Dold-Kan categories & Catalan monoids

Clemens Berger1

Toulouse, 20-24 Juin, 2022

CATS60 – celebrating Carlos Simpson’s 60th birthday

1joint with Christophe Cazanave and Ingo Waschkies
<table>
<thead>
<tr>
<th>1</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The simplex category Δ</td>
</tr>
<tr>
<td>3</td>
<td>Generalised Dold-Kan correspondence</td>
</tr>
<tr>
<td>4</td>
<td>Joyal’s categories Θ_n</td>
</tr>
<tr>
<td>5</td>
<td>Catalan monoids</td>
</tr>
</tbody>
</table>
Theorem (Dold 1958, Kan 1958)

\[M : \text{Ab}^\Delta^{\text{op}} \cong \text{Ch}(\mathbb{Z}) : K \]

Remark

The functor \(K \) takes homology to homotopy. The \(K \)-image of the chain complex \((A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A_n \leftarrow 0 \leftarrow \cdots)\) is a simplicial model for an Eilenberg-MacLane space of type \(K(A, n) \).

Purpose of the talk

- categorical explanation for Dold-Kan correspondence
- chain models for \(K(A, n) \)'s via Joyal's cell categories \(\Theta_n \)
- Catalan monoids
Theorem (Dold 1958, Kan 1958)

\[M : \text{Ab}^{\Delta^\text{op}} \cong \text{Ch}(\mathbb{Z}) : K \]

Remark

The functor \(K \) takes homology to homotopy. The \(K \)-image of the chain complex \((A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)\) is a simplicial model for an Eilenberg-MacLane space of type \(K(A, n) \).

Purpose of the talk

- categorical explanation for Dold-Kan correspondence
- chain models for \(K(A, n) \)'s via Joyal's cell categories \(\Theta_n \)
- Catalan monoids
Theorem (Dold 1958, Kan 1958)

\[M : \text{Ab}^\Delta^{op} \cong \text{Ch}(\mathbb{Z}) : K \]

Remark

The functor \(K \) takes homology to homotopy. The \(K \)-image of the chain complex \((A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)\) is a \textit{simplicial} model for an Eilenberg-MacLane space of type \(K(A, n) \).

Purpose of the talk

- Categorical explanation for Dold-Kan correspondence
- Chain models for \(K(A, n) \)'s via Joyal's cell categories \(\Theta_n \)
- Catalan monoids
Theorem (Dold 1958, Kan 1958)

\[M : \text{Ab}^{\Delta^\text{op}} \simeq \text{Ch}(\mathbb{Z}) : K \]

Remark

The functor \(K \) takes homology to homotopy. The \(K \)-image of the chain complex \((A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots) \) is a simplicial model for an Eilenberg-MacLane space of type \(K(A, n) \).

Purpose of the talk

- categorical explanation for Dold-Kan correspondence
- chain models for \(K(A, n) \)'s via Joyal's cell categories \(\Theta_n \)
- Catalan monoids
Theorem (Dold 1958, Kan 1958)

\[M : \text{Ab}^{\Delta^{\text{op}}} \simeq \text{Ch}(\mathbb{Z}) : K \]

Remark

The functor \(K \) takes homology to homotopy. The \(K \)-image of the chain complex \((A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)\) is a simplicial model for an Eilenberg-MacLane space of type \(K(A, n) \).

Purpose of the talk

- categorical explanation for Dold-Kan correspondence
- chain models for \(K(A, n) \)'s via Joyal's cell categories \(\Theta_n \)
- Catalan monoids
Theorem (Dold 1958, Kan 1958)

\[M : \text{Ab}^\Delta_{\text{op}} \simeq \text{Ch}(\mathbb{Z}) : K \]

Remark

The functor \(K \) takes homology to homotopy. The \(K \)-image of the chain complex \((A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)\) is a simplicial model for an Eilenberg-MacLane space of type \(K(A, n) \).

Purpose of the talk

- categorical explanation for Dold-Kan correspondence
- chain models for \(K(A, n) \)'s via Joyal's cell categories \(\Theta_n \)
- Catalan monoids
Theorem (Dold 1958, Kan 1958)

\[M : \text{Ab}^{\Delta^{\text{op}}} \cong \text{Ch}(\mathbb{Z}) : K \]

Remark

The functor \(K \) takes homology to homotopy. The \(K \)-image of the chain complex \((A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)\) is a \emph{simplicial} model for an Eilenberg-MacLane space of type \(K(A, n) \).

Purpose of the talk

- categorical explanation for Dold-Kan correspondence
- chain models for \(K(A, n) \)'s via Joyal's cell categories \(\Theta_n \)
- Catalan monoids
Definition (simplex category \(\Delta \))

\[\text{Ob} \Delta = \{ [n] = \{0, 1, \ldots, n\}, \, n \geq 0 \}, \, \text{Mor} \Delta = \{ \text{monotone maps} \} \]

Remark (\(\mathcal{E}-\mathcal{M} \) factorisation system)

The category \(\Delta \) is generated by elementary:

- face operators \(\epsilon_i^n : [n - 1] \to [n], \, 0 \leq i \leq n, \) and
- degeneracy operators \(\eta_i^n : [n + 1] \to [n], \, 0 \leq i \leq n. \)

Every simplicial operator \(\phi : [m] \to [n] \) factors as

\[
\begin{array}{ccc}
[m] & \xrightarrow{\phi} & [n] \\
\downarrow \downarrow \downarrow epi & & \downarrow \downarrow \downarrow mono \\
[p] & & [n]
\end{array}
\]
Definition (simplex category Δ)

$\text{Ob}\Delta = \{[n] = \{0, 1 \ldots, n\}, n \geq 0\}$, $\text{Mor}\Delta = \{\text{monotone maps}\}$

Remark ($\mathcal{E}-\mathcal{M}$ factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n : [n-1] \to [n]$, $0 \leq i \leq n$, and
- degeneracy operators $\eta_i^n : [n+1] \to [n]$, $0 \leq i \leq n$.

Every simplicial operator $\phi : [m] \to [n]$ factors as

\[
\begin{array}{c}
[m] \\
\downarrow \phi \\
\uparrow \text{epi} \\
[p] \\
\downarrow \text{mono} \\
[n]
\end{array}
\]
Definition (simplex category Δ)

$\text{Ob}\Delta = \{[n] = \{0, 1 \ldots, n\}, \ n \geq 0\}$, $\text{Mor}\Delta = \{\text{monotone maps}\}$

Remark (\mathcal{E}-\mathcal{M} factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon^n_i : [n - 1] \to [n], \ 0 \leq i \leq n$, and
- degeneracy operators $\eta^n_i : [n + 1] \to [n], \ 0 \leq i \leq n$.

Every simplicial operator $\phi : [m] \to [n]$ factors as

```
  [m] --\phi--> [n]
     | epi       mono
     v
    [p]
```
Definition (simplex category Δ)

$\text{Ob}\Delta = \{[n] = \{0, 1 \ldots, n\}, n \geq 0\}$, $\text{Mor}\Delta = \{\text{monotone maps}\}$

Remark (\mathcal{E}-\mathcal{M} factorisation system)

The category Δ is generated by elementary
- face operators $\epsilon^n_i : [n - 1] \rightarrow [n]$, $0 \leq i \leq n$, and
- degeneracy operators $\eta^n_i : [n + 1] \rightarrow [n]$, $0 \leq i \leq n$.

Every simplicial operator $\phi : [m] \rightarrow [n]$ factors as

\[
\begin{array}{ccc}
[m] & \xrightarrow{\phi} & [n] \\
\downarrow^{\text{epi}} & & \downarrow^{\text{mono}} \\
[p] & \xrightarrow{} & [n]
\end{array}
\]
Definition (simplex category Δ)

$\text{Ob}\Delta = \{[n] = \{0, 1 \ldots, n\}, n \geq 0\}$, $\text{Mor}\Delta = \{\text{monotone maps}\}$

Remark (\mathcal{E}-\mathcal{M} factorisation system)

The category Δ is generated by elementary

- **face operators** $\epsilon^n_i : [n-1] \to [n]$, $0 \leq i \leq n$, and
- **degeneracy operators** $\eta^n_i : [n+1] \to [n]$, $0 \leq i \leq n$.

Every simplicial operator $\phi : [m] \to [n]$ factors as

$$[m] \xrightarrow{\phi} [n] \xrightarrow{\text{epi}} [p] \xrightarrow{\text{mono}} [n]$$
Definition (simplex category Δ)

$\text{Ob} \Delta = \{[n] = \{0, 1, \ldots, n\}, n \geq 0\}$, $\text{Mor} \Delta = \{\text{monotone maps}\}$

Remark (\mathcal{E}-\mathcal{M} factorisation system)

The category Δ is generated by elementary

- **face operators** $\epsilon^n_i : [n - 1] \to [n]$, $0 \leq i \leq n$, and
- **degeneracy operators** $\eta^n_i : [n + 1] \to [n]$, $0 \leq i \leq n$.

