2)
A | ' M2(A).

Proof.

The map (P,Q) 7→ (P,PQ) is a hpty eq. of posets C(2)
A

∼−→ S(2)
A .

Indeed, by Quillen’s Theorem A, it suffices to show that the hpty
fibers c(P,C) = {Q ∈ FA |PQ ≤ C} are contractible.
For A|P| = {α ∈ A |P(α) = 0} we get the identification
c(P,C) = {Q ∈ FA |Q(α) ≤ C (α), α ∈ A|P|}. Thus, c(P,C) maps
to the closure of a chamber in FA/|P| via FA\F|P| ' FA/|P|.
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Higher complements of combinatorial sphere arrangements

Higher Salvetti complexes

Alternatively, for hyperplane arrangements A, proceed as follows:

Let st(P,C) = {(x1, x2) ∈ V × V | x1 ∈ cP ; x2 ∈ cC mod|P|}. These
are convex subsets of M2(A), open in their closure. They define a

stratification of M2(A) labelled by S(2)
A such that

st(P,C) ⊆ st(P′,C ′) in M2(A) iff (P,C ) ≥ (P ′,C ′) in S(2)
A .

Equivalently, let V(P,C) =
⋃

(P,C)≥(P′,C ′) st(P′,C ′). This defines an
open cover of M2(A) used by Deligne ’72. The V(P,C) are
contractible and V(P,C) ⊆ V(P′,C ′) iff (P,C ) ≤ (P ′,C ′). Moreover,
each V(P,C) ∩V(P′,C ′) is a union of V(P′′,C ′′)’s. A homotopy colimit

argument (McCord ’67) yields M2(A) ' |S(2)
A |.
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Higher complements of combinatorial sphere arrangements

Higher Salvetti complexes

Definition

C(k)
A = {(P1, . . . ,Pk) ∈ (FA)k |P1 · · ·Pk ∈ CA}op

S(k)
A = {(P1, . . . ,Pk−1,C ) ∈ (FA)k−1×CA |P1 ≤ · · · ≤ Pk−1 ≤ C}

(P1, . . . ,Pk−1,C ) ≥ (P ′1, . . . ,P
′
k−1,C

′) iff ∀i : Pi ≤ P ′i ∧ P ′i C = C ′

Theorem

|C(k)
A | ' Mk(A) and (P1, . . . ,Pk) 7→ (P1,P1P2, . . . ,P1P2 · · ·Pk)

defines a homotopy equivalence of posets C(k)
A

∼−→ S(k)
A .

Proof.

The homotopy fibers c(P1,...,Pk−1,C) are homotopy colimits over
{Q |P1Q ≤ P2} of homotopy fibers c(P2,...,Pk−1,C).
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Higher complements of combinatorial sphere arrangements

Higher Salvetti complexes

Definition

For C ∈ CA, a function µ : A → {0, 1, . . . , k − 1} is C-admissible

iff ∃(P1, . . . ,Pk−1,C ) ∈ S(k)
A : µ(α) = max{i |Pi (α) = 0}.

Proposition

S(k)
A

∼= {(C , µ) ∈ CA × {0, 1, . . . , k − 1}A |µ is C -admissible},

(C , µ) ≤ (C ′, µ′) iff

{
µ(α) ≤ µ′(α) for any α ∈ A;

µ(α) < µ′(α) for α separating C ,C ′.

Corollary

For simplicial arrangements, S(k)
A

∼= CA × {0, . . . , k − 1}rk(FA).

For Coxeter arrangements, S(k)
AW

∼= W × {0, . . . , k − 1}rk(W ).

S(k)
ASn

is anti-isomorphic to Fox-Neuwirth’s cell decomposition, and

isomorphic to Milgram’s permutohedral model for F (Rk , n).
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Higher complements of combinatorial sphere arrangements

The adjacency graph

For each A, the adjacency graph GA has vertex set CA and edge
set {(C ,C ′) ∈ CA × CA | ∃P ∈ FA : P ≺ C and P ≺ C ′}. Since
P(α) = 0 for a unique α ∈ A, the edges of GA are labelled by A.

Let S(C ,C ′) = {α ∈ A |C (α)C ′(α) = −1}. Then:

The edge-path of any geodesic joining C and C ′ in GA is
labelled by S(C ,C ′), in particular d(C ,C ′) = #S(C ,C ′);

For any C ,C ′,C ′′ : S(C ,C ′′) = S(C ,C ′)∆S(C ′,C ′′).

Proposition (Björner-Edelman-Ziegler ’90)

The face poset FA is determined by the adjacency graph GA.

Definition

Let EA be the simplicial set whose d-simplices are (d + 1)-tupels

(C0,C1, . . . ,Cd) of chambers. (C0,C1, . . . ,Cd) ∈ E
(k)
A iff

(S(C0,C1), . . . ,S(Cd−1,Cd)) contains < k times each α ∈ A.
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Higher complements of combinatorial sphere arrangements

The adjacency graph

EA is contractible, filtered by simplicial subsets E
(k)
A ;

EAW
= EW and EAW

/W = BW ;

There is a simplicial map nerve(S(k)
A ) → E

(k)
A defined by

(C0, µ0) ≤ · · · ≤ (Cd , µd) 7→ (C0, . . . ,Cd)

EA⊕B ∼= EA × EB compatible with filtrations.

Theorem (Smith ’89, Kashiwabara ’93, B. ’96)

|E (k)
ASn

| ' Mk(ASn). For varying n, the operad on the left has the
homotopy type of Boardman-Vogt’s operad of little k-cubes.

Conjecture (Fiedorowicz)

For any finite Coxeter group W , one has |E (k)
AW
| ' Mk(AW ).

This would extend the operad structure of the B/C/D-Coxeter
groups to the higher complements of their Coxeter arrangement.
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