Every simplicial operator $\phi : [m] \to [n]$ factors as

\[
\begin{array}{c}
[m] \\
\downarrow^{epi} \quad \downarrow^{ mono} \\
[p] \\
\uparrow^{epi} \quad \uparrow^{ mono} \\
[n]
\end{array}
\]

\[\phi\]
Definition (Milnor 1957 – geometric realisation)

The functor $Δ \to \text{Top} : [n] \mapsto Δ_n$ yields by left Kan extension geometric realisation $|−|_Δ : \text{Sets}^{Δ^\text{op}} \to \text{Top}$. Each $|X|$ is a CW-complex with one cell per non-degenerate simplex of X.

Definition (Eilenberg 1944 – simplicial homology)

$$\begin{aligned}
\text{Sets}^{Δ^\text{op}} &\xrightarrow{\text{C}} \text{Ab}^{Δ^\text{op}} &\xrightarrow{C} &\text{Ch}(\mathbb{Z}) &\xrightarrow{\epsilon} &\text{Ab}^\mathbb{N} \\
X_• &\xrightarrow{\epsilon} &\mathbb{Z}[X_•] &\xrightarrow{\epsilon} & (C_•(X), d_•) &\xrightarrow{\epsilon} &H_•(X)
\end{aligned}$$

There are canonical isomorphisms

$$C_n^{\text{cell}}(|X|) \cong C_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)] \cong \bigcap_{0 \leq k < n} \ker(\epsilon^n_k) = M_n(X)$$
Dold-Kan categories & Catalan monoids
The simplex category Δ

Definition (Milnor 1957 – geometric realisation)

The functor $\Delta \to \text{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension geometric realisation $|−|_\Delta : \text{Sets}^{\Delta^{\text{op}}} \to \text{Top}$. Each $|X|$ is a CW-complex with one cell per non-degenerate simplex of X.

Definition (Eilenberg 1944 – simplicial homology)

$$\begin{align*}
\text{Sets}^{\Delta^{\text{op}}} & \longrightarrow \text{Ab}^{\Delta^{\text{op}}} \\
X_\bullet & \longmapsto \mathbb{Z}[X_\bullet] \longmapsto (C_\bullet(X),d_\bullet) \longmapsto H_\bullet(X)
\end{align*}$$

There are canonical isomorphisms

$$C_{n\text{cell}}(|X|) \cong C_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)] \cong \bigcap_{0 \leq k < n} \ker(\epsilon^n_k) = M_n(X)$$
Definition (Milnor 1957 – geometric realisation)

The functor $\Delta \to \text{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension geometric realisation $|\cdot|_\Delta : \text{Sets}^{\Delta^{\text{op}}} \to \text{Top}$. Each $|X|$ is a CW-complex with one cell per non-degenerate simplex of X.

Definition (Eilenberg 1944 – simplicial homology)

$$
\begin{align*}
\text{Sets}^{\Delta^{\text{op}}} & \xrightarrow{\sim} \text{Ab}^{\Delta^{\text{op}}} & C & \xrightarrow{\cdot} \text{Ch}(\mathbb{Z}) & \xrightarrow{\sim} \text{Ab}^{\mathbb{N}} \\
X_\bullet & \longmapsto \mathbb{Z}[X_\bullet] & \longmapsto (C_\bullet(X), d_\bullet) & \longmapsto H_\bullet(X)
\end{align*}
$$

There are canonical isomorphisms

$$
C_n^{cell}(|X|) \cong C_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)] \cong \bigcap_{0 \leq k < n} \ker(\epsilon^n_k) = M_n(X)
$$
Definition (Milnor 1957 – geometric realisation)

The functor $\Delta \rightarrow \text{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension geometric realisation $|−|_\Delta : \text{Sets}^{\Delta^{\text{op}}} \rightarrow \text{Top}$. Each $|X|$ is a CW-complex with one cell per non-degenerate simplex of X.

Definition (Eilenberg 1944 – simplicial homology)

There are canonical isomorphisms

$$C_n^{\text{cell}}(|X|) \cong C_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)] \cong \bigcap_{0 \leq k < n} \ker(\epsilon^X_k) = M_n(X)$$
Definition (Milnor 1957 – geometric realisation)

The functor $\Delta \to \text{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension geometric realisation $|-|_\Delta : \text{Sets}^{\Delta^{\text{op}}} \to \text{Top}$. Each $|X|$ is a CW-complex with one cell per non-degenerate simplex of X.

Definition (Eilenberg 1944 – simplicial homology)

$\begin{align*}
\text{Sets}^{\Delta^{\text{op}}} & \longrightarrow \text{Ab}^{\Delta^{\text{op}}} \xrightarrow{C} \text{Ch}(\mathbb{Z}) \longrightarrow \text{Ab}^N \\
X_\bullet & \mapsto \mathbb{Z}[X_\bullet] \mapsto (C_\bullet(X), d_\bullet) \mapsto H_\bullet(X)
\end{align*}$

There are canonical isomorphisms

$C_n^{\text{cell}}(|X|) \cong C_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)] \cong \bigcap_{0 \leq k < n} \ker(\epsilon^X_k) = M_n(X)$
Definition (Dold-Kan category)

\(\mathcal{C} = (\mathcal{E}, \mathcal{M}, (\cdot)^*) \) is a DK-category whenever \((\cdot)^* : \mathcal{E}^{\text{op}} \to \mathcal{M}\) is a faithful identity-on-objects functor sth.

1. \(ee^* = 1\) (the idempotent \(e^*e\) is called an \(E\)-projector);
2. the morphisms \(f^*e\) (for \(e, f \in \mathcal{E}\)) form a subcategory of \(\mathcal{C}\);
3. Inessential \(M\)-maps form an ideal in \(\mathcal{M}\);
4. \(\text{Proj}_E(A)\) is finite. Primitive \(E\)-projectors can be enumerated in such a way that \(\phi_j\phi_i\) is an \(E\)-projector for \(i < j\).

Definition (primitive \(E\)-projectors \(e^*e\))

Whenever \(e = e_2e_1\) then either \(e_1\) or \(e_2\) is invertible.

Definition (essential and inessential \(M\)-maps)

An \(M\)-map \(m : A \to B\) is called essential if \(1_B\) is the only \(E\)-projector of \(B\) fixing \(m\). Otherwise \(m\) is called inessential.
Definition (Dold-Kan category)

$\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is a DK-category whenever $(-)^*: \mathcal{E}^{\text{op}} \rightarrow \mathcal{M}$ is a faithful identity-on-objects functor sth.

1. $ee^* = 1$ (the idempotent e^*e is called an \mathcal{E}-projector);
2. the morphisms f^*e (for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C};
3. Inessential \mathcal{M}-maps form an ideal in \mathcal{M};
4. $\text{Proj}_\mathcal{E}(A)$ is finite. Primitive \mathcal{E}-projectors can be enumerated in such a way that $\phi_j \phi_i$ is an \mathcal{E}-projector for $i < j$.

Definition (primitive \mathcal{E}-projectors e^*e)

Whenever $e = e_2 e_1$ then either e_1 or e_2 is invertible.

Definition (essential and inessential \mathcal{M}-maps)

An \mathcal{M}-map $m: A \rightarrow B$ is called essential if 1_B is the only \mathcal{E}-projector of B fixing m. Otherwise m is called inessential.
Dold-Kan categories & Catalan monoids
Generalised Dold-Kan correspondence

Definition (Dold-Kan category)

\(\mathcal{C} = (\mathcal{E}, \mathcal{M}, (\cdot)^*) \) is a DK-category whenever \((\cdot)^* : \mathcal{E}^{\text{op}} \to \mathcal{M}\) is a faithful identity-on-objects functor sth.

1. \(ee^* = 1\) (the idempotent \(e^*e\) is called an \(\mathcal{E}\)-projector);
2. The morphisms \(f^*e\) (for \(e, f \in \mathcal{E}\)) form a subcategory of \(\mathcal{C}\);
3. Inessential \(\mathcal{M}\)-maps form an ideal in \(\mathcal{M}\);
4. \(\text{Proj}_\mathcal{E}(A)\) is finite. Primitive \(\mathcal{E}\)-projectors can be enumerated in such a way that \(\phi_j \phi_i\) is an \(\mathcal{E}\)-projector for \(i < j\).

Definition (primitive \(\mathcal{E}\)-projectors \(e^*e\))

Whenever \(e = e_2 e_1\) then either \(e_1\) or \(e_2\) is invertible.

Definition (essential and inessential \(\mathcal{M}\)-maps)

An \(\mathcal{M}\)-map \(m : A \to B\) is called essential if \(1_B\) is the only \(\mathcal{E}\)-projector of \(B\) fixing \(m\). Otherwise \(m\) is called inessential.
Definition (Dold-Kan category)

\(\mathcal{C} = (\mathcal{E}, \mathcal{M}, (__)^*) \) is a DK-category whenever \((__)^* : \mathcal{E}^{op} \to \mathcal{M}\) is a faithful identity-on-objects functor such that

1. \(ee^* = 1\) (the idempotent \(e^*e\) is called an \(\mathcal{E}\)-projector);
2. the morphisms \(f^*e\) (for \(e, f \in \mathcal{E}\)) form a subcategory of \(\mathcal{C}\);
3. Inessential \(\mathcal{M}\)-maps form an ideal in \(\mathcal{M}\);
4. \(\text{Proj}_\mathcal{E}(A)\) is finite. Primitive \(\mathcal{E}\)-projectors can be enumerated in such a way that \(\phi_j\phi_i\) is an \(\mathcal{E}\)-projector for \(i < j\).

Definition (primitive \(\mathcal{E}\)-projectors \(e^*e\))

Whenever \(e = e_2e_1\) then either \(e_1\) or \(e_2\) is invertible.

Definition (essential and inessential \(\mathcal{M}\)-maps)

An \(\mathcal{M}\)-map \(m : A \to B\) is called essential if \(1_B\) is the only \(\mathcal{E}\)-projector of \(B\) fixing \(m\). Otherwise \(m\) is called inessential.
Definition (Dold-Kan category)

\(\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*) \) is a DK-category whenever \((-)^* : \mathcal{E}^{op} \to \mathcal{M} \) is a faithful identity-on-objects functor sth.

1. \(ee^* = 1 \) (the idempotent \(e^* e \) is called an \(\mathcal{E} \)-projector);
2. the morphisms \(f^* e \) (for \(e, f \in \mathcal{E} \)) form a subcategory of \(\mathcal{C} \);
3. Inessential \(\mathcal{M} \)-maps form an ideal in \(\mathcal{M} \);
4. \(\text{Proj}_\mathcal{E}(A) \) is finite. Primitive \(\mathcal{E} \)-projectors can be enumerated in such a way that \(\phi_j \phi_i \) is an \(\mathcal{E} \)-projector for \(i < j \).

Definition (primitive \(\mathcal{E} \)-projectors \(e^* e \))

Whenever \(e = e_2 e_1 \) then either \(e_1 \) or \(e_2 \) is invertible.

Definition (essential and inessential \(\mathcal{M} \)-maps)

An \(\mathcal{M} \)-map \(m : A \to B \) is called essential if \(1_B \) is the only \(\mathcal{E} \)-projector of \(B \) fixing \(m \). Otherwise \(m \) is called inessential.
Definition (Dold-Kan category)

\[C = (\mathcal{E}, \mathcal{M}, (\cdot)^*) \] is a DK-category whenever \((\cdot)^* : \mathcal{E}^{\text{op}} \to \mathcal{M}\) is a faithful identity-on-objects functor sth.

1. \(e^* e = 1\) (the idempotent \(e^* e\) is called an \(\mathcal{E}\)-projector);
2. the morphisms \(f^* e\) (for \(e, f \in \mathcal{E}\)) form a subcategory of \(C\);
3. Inessential \(\mathcal{M}\)-maps form an ideal in \(\mathcal{M}\);
4. \(\text{Proj}_\mathcal{E}(A)\) is finite. *Primitive* \(\mathcal{E}\)-projectors can be enumerated in such a way that \(\phi_j \phi_i\) is an \(\mathcal{E}\)-projector for \(i < j\).

Definition (primitive \(\mathcal{E}\)-projectors \(e^* e\))

Whenever \(e = e_2 e_1\) then either \(e_1\) or \(e_2\) is invertible.

Definition (essential and inessential \(\mathcal{M}\)-maps)

An \(\mathcal{M}\)-map \(m : A \to B\) is called *essential* if \(1_B\) is the only \(\mathcal{E}\)-projector of \(B\) fixing \(m\). Otherwise \(m\) is called *inessential*.
Definition (Dold-Kan category)

\(\mathcal{C} = (\mathcal{E}, \mathcal{M}, (\cdot)^*) \) is a DK-category whenever \((\cdot)^* : \mathcal{E}^{\text{op}} \to \mathcal{M}\) is a faithful identity-on-objects functor such that:

1. \(ee^* = 1\) (the idempotent \(e^*e\) is called an \(\mathcal{E}\)-projector);
2. The morphisms \(f^*e\) (for \(e, f \in \mathcal{E}\)) form a subcategory of \(\mathcal{C}\);
3. Inessential \(\mathcal{M}\)-maps form an ideal in \(\mathcal{M}\);
4. \(\text{Proj}_\mathcal{E}(A)\) is finite. Primitive \(\mathcal{E}\)-projectors can be enumerated in such a way that \(\phi_j\phi_i\) is an \(\mathcal{E}\)-projector for \(i < j\).

Definition (primitive \(\mathcal{E}\)-projectors \(e^*e\))

Whenever \(e = e_2e_1\) then either \(e_1\) or \(e_2\) is invertible.

Definition (essential and inessential \(\mathcal{M}\)-maps)

An \(\mathcal{M}\)-map \(m : A \to B\) is called essential if \(1_B\) is the only \(\mathcal{E}\)-projector of \(B\) fixing \(m\). Otherwise \(m\) is called inessential.
Definition (Dold-Kan category)

$\mathcal{C} = (\mathcal{E}, \mathcal{M}, (\cdot)^*)$ is a DK-category whenever $(-)^*: \mathcal{E}^{op} \to \mathcal{M}$ is a faithful identity-on-objects functor sth.

1. $ee^* = 1$ (the idempotent e^*e is called an \mathcal{E}-projector);
2. the morphisms f^*e (for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C};
3. Inessential \mathcal{M}-maps form an ideal in \mathcal{M};
4. $\text{Proj}_\mathcal{E}(A)$ is finite. *Primitive* \mathcal{E}-projectors can be enumerated in such a way that $\phi_j\phi_i$ is an \mathcal{E}-projector for $i < j$.

Definition (primitive \mathcal{E}-projectors e^*e)

Whenever $e = e_2e_1$ then either e_1 or e_2 is invertible.

Definition (essential and inessential \mathcal{M}-maps)

An \mathcal{M}-map $m: A \to B$ is called *essential* if 1_B is the only \mathcal{E}-projector of B fixing m. Otherwise m is called *inessential*.
Remark (DK-category structure for Δ)

Each epi $e : [m] \to [n]$ has a *maximal* section $e^* : [n] \to [m]$. The primitive E-projectors of $[n]$ are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \leq i < n$.

Remark (essential M-maps of Δ)

are precisely the "last" face operators $\epsilon_n^* : [n - 1] \to [n]$.

Lemma (quotienting out inessential M-maps)

By axiom (3), there is a *locally pointed* category $\Xi_C = M / M_{iness}$.

Remark (description of $\Xi_\Delta = M / M_{iness}$)

$$
\begin{array}{cccccc}
0 & \to & 0 & \to & 0 & \to \\
[0] & \leftrightarrow & [1] & \leftrightarrow & [2] & \leftrightarrow \\
& & & \sim & \Xi^{-\infty} \Delta \to \text{Ab}_\star = \text{Ch}(\mathbb{Z})
\end{array}
$$
Remark (DK-category structure for Δ)

Each epi $e : [m] \to [n]$ has a maximal section $e^* : [n] \to [m]$.
The primitive E-projectors of $[n]$ are the $\eta^*_i \eta_i = \epsilon_i \eta_i$, $0 \leq i < n$.

Remark (essential M-maps of Δ)

are precisely the “last” face operators $\epsilon^n : [n - 1] \hookrightarrow [n]$.

Lemma (quotienting out inessential M-maps)

By axiom (3), there is a locally pointed category $\Xi_C = M/M_{iness}$.

Remark (description of $\Xi_\Delta = M/M_{iness}$)

$\begin{array}{cccccccccc}
0 & \longrightarrow & 0 & \longrightarrow & 0 \\
\end{array}$
Remark (DK-category structure for Δ)

Each epi $e : [m] \rightarrow [n]$ has a maximal section $e^* : [n] \rightarrow [m]$. The primitive E-projectors of $[n]$ are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \leq i < n$.

Remark (essential M-maps of Δ)

are precisely the “last” face operators $\epsilon_n^n : [n - 1] \rightarrow [n]$.

Lemma (quotienting out inessential M-maps)

By axiom (3), there is a locally pointed category $\Xi_C = M/M_{iness}$.

Remark (description of $\Xi_\Delta = M/M_{iness}$)

\[0 \rightarrow [1] \rightarrow [2] \rightarrow [3] \rightarrow [4] \cdots \sim [\Xi_\Delta^{op}, \text{Ab}]_* = \text{Ch}(\mathbb{Z}) \]
Remark (DK-category structure for Δ)

Each epi $e : [m] \to [n]$ has a maximal section $e^* : [n] \to [m]$. The primitive E-projectors of $[n]$ are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \leq i < n$.

Remark (essential \mathcal{M}-maps of Δ)

are precisely the “last” face operators $\epsilon_n^* : [n - 1] \to [n]$.

Lemma (quotienting out inessential \mathcal{M}-maps)

By axiom (3), there is a locally pointed category $\Xi_C = \mathcal{M}/\mathcal{M}_{inest}$.

Remark (description of $\Xi_\Delta = \mathcal{M}/\mathcal{M}_{inest}$)

$[0] \xrightarrow{0} [1] \xrightarrow{0} [2] \xrightarrow{0} [3] \xrightarrow{0} [4] \cdots \sim [\Xi_\Delta^{\text{op}}, \text{Ab}]_* = \text{Ch}(\mathbb{Z})$
Remark (DK-category structure for \(\Delta \))

Each epi \(e : [m] \rightarrow [n] \) has a maximal section \(e^* : [n] \rightarrow [m] \).
The primitive \(\mathcal{E} \)-projectors of \([n]\) are the \(\eta_i^* \eta_i = \epsilon_i \eta_i, \ 0 \leq i < n \).

Remark (essential \(\mathcal{M} \)-maps of \(\Delta \))

are precisely the “last” face operators \(\epsilon_n : [n - 1] \hookrightarrow [n] \).

Lemma (quotienting out inessential \(\mathcal{M} \)-maps)

By axiom (3), there is a locally pointed category \(\Xi_c = \mathcal{M}/\mathcal{M}_{iness} \).

Remark (description of \(\Xi_\Delta = \mathcal{M}/\mathcal{M}_{iness} \))

\[
\begin{array}{ccccccc}
\end{array}
\]
Remark (DK-category structure for Δ)

Each epi $e : [m] \rightarrow [n]$ has a maximal section $e^* : [n] \rightarrow [m]$. The primitive E-projectors of $[n]$ are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \leq i < n$.

Remark (essential M-maps of Δ)

are precisely the “last” face operators $\epsilon_n^n : [n - 1] \hookrightarrow [n]$.

Lemma (quotienting out inessential M-maps)

By axiom (3), there is a locally pointed category $\Xi_C = M/M_{iness}$.

Remark (description of $\Xi_\Delta = M/M_{iness}$)

$$0 \rightarrow [1] \rightarrow [2] \rightarrow [3] \rightarrow [4] \cdots \sim [\Xi_{\Delta}^{\text{op}}, \text{Ab}]_* = \text{Ch}(\mathbb{Z})$$
Remark (DK-category structure for Δ)

Each epi $e : [m] \to [n]$ has a maximal section $e^* : [n] \to [m]$. The primitive E-projectors of $[n]$ are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \leq i < n$.

Remark (essential M-maps of Δ)

are precisely the “last” face operators $\epsilon_n^* : [n - 1] \to [n]$.

Lemma (quotienting out inessential M-maps)

By axiom (3), there is a locally pointed category $\Xi_C = M / M_{iness}$.

Remark (description of $\Xi_{\Delta} = M / M_{iness}$)

$$
\begin{array}{c}
0 \\
\longrightarrow [1] \\
\longrightarrow [2] \\
\longrightarrow [3] \\
\longrightarrow [4] \cdots \\
\sim \Xi_{\Delta}^{op}, \text{Ab}_* = \text{Ch}(\mathbb{Z})
\end{array}
$$
Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (\cdot)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$M_\mathcal{C} : [\mathcal{C}^{\text{op}}, \mathcal{A}] \simeq [\Xi^{\text{op}}_\mathcal{C}, \mathcal{A}]_* : K_\mathcal{C}$$

Remark (constructing $M_\mathcal{C}$ and $K_\mathcal{C}$ for general DK-categories \mathcal{C})

Denote $j : \mathcal{M} \hookrightarrow \mathcal{C}$ and $q : \mathcal{M} \twoheadrightarrow \Xi_\mathcal{C} = \mathcal{M}/\mathcal{M}_{\text{iness}}$. Then

$$M_\mathcal{C} : [\mathcal{C}^{\text{op}}, \mathcal{A}] \overset{j^*}{\cong} [\mathcal{M}^{\text{op}}, \mathcal{A}] \overset{q_*}{\cong} [\Xi^{\text{op}}_\mathcal{C}, \mathcal{A}]_* : K_\mathcal{C}$$

Examples

- Γ (Pirashvili 2000) and $\text{Fl}_{\mathbb{A}}$ (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$M_C : [C^{\text{op}}, \mathcal{A}] \simeq [\Xi_C^{\text{op}}, \mathcal{A}]_* : K_C$$

Remark (constructing M_C and K_C for general DK-categories \mathcal{C})

Denote $j : \mathcal{M} \hookrightarrow \mathcal{C}$ and $q : \mathcal{M} \twoheadrightarrow \Xi_C = \mathcal{M}/\mathcal{M}_{\text{iness}}$. Then

$$M_C : [C^{\text{op}}, \mathcal{A}] \xrightarrow{j_*} [\mathcal{M}^{\text{op}}, \mathcal{A}] \xrightarrow{j^*} [\Xi_C^{\text{op}}, \mathcal{A}]_* : K_C$$

Examples

- Γ (Pirashvili 2000) and Fl^\sharp (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category \(\mathcal{C} = (E, M, (-)^*) \) and each abelian category \(\mathcal{A} \) there is an adjoint equivalence

\[
M_{\mathcal{C}} : [C^{\text{op}}, \mathcal{A}] \cong [\Xi_{\mathcal{C}}^{\text{op}}, \mathcal{A}]_* : K_{\mathcal{C}}
\]

Remark (constructing \(M_{\mathcal{C}} \) and \(K_{\mathcal{C}} \) for general DK-categories \(\mathcal{C} \))

Denote \(j : M \hookrightarrow \mathcal{C} \) and \(q : M \twoheadrightarrow \Xi_{\mathcal{C}} = M/M_{\text{iness}} \). Then

\[
M_{\mathcal{C}} : [C^{\text{op}}, \mathcal{A}] \xrightarrow{j^*} [M^{\text{op}}, \mathcal{A}] \xrightarrow{q_*} [\Xi_{\mathcal{C}}^{\text{op}}, \mathcal{A}]_* : K_{\mathcal{C}}
\]

Examples

- \(\Gamma \) (Pirashvili 2000) and \(\text{FI} \# \) (Church-Ellenberg-Farb 2015)
- \(\Omega_{\text{planar}} \) (Gutierrez-Lukacs-Weiss 2011)
Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (\cdot)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$M_C : [C^{op}, \mathcal{A}] \rightleftharpoons [\Xi_{C}^{op}, \mathcal{A}]_{*} : K_C$$

Remark (constructing M_C and K_C for general DK-categories \mathcal{C})

Denote $j : \mathcal{M} \hookrightarrow \mathcal{C}$ and $q : \mathcal{M} \twoheadrightarrow \Xi_{C} = \mathcal{M}/\mathcal{M}_{iness}$. Then

$$M_C : [C^{op}, \mathcal{A}] \rightleftharpoons [\mathcal{M}^{op}, \mathcal{A}] \rightleftharpoons [\Xi_{C}^{op}, \mathcal{A}]_{*} : K_C$$

Examples

- Γ (Pirashvili 2000) and Fl (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\mathcal{M}_\mathcal{C} : [C^{\text{op}}, \mathcal{A}] \rightleftarrows [\Xi_{\mathcal{C}}^{\text{op}}, \mathcal{A}]_* : \mathcal{K}_\mathcal{C}$$

Remark (constructing $\mathcal{M}_\mathcal{C}$ and $\mathcal{K}_\mathcal{C}$ for general DK-categories \mathcal{C})

Denote $j : \mathcal{M} \hookrightarrow \mathcal{C}$ and $q : \mathcal{M} \twoheadrightarrow \Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{\text{iness}}$. Then

$$\mathcal{M}_\mathcal{C} : [C^{\text{op}}, \mathcal{A}] \xleftarrow{j^*} [\mathcal{M}^{\text{op}}, \mathcal{A}] \xrightarrow{j!} [\Xi_{\mathcal{C}}^{\text{op}}, \mathcal{A}]_* : \mathcal{K}_\mathcal{C}$$

Examples

- Γ (Pirashvili 2000) and $\text{Fl}^!$ (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$M_C : [C^{op}, \mathcal{A}] \rightleftharpoons [\Xi_C^{op}, \mathcal{A}]_* : K_C$$

Remark (constructing M_C and K_C for general DK-categories \mathcal{C})

Denote $j : \mathcal{M} \hookrightarrow \mathcal{C}$ and $q : \mathcal{M} \twoheadrightarrow \Xi_C = \mathcal{M}/\mathcal{M}_{iness}$. Then

$$M_C : [C^{op}, \mathcal{A}] \rightleftharpoons [\mathcal{M}^{op}, \mathcal{A}] \rightleftharpoons [\Xi_C^{op}, \mathcal{A}]_* : K_C$$

Examples

- Γ (Pirashvili 2000) and FI^\natural (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C} = (E, \mathcal{M}, (-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$M_\mathcal{C} : [\mathcal{C}^{\text{op}}, \mathcal{A}] \overset{\sim}{\leftrightarrow} [\Xi^{\text{op}}_\mathcal{C}, \mathcal{A}]_* : K_\mathcal{C}$$

Remark (constructing $M_\mathcal{C}$ and $K_\mathcal{C}$ for general DK-categories \mathcal{C})

Denote $j : \mathcal{M} \hookrightarrow \mathcal{C}$ and $q : \mathcal{M} \to \Xi_\mathcal{C} = \mathcal{M}/\mathcal{M}_{\text{iness}}$. Then

$$M_\mathcal{C} : [\mathcal{C}^{\text{op}}, \mathcal{A}] \overset{j^*}{\leftrightarrow} [\mathcal{M}^{\text{op}}, \mathcal{A}] \overset{j!}{\leftrightarrow} [\Xi^{\text{op}}_\mathcal{C}, \mathcal{A}]_* : K_\mathcal{C}$$

Examples

- Γ (Pirashvili 2000) and $\text{FI}^\#$ (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $C = (\mathcal{E}, \mathcal{M}, (-)^\ast)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$M_C : [C^{\text{op}}, \mathcal{A}] \simeq [\Xi_C^{\text{op}}, \mathcal{A}]_* : K_C$$

Remark (constructing M_C and K_C for general DK-categories C)

Denote $j : \mathcal{M} \hookrightarrow C$ and $q : \mathcal{M} \twoheadrightarrow \Xi_C = \mathcal{M}/\mathcal{M}_{\text{iness}}$. Then

$$M_C : [C^{\text{op}}, \mathcal{A}] \xrightarrow{j^*} [\mathcal{M}^{\text{op}}, \mathcal{A}] \xleftarrow{j!} [\Xi_C^{\text{op}}, \mathcal{A}]_* : K_C$$

Examples

- Γ (Pirashvili 2000) and FI^\sharp (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (\cdot)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\mathcal{M}_C : [\mathcal{C}^{\text{op}}, \mathcal{A}] \simeq [\Xi_C^{\text{op}}, \mathcal{A}]_* : \mathcal{K}_C$$

Remark (constructing \mathcal{M}_C and \mathcal{K}_C for general DK-categories \mathcal{C})

Denote $j : \mathcal{M} \hookrightarrow \mathcal{C}$ and $q : \mathcal{M} \twoheadrightarrow \Xi_C = \mathcal{M}/\mathcal{M}_{\text{iness}}$. Then

$$\mathcal{M}_C : [\mathcal{C}^{\text{op}}, \mathcal{A}] \xleftrightarrow{j^*} [\mathcal{M}^{\text{op}}, \mathcal{A}] \xleftrightarrow{j!} [\Xi_C^{\text{op}}, \mathcal{A}]_* : \mathcal{K}_C$$

Examples

- Γ (Pirashvili 2000) and $\text{FI}^{\mathbb{N}}$ (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
Definition (wreath product over Δ)

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by

- $\text{Ob}(\Delta \wr \mathcal{A}) = \bigsqcup_{n \geq 0} \mathcal{A}^n = \{(\begin{bmatrix} m \end{bmatrix}; A_1, \ldots, A_m)\}$
- $(\phi; \phi_{ij}): (\begin{bmatrix} m \end{bmatrix}, A_1, \ldots, A_m) \to (\begin{bmatrix} n \end{bmatrix}, B_1, \ldots, B_n)$ is given by $\phi: \begin{bmatrix} m \end{bmatrix} \to \begin{bmatrix} n \end{bmatrix}$ and $\phi_{ij}: A_i \to B_j$ whenever $\phi(i - 1) < j \leq \phi(i)$

Definition (B 2007, cf. Joyal 1997)

Put $\Theta_1 = \Delta$ and $\Theta_n = \Delta \wr \Theta_{n-1}$ for $n > 1$.

Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_n fully embeds in \mathcal{nCat}, inducing a fully faithful nerve functor

$$\mathcal{nCat} \hookrightarrow \text{Sets}^{\Theta_n^{\text{op}}}$$
Definition (wreath product over Δ)

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by

- $\text{Ob}(\Delta \wr \mathcal{A}) = \coprod_{n \geq 0} \mathcal{A}^n = \{([m]; A_1, \ldots, A_m)\}$
- $(\phi; \phi_{ij}) : ([m], A_1, \ldots, A_m) \to ([n], B_1, \ldots, B_n)$ is given by $\phi : [m] \to [n]$ and $\phi_{ij} : A_i \to B_j$ whenever $\phi(i-1) < j \leq \phi(i)$

Put $\Theta_1 = \Delta$ and $\Theta_n = \Delta \wr \Theta_{n-1}$ for $n > 1$.

Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_n fully embeds in $n\text{Cat}$, inducing a fully faithful nerve functor

$$n\text{Cat} \hookrightarrow \text{Sets}^{\Theta_n^{\text{op}}}$$
Definition (wreath product over \(\Delta \))

For any small category \(\mathcal{A} \) the category \(\Delta \wr \mathcal{A} \) is defined by

- \(\text{Ob}(\Delta \wr \mathcal{A}) = \bigsqcup_{n \geq 0} \mathcal{A}^n = \{([m]; A_1, \ldots, A_m)\} \)
- \((\phi; \phi_{ij}) : ([m], A_1, \ldots, A_m) \rightarrow ([n], B_1, \ldots, B_n)) \) is given by \(\phi : [m] \rightarrow [n] \) and \(\phi_{ij} : A_i \rightarrow B_j \) whenever \(\phi(i-1) < j \leq \phi(i) \)

Definition (B 2007, cf. Joyal 1997)

Put \(\Theta_1 = \Delta \) and \(\Theta_n = \Delta \wr \Theta_{n-1} \) for \(n > 1 \).

Theorem (Makkai-Zawadowski 2003, B 2003)

\(\Theta_n \) fully embeds in \(n\text{Cat} \), inducing a fully faithful nerve functor

\[n\text{Cat} \hookrightarrow \text{Sets}^{\Theta_n^\text{op}} \]
Definition (wreath product over Δ)

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by:

1. $\text{Ob}(\Delta \wr \mathcal{A}) = \bigsqcup_{n \geq 0} \mathcal{A}^n = \{(m; A_1, \ldots, A_m)\}$
2. $(\phi; \phi_{ij}) : ([m], A_1, \ldots, A_m) \to ([n], B_1, \ldots, B_n))$ is given by $\phi : [m] \to [n]$ and $\phi_{ij} : A_i \to B_j$ whenever $\phi(i - 1) < j \leq \phi(i)$

Put $\Theta_1 = \Delta$ and $\Theta_n = \Delta \wr \Theta_{n-1}$ for $n > 1$.

Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_n fully embeds in \mathbf{nCat}, inducing a fully faithful nerve functor

$$\mathbf{nCat} \hookrightarrow \text{Sets}^{\Theta_n^{\text{op}}}$$
Definition (wreath product over Δ)

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by

- $\text{Ob}(\Delta \wr \mathcal{A}) = \coprod_{n \geq 0} \mathcal{A}^n = \{([m]; A_1, \ldots, A_m)\}$
- $(\phi; \phi_{ij}) : ([m], A_1, \ldots, A_m) \rightarrow ([n], B_1, \ldots, B_n))$ is given by $\phi : [m] \rightarrow [n]$ and $\phi_{ij} : A_i \rightarrow B_j$ whenever $\phi(i - 1) < j \leq \phi(i)$

Put $\Theta_1 = \Delta$ and $\Theta_n = \Delta \wr \Theta_{n-1}$ for $n > 1$.

Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_n fully embeds in \mathbf{nCat}, inducing a fully faithful nerve functor $\mathbf{nCat} \rightarrow \text{Sets}^{\Theta_n^{\text{op}}}$
Definition (wreath product over Δ)

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by

- $\text{Ob}(\Delta \wr \mathcal{A}) = \bigsqcup_{n \geq 0} \mathcal{A}^n = \{([m]; A_1, \ldots, A_m)\}$
- $(\phi; \phi_{ij}) : ([m], A_1, \ldots, A_m) \to ([n], B_1, \ldots, B_n))$ is given by
 $\phi : [m] \to [n]$ and $\phi_{ij} : A_i \to B_j$ whenever $\phi(i - 1) < j \leq \phi(i)$

Put $\Theta_1 = \Delta$ and $\Theta_n = \Delta \wr \Theta_{n-1}$ for $n > 1$.

Theorem (Makkai-Zawadowski 2003, B 2003)

Θ_n fully embeds in \mathcal{nCat}, inducing a fully faithful nerve functor

$$\mathcal{nCat} \hookrightarrow \text{Sets}^{\Theta_n^{\text{op}}}$$
Remark (2-categorical structure of $[2]([2],[0])$ in Θ_2)

![Diagram of 2-categorical structure](image)

Proposition (full embedding $\Theta_n \hookrightarrow n\text{Cat}$)

$\Theta_n(S, T) = n\text{Cat}(F_n(S_*), F_n(T_*))$

where $F_n : n\text{Grph} \rightarrow n\text{Cat}$ is left adjoint to the forgetful functor.
Remark (2-categorical structure of $[2]([2], [0])$ in Θ_2)

$\tau_8 \rightarrow \tau_4 \rightarrow \tau_1 \downarrow \tau_6 \rightarrow \tau_2 \downarrow \tau_3 \rightarrow \tau_7 \rightarrow \tau_9 \rightarrow \tau_5 \rightarrow \tau_2 \downarrow \tau_8 \rightarrow \tau_3 \rightarrow \tau_1 \rightarrow \tau_7 \rightarrow \tau_3$

Proposition (full embedding $\Theta_n \hookrightarrow \mathcal{nCat}$)

$\Theta_n(S, T) = \mathcal{nCat}(\mathcal{F}_n(S_*), \mathcal{F}_n(T_*))$

where $\mathcal{F}_n : \mathcal{nGrph} \rightarrow \mathcal{nCat}$ is left adjoint to the forgeful functor.
Remark (2-categorical structure of $[2]([2],[0])$ in Θ_2)

Proposition (full embedding $\Theta_n \hookrightarrow n\text{Cat}$)

$$\Theta_n(S, T) = n\text{Cat}(\mathcal{F}_n(S_*), \mathcal{F}_n(T_*))$$

where $\mathcal{F}_n : n\text{Grph} \rightarrow n\text{Cat}$ is left adjoint to the forgetful functor.
Definition (geometric DK-categories)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (\cdot)^*)$ is called *geometric* if

1. the \mathcal{E}-quotients of any object form a *lattice*
2. the \mathcal{M}-face poset of any object is a *cone over a sphere*
3. \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X : \mathcal{C}^{\text{op}} \to \text{Sets}$ on a geometric DK-category has *CW*-realisation $|X|$ whose chain complex $C^\text{cell}_*(|X|)$ is isomorphic to the “totalisation” of the Moore normalisation $M_C(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is $\Delta \wr \mathcal{A}$.

For instance, Joyal’s cell category Θ_n is a geometric DK-category.
Definition (geometric DK-categories)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called geometric if

1. the \mathcal{E}-quotients of any object form a lattice
2. the \mathcal{M}-face poset of any object is a cone over a sphere
3. \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X : \mathcal{C}^{\text{op}} \to \text{Sets}$ on a geometric DK-category has CW-realisation $|X|$ whose chain complex $C_{\text{cell}}^*(|X|)$ is isomorphic to the “totalisation” of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is $\Delta \wr \mathcal{A}$.
For instance, Joyal’s cell category Θ_n is a geometric DK-category.
Definition (geometric DK-categories)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called geometric if

1. the \mathcal{E}-quotients of any object form a lattice
2. the \mathcal{M}-face poset of any object is a cone over a sphere
3. \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X : \mathcal{C}^{\text{op}} \to \text{Sets}$ on a geometric DK-category has CW-realisation $|X|$ whose chain complex $C^\text{cell}_*(|X|)$ is isomorphic to the “totalisation” of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is $\Delta \wr \mathcal{A}$. For instance, Joyal’s cell category Θ_n is a geometric DK-category.
Definition (geometric DK-categories)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called \textit{geometric} if

1. the \mathcal{E}-quotients of any object form a \textit{lattice}
2. the \mathcal{M}-face poset of any object is a \textit{cone over a sphere}
3. \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X : \mathcal{C}^{\text{op}} \to \text{Sets}$ on a geometric DK-category has CW-realisation $|X|$ whose chain complex $C_{\text{cell}}^*(|X|)$ is isomorphic to the “totalisation” of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is $\Delta \wr \mathcal{A}$. For instance, Joyal’s cell category Θ_n is a geometric DK-category.
Definition (geometric DK-categories)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called geometric if

1. the \mathcal{E}-quotients of any object form a lattice
2. the \mathcal{M}-face poset of any object is a cone over a sphere
3. \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X : \mathcal{C}^{\text{op}} \to \text{Sets}$ on a geometric DK-category has CW-realisation $|X|$ whose chain complex $C^\text{cell}_*(|X|)$ is isomorphic to the “totalisation” of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is $\Delta \wr \mathcal{A}$. For instance, Joyal’s cell category Θ_n is a geometric DK-category.
Definition (geometric DK-categories)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called geometric if

1. the \mathcal{E}-quotients of any object form a lattice
2. the \mathcal{M}-face poset of any object is a cone over a sphere
3. \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X : C^{\text{op}} \to \text{Sets}$ on a geometric DK-category has CW-realisation $|X|$ whose chain complex $C^\text{cell}_* (|X|)$ is isomorphic to the “totalisation” of the Moore normalisation $M_C(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is $\Delta \wr \mathcal{A}$. For instance, Joyal’s cell category Θ_n is a geometric DK-category.
Dold-Kan categories & Catalan monoids
Joyal’s categories Θ_n

Definition (geometric DK-categories)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (−)^*)$ is called **geometric** if

1. the \mathcal{E}-quotients of any object form a **lattice**
2. the \mathcal{M}-face poset of any object is a **cone over a sphere**
3. \mathcal{C} has a terminal object without proper \mathcal{M}-faces

Proposition (CW-realisation)

Any presheaf $X : \mathcal{C}^{\text{op}} \rightarrow \text{Sets}$ on a geometric DK-category has **CW-realisation** $|X|$ whose chain complex $C_{\text{cell}}^*(|X|)$ is isomorphic to the “totalisation” of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

If \mathcal{A} is a geometric DK-category then so is $\Delta \wr \mathcal{A}$. For instance, Joyal’s cell category Θ_n is a geometric DK-category.
Theorem (Dold-Kan correspondence for Θ_n)

$$M_{\Theta_n} : A^{\Theta_n^{op}} \simeq [\Xi_{\Theta_n}^{op}, A]_* : K_{\Theta_n}$$

Remark (Θ_n-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^n A$ with one k-cell for $0 \leq k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type $K(A, n)$;
- $C^\text{cell}_*(|B^n A|_{\Theta_n})$ is the “totalisation” of $M_{\Theta_n} (\mathbb{Z}[B^n A])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n) = \text{generalised Fibonacci number}$)

<table>
<thead>
<tr>
<th># cells in dim</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 3)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>24</td>
<td>44</td>
</tr>
</tbody>
</table>
Dold-Kan categories & Catalan monoids
Joyal’s categories Θ_n

Theorem (Dold-Kan correspondence for Θ_n)

$$M_{\Theta_n} : A^{\Theta_n^{\text{op}}} \simeq [\Xi_{\Theta_n}^{\text{op}}, A]_* : K_{\Theta_n}$$

Remark (Θ_n-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^n A$
 with one k-cell for $0 \leq k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type $K(A, n)$;
- $C_{cell}^*(|B^n A|_{\Theta_n})$ is the “totalisation” of $M_{\Theta_n}(\mathbb{Z}[B^n A])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n)$ = generalised Fibonacci number)

<table>
<thead>
<tr>
<th># cells in dim</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 3)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>24</td>
<td>44</td>
</tr>
</tbody>
</table>
Theorem (Dold-Kan correspondence for Θ_n)

$$\mathcal{M}_{\Theta_n} : \mathcal{A}^{\Theta_n^{\text{op}}} \simeq [\Xi_{\Theta_n}^{\text{op}}, \mathcal{A}]_* : K_{\Theta_n}$$

Remark (Θ_n-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^n A$ with one k-cell for $0 \leq k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type $K(A, n)$;
- $C_{\text{cell}}^* (|B^n A|_{\Theta_n})$ is the “totalisation” of $\mathcal{M}_{\Theta_n}(\mathbb{Z}[B^n A])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n) =$ generalised Fibonacci number)

<table>
<thead>
<tr>
<th># cells in dim</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 3)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>24</td>
<td>44</td>
</tr>
</tbody>
</table>
Theorem (Dold-Kan correspondence for \(\Theta_n \))

\[
M_{\Theta_n} : \mathcal{A}^{\Theta_n^{\text{op}}} \cong [\Xi_{\Theta_n^{\text{op}}}, \mathcal{A}]_* : K_{\Theta_n}
\]

Remark (\(\Theta_n \)-set model for Eilenberg-MacLane spaces)

- For each abelian group \(A \) there is a strict \(n \)-category \(B^nA \)
 with one \(k \)-cell for \(0 \leq k < n \) and \(A \) as endo-\(n \)-object;
- \(|B^nA|_{\Theta_n} \) is a CW-complex of type \(K(A, n) \);
- \(C^{\text{cell}}_*(|B^nA|_{\Theta_n}) \) is the “totalisation” of \(M_{\Theta_n}(\mathbb{Z}[B^nA]) \).

Example (# cells of \(K(\mathbb{Z}/2\mathbb{Z}, n) \) = generalised Fibonacci number)

<table>
<thead>
<tr>
<th># cells in dim</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K(\mathbb{Z}/2\mathbb{Z}, 1))</td>
<td>1</td>
</tr>
<tr>
<td>(K(\mathbb{Z}/2\mathbb{Z}, 2))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>(K(\mathbb{Z}/2\mathbb{Z}, 3))</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>24</td>
<td>44</td>
</tr>
</tbody>
</table>
Theorem (Dold-Kan correspondence for Θ_n)

$$M_{\Theta_n} : \mathcal{A}^{\Theta_n^{op}} \simeq [\Xi_{\Theta_n}^{op}, \mathcal{A}]_* : K_{\Theta_n}$$

Remark (Θ_n-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category B^nA with one k-cell for $0 \leq k < n$ and A as endo-n-object;
- $|B^nA|_{\Theta_n}$ is a CW-complex of type $K(A, n)$;
- $C_{*}^{cell}(|B^nA|_{\Theta_n})$ is the “totalisation” of $M_{\Theta_n}(\mathbb{Z}[B^nA])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n) =$ generalised Fibonacci number)

<table>
<thead>
<tr>
<th># cells in dim</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 3)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>24</td>
<td>44</td>
</tr>
</tbody>
</table>
Theorem (Dold-Kan correspondence for Θ_n)

$M_{\Theta_n} : A^{\Theta_n \text{op}} \simeq [\Xi_{\Theta_n}^{\text{op}}, A]_* : K_{\Theta_n}$

Remark (Θ_n-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^n A$ with one k-cell for $0 \leq k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type $K(A, n)$;
- $C_*^{\text{cell}}(|B^n A|_{\Theta_n})$ is the “totalisation” of $M_{\Theta_n}(\mathbb{Z}[B^n A])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n) =$ generalised Fibonacci number)

<table>
<thead>
<tr>
<th># cells in dim</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 3)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>24</td>
<td>44</td>
</tr>
</tbody>
</table>
Dold-Kan categories & Catalan monoids
Joyal’s categories Θ_n

Theorem (Dold-Kan correspondence for Θ_n)

$$M_{\Theta_n} : \mathcal{A}^{\Theta_n^{op}} \simeq [\Xi_{\Theta_n}^{op}, \mathcal{A}]_* : K_{\Theta_n}$$

Remark (Θ_n-set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^n A$ with one k-cell for $0 \leq k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type $K(A, n)$;
- $C_{cell}^* (|B^n A|_{\Theta_n})$ is the “totalisation” of $M_{\Theta_n} (\mathbb{Z}[B^n A])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n)$ = generalised Fibonacci number)

<table>
<thead>
<tr>
<th># cells in dim</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 1)$</td>
<td>1</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>$K(\mathbb{Z}/2\mathbb{Z}, 3)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>24</td>
<td>44</td>
</tr>
</tbody>
</table>
Example (action of Ξ_{Θ_2} on $C^\text{cell}_*(K(\mathbb{Z}/2, 2))$ for $2 \leq * \leq 6$)

\[
\begin{align*}
(1; 5) & \leftarrow (1; 4) \leftarrow (2; 3, 1) \\
(1; 1) & \leftarrow (1; 2) \leftarrow (1; 3) \leftarrow (2; 2, 1) \leftarrow (2; 2, 2) \\
(2; 1, 1) & \leftarrow (2; 1, 2) \leftarrow (2; 1, 3) \leftarrow (3; 1, 1, 1)
\end{align*}
\]

Theorem (Serre 1953)

\[H^*(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[Sq^J(\iota_2), \ J \text{ admissible, } e(J) < n]\]

Each $Sq^J(\iota_2)$ is represented by an admissible cocycle of ht n.
Example (action of Ξ_{Θ_2} on $C^\text{cell}_{*}(K(\mathbb{Z}/2, 2))$ for $2 \leq * \leq 6$)

(1; 5)

(1; 4) ← (2; 3, 1)

(1; 1) ← (1; 2) ← (1; 3) ← (2; 2, 1) ← (2; 2, 2)

(2; 1, 1) ← (2; 1, 2) ← (2; 1, 3)

(3; 1, 1, 1)

Theorem (Serre 1953)

$H^*(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[Sq^J(\nu_2), J \text{ admissible, } e(J) < n]$

Each $Sq^J(\nu_2)$ is represented by an admissible cocycle of ht n.
Example (action of $\Xi \Theta_2$ on $C^\text{cell}_\ast(K(\mathbb{Z}/2, 2))$ for $2 \leq \ast \leq 6$)

\[
\begin{align*}
(1; 5) & \searrow \quad (1; 4) \quad (2; 3, 1) \\
(1; 1) \quad (1; 2) \quad (1; 3) & \quad (2; 2, 1) \quad (2; 2, 2) \\
(2; 1, 1) \quad (2; 1, 2) & \quad (2; 1, 3) \\
& \quad (3; 1, 1, 1)
\end{align*}
\]

Theorem (Serre 1953)

\[H^\ast(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[Sq^J(\nu_2), \text{J admissible, } e(J) < n]\]

Each $Sq^J(\nu_2)$ is represented by an admissible cocycle of ht n.
Proposition

Let \((x_i)_{1 \leq i \leq n}\) be a family of projectors of an \(R\)-module \(X\) such that \(x_i x_j x_i = x_i x_j = x_j x_i x_j\) for \(i < j\). Then we get a direct sum decomposition \(X = N_X \oplus D_X := \bigcap_{1 \leq i \leq n} \ker(x_i) \oplus \sum_{1 \leq i \leq n} \text{im}(x_i)\).

Corollary

Let \(X : \mathcal{C}^{\text{op}} \to \mathcal{A}\) be a presheaf on a Dold-Kan category \(\mathcal{C}\) with \(\mathcal{A}\) abelian. Then, for each object \(A\) of \(\mathcal{C}\), we get

\[
X(A) = N_{X(A)} \oplus D_{X(A)} = \bigcap_{\phi \in \text{Prim}_\varepsilon(A)} \ker(X(\phi)) \oplus \sum_{\phi \in \text{Prim}_\varepsilon(A)} \text{im}(X(\phi))
\]

Proof.

If \(\phi, \psi, \psi \phi \in \text{Proj}_\varepsilon(A)\) then \(\psi \phi \psi = \psi \phi = \phi \psi \phi\).
Proposition

Let \((x_i)_{1 \leq i \leq n}\) be a family of projectors of an \(R\)-module \(X\) such that \(x_ix_jx_i = x_ix_j = x_jx_ix_j\) for \(i < j\). Then we get a direct sum decomposition \(X = N_X \oplus D_X := \bigcap_{1 \leq i \leq n} \ker(x_i) \oplus \sum_{1 \leq i \leq n} \text{im}(x_i)\).

Corollary

Let \(X : C^{\text{op}} \to A\) be a presheaf on a Dold-Kan category \(C\) with \(A\) abelian. Then, for each object \(A\) of \(C\), we get

\[
X(A) = N_{X(A)} \oplus D_{X(A)} = \bigcap_{\phi \in \text{Prim}_E(A)} \ker(X(\phi)) \oplus \sum_{\phi \in \text{Prim}_E(A)} \text{im}(X(\phi))
\]

Proof.

If \(\phi, \psi, \psi \phi \in \text{Proj}_E(A)\) then \(\psi \phi \psi = \psi \phi = \phi \psi \phi\). \(\square\)
Proposition

Let \((x_i)_{1 \leq i \leq n}\) be a family of projectors of an \(R\)-module \(X\) such that \(x_i x_j x_i = x_i x_j = x_j x_i x_j\) for \(i < j\). Then we get a direct sum decomposition \(X = N_X \oplus D_X := \bigcap_{1 \leq i \leq n} \ker(x_i) \oplus \sum_{1 \leq i \leq n} \text{im}(x_i)\).

Corollary

Let \(X : C^{\text{op}} \to A\) be a presheaf on a Dold-Kan category \(C\) with \(A\) abelian. Then, for each object \(A\) of \(C\), we get

\[
X(A) = N_{X(A)} \oplus D_{X(A)} = \bigcap_{\phi \in \text{Prim}_C(A)} \ker(X(\phi)) \oplus \sum_{\phi \in \text{Prim}_C(A)} \text{im}(X(\phi))
\]

Proof.

If \(\phi, \psi, \psi \phi \in \text{Proj}_C(A)\) then \(\psi \phi \psi = \psi \phi = \phi \psi \phi\).
Proposition

Let \((x_i)_{1 \leq i \leq n}\) be a family of projectors of an \(R\)-module \(X\) such that \(x_ix_jx_i = x_ix_j = x_jx_i\) for \(i < j\). Then we get a direct sum decomposition \(X = N_X \oplus D_X := \bigcap_{1 \leq i \leq n} \ker(x_i) \oplus \sum_{1 \leq i \leq n} \text{im}(x_i)\).

Corollary

Let \(X : C^{\text{op}} \to A\) be a presheaf on a Dold-Kan category \(C\) with \(A\) abelian. Then, for each object \(A\) of \(C\), we get

\[
X(A) = N_{X(A)} \oplus D_{X(A)} = \bigcap_{\phi \in \text{Prim}_E(A)} \ker(X(\phi)) \oplus \sum_{\phi \in \text{Prim}_E(A)} \text{im}(X(\phi))
\]

Proof.

If \(\phi, \psi, \psi\phi \in \text{Proj}_E(A)\) then \(\psi\phi\psi = \psi\phi = \phi\psi\phi\).
Definition

Let Γ by a finite quiver with $V(\Gamma) = \{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i < j$. The **Catalan monoid** C_Γ is generated by $x_i, i \in V(\Gamma)$, with relations:

- $x_i^2 = x_i$ for $i \in V(\Gamma)$;
- $x_ix_jx_i = x_jx_i = x_jx_ix_j$ if $(i, j) \in E(\Gamma)$;
- $x_ix_j = x_jx_i$ if $(i, j) \not\in E(\Gamma)$ and $(j, i) \not\in E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

Every Catalan monoid C_Γ is finite and has $2^{\#V(\Gamma)}$ idempotents. The unit of $\mathbb{Q}[C_\Gamma]$ is a sum of $2^{\#V(\Gamma)}$ pairwise orth. idempotents:

$$
1 = \sum_{\{i_1, \ldots, i_k\} \sqcup \{j_1, \ldots, j_{n-k}\} = n} x_{i_k} \cdots x_{i_2}x_{i_1}(1 - x_{j_1})(1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).
$$
Definition

Let Γ be a finite quiver with $V(\Gamma) = \{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i < j$. The Catalan monoid C_Γ is generated by x_i, $i \in V(\Gamma)$, with relations:

1. $x_i^2 = x_i$ for $i \in V(\Gamma)$;
2. $x_i x_j x_i = x_j x_i = x_j x_i x_j$ if $(i, j) \in E(\Gamma)$;
3. $x_i x_j = x_j x_i$ if $(i, j) \not\in E(\Gamma)$ and $(j, i) \not\in E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

Every Catalan monoid C_Γ is finite and has $2^{\#V(\Gamma)}$ idempotents. The unit of $\mathbb{Q}[C_\Gamma]$ is a sum of $2^{\#V(\Gamma)}$ pairwise orth. idempotents:

$$1 = \sum_{\{i_1, \ldots, i_k\} \cup \{j_1, \ldots, j_{n-k}\} = \{1, \ldots, n\}} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1})(1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).$$
Definition

Let Γ be a finite quiver with $V(\Gamma) = \{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i < j$. The **Catalan monoid** C_Γ is generated by x_i, $i \in V(\Gamma)$, with relations:

- $x_i^2 = x_i$ for $i \in V(\Gamma)$;
- $x_i x_j x_i = x_j x_i = x_j x_i x_j$ if $(i, j) \in E(\Gamma)$;
- $x_i x_j = x_j x_i$ if $(i, j) \not\in E(\Gamma)$ and $(j, i) \not\in E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

Every Catalan monoid C_Γ is finite and has $2^{\#V(\Gamma)}$ idempotents. The unit of $\mathbb{Q}[C_\Gamma]$ is a sum of $2^{\#V(\Gamma)}$ pairwise orth. idempotents:

$$1 = \sum_{\{i_1, \ldots, i_k\} \sqcup \{j_1, \ldots, j_{n-k}\} = n} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1}) (1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).$$
Definition

Let \(\Gamma \) be a finite quiver with \(V(\Gamma) = \{1, \ldots, n\} \) and edge set \(E(\Gamma) \subset V(\Gamma) \times V(\Gamma) \) such that if \((i, j) \in E(\Gamma)\) then \(i < j \). The **Catalan monoid** \(C_\Gamma \) is generated by \(x_i, i \in V(\Gamma) \), with relations:

- \(x_i^2 = x_i \) for \(i \in V(\Gamma) \);
- \(x_i x_j x_i = x_j x_i = x_j x_i x_j \) if \((i, j) \in E(\Gamma)\);
- \(x_i x_j = x_j x_i \) if \((i, j) \notin E(\Gamma)\) and \((j, i) \notin E(\Gamma)\).

Proposition (Kudryatseva-Mazorchuk 2009)

Every Catalan monoid \(C_\Gamma \) is finite and has \(2^{\#V(\Gamma)} \) idempotents. The unit of \(\mathbb{Q}[C_\Gamma] \) is a sum of \(2^{\#V(\Gamma)} \) pairwise orth. idempotents:

\[
1 = \sum_{\{i_1, \ldots, i_k\} \cup \{j_1, \ldots, j_{n-k}\} = n} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1})(1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).
\]
Definition

Let Γ be a finite quiver with $V(\Gamma) = \{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i < j$. The **Catalan monoid** C_Γ is generated by x_i, $i \in V(\Gamma)$, with relations:

- $x_i^2 = x_i$ for $i \in V(\Gamma)$;
- $x_i x_j x_i = x_j x_i = x_j x_i x_j$ if $(i, j) \in E(\Gamma)$;
- $x_i x_j = x_j x_i$ if $(i, j) \not\in E(\Gamma)$ and $(j, i) \not\in E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

Every Catalan monoid C_Γ is finite and has $2^{#V(\Gamma)}$ idempotents. The unit of $\mathbb{Q}[C_\Gamma]$ is a sum of $2^{#V(\Gamma)}$ pairwise orth. idempotents:

$$1 = \sum_{\{i_1, \ldots, i_k\} \sqcup \{j_1, \ldots, j_{n-k}\} = n} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1}) (1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).$$
Definition

Let Γ be a finite quiver with $V(\Gamma) = \{1, \ldots, n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i, j) \in E(\Gamma)$ then $i < j$. The Catalan monoid C_Γ is generated by x_i, $i \in V(\Gamma)$, with relations:

- $x_i^2 = x_i$ for $i \in V(\Gamma)$;
- $x_i x_j x_i = x_j x_i = x_j x_i x_j$ if $(i, j) \in E(\Gamma)$;
- $x_i x_j = x_j x_i$ if $(i, j) \notin E(\Gamma)$ and $(j, i) \notin E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

Every Catalan monoid C_Γ is finite and has $2^{\#V(\Gamma)}$ idempotents. The unit of $\mathbb{Q}[C_\Gamma]$ is a sum of $2^{\#V(\Gamma)}$ pairwise orth. idempotents:

$$1 = \sum_{\{i_1, \ldots, i_k\} \sqcup \{j_1, \ldots, j_{n-k}\} = n} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1})(1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).$$
Remark (Catalan monoid rings are semi-perfect)
The idempotents of C_Γ induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_\Gamma]$.

Example (Catalan monoids inside Δ)
- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i$ ($0 \leq i < n$) is the Catalan monoid C_{L_n} of the linear quiver because $x_i x_j = x_j x_i$ if $|i - j| \geq 2$.
- $C_{[n]}$ consists of those $\phi : [n] \to [n]$ sth. $\phi(i) \geq i$ for all i.
- $\# C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})
The cardinalities of C_{K_n} for the complete quivers K_n are not known.
Remark (Catalan monoid rings are semi-perfect)
The idempotents of C_Γ induce the simple modules while the
decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_\Gamma]$.

Example (Catalan monoids inside Δ)
- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive
 projectors $x_i = \epsilon_i \eta_i$ ($0 \leq i < n$) is the Catalan monoid C_{L_n}
of the linear quiver because $x_i x_j = x_j x_i$ if $|i - j| \geq 2$.
- $C_{[n]}$ consists of those $\phi : [n] \to [n]$ sth. $\phi(i) \geq i$ for all i.
- $\# C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})
The cardinalities of C_{K_n} for the complete quivers K_n are not known.
Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_Γ induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_\Gamma]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_n \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i$ ($0 \leq i < n$) is the Catalan monoid C_{L_n} of the *linear quiver* because $x_i x_j = x_j x_i$ if $|i - j| \geq 2$.
- C_n consists of those $\phi : [n] \to [n]$ sth. $\phi(i) \geq i$ for all i.
- $\#C_n = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})

The cardinalities of C_{K_n} for the complete quivers K_n are not known.
Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_Γ induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_\Gamma]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i$ ($0 \leq i < n$) is the Catalan monoid C_{L_n} of the *linear quiver* because $x_i x_j = x_j x_i$ if $|i - j| \geq 2$.
- $C_{[n]}$ consists of those $\phi : [n] \to [n]$ sth. $\phi(i) \geq i$ for all i.
- $\# C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})

The cardinalities of C_{K_n} for the complete quivers K_n are not known.
Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_{\Gamma}]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i$ ($0 \leq i < n$) is the Catalan monoid C_{L_n} of the linear quiver because $x_i x_j = x_j x_i$ if $|i - j| \geq 2$.
- $C_{[n]}$ consists of those $\phi : [n] \rightarrow [n]$ s.th. $\phi(i) \geq i$ for all i.
- $\# C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})

The cardinalities of C_{K_n} for the complete quivers K_n are not known.
Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_Γ induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_\Gamma]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i (0 \leq i < n)$ is the Catalan monoid C_{L_n} of the linear quiver because $x_i x_j = x_j x_i$ if $|i - j| \geq 2$.
- $C_{[n]}$ consists of those $\phi: [n] \rightarrow [n]$ sth. $\phi(i) \geq i$ for all i.
- $\#C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})

The cardinalities of C_{K_n} for the complete quivers K_n are not known.
Remark (Catalan monoid rings are semi-perfect)

The idempotents of C_Γ induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_\Gamma]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_n \subset \Delta([n],[n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i$ ($0 \leq i < n$) is the Catalan monoid C_{L_n} of the linear quiver because $x_i x_j = x_j x_i$ if $|i - j| \geq 2$.
- C_n consists of those $\phi : [n] \rightarrow [n]$ sth. $\phi(i) \geq i$ for all i.
- $\# C_n = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})

The cardinalities of C_{K_n} for the complete quivers K_n are not known.