Dold-Kan categories & Catalan monoids

Clemens Berger¹

Toulouse, 20-24 Juin, 2022

CATS60 - celebrating Carlos Simpson's 60th birthday

- Introduction
- 2 The simplex category Δ
- 3 Generalised Dold-Kan correspondence
- 4 Joyal's categories Θ_n
- Catalan monoids

$$M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)$ is a simplicial model for an Eilenberg-MacLane space of type K(A, n).

- categorical explanation for Dold-Kan correspondence
- chain models for K(A, n)'s via Joyal's cell categories Θ_n
- Catalan monoids

$$M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)$ is a simplicial model for an Eilenberg-MacLane space of type K(A, n).

- categorical explanation for Dold-Kan correspondence
- chain models for K(A, n)'s via Joyal's cell categories Θ_n
- Catalan monoids

$$M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)$ is a simplicial model for an Eilenberg-MacLane space of type K(A, n).

Purpose of the talk

categorical explanation for Dold-Kan correspondence
chain models for K(A, n)'s via Joyal's cell categories Θ_r
Catalan monoids

$$M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)$ is a simplicial model for an Eilenberg-MacLane space of type K(A, n).

- categorical explanation for Dold-Kan correspondence
- chain models for K(A, n)'s via Joyal's cell categories Θ_n
- Catalan monoids

$$M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)$ is a simplicial model for an Eilenberg-MacLane space of type K(A, n).

- categorical explanation for Dold-Kan correspondence
- chain models for K(A, n)'s via Joyal's cell categories Θ_n
- Catalan monoids

$$M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)$ is a simplicial model for an Eilenberg-MacLane space of type K(A, n).

- categorical explanation for Dold-Kan correspondence
- chain models for K(A, n)'s via Joyal's cell categories Θ_n
- Catalan monoids

$$M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K$$

Remark

The functor K takes homology to homotopy. The K-image of the chain complex $(A, n) = (0 \leftarrow \cdots \leftarrow 0 \leftarrow A \leftarrow 0 \leftarrow \cdots)$ is a simplicial model for an Eilenberg-MacLane space of type K(A, n).

- categorical explanation for Dold-Kan correspondence
- chain models for K(A, n)'s via Joyal's cell categories Θ_n
- Catalan monoids

$$\mathrm{Ob}\Delta = \{[n] = \{0, 1 \dots, n\}, n \ge 0\}, \ \mathrm{Mor}\Delta = \{\mathsf{monotone} \ \mathsf{maps}\}$$

Remark (\mathcal{E} - \mathcal{M} factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n: [n-1] \to [n], \ 0 \le i \le n$, and
- degeneracy operators $\eta_i^n:[n+1] o [n], \ 0 \le i \le n$

Every simplicial operator $\phi:[m] \to [n]$ factors as

$$\mathrm{Ob}\Delta = \{[n] = \{0, 1, \dots, n\}, n \ge 0\}, \, \mathrm{Mor}\Delta = \{\text{monotone maps}\}\$$

Remark (\mathcal{E} - \mathcal{M} factorisation system)

The category Δ is generated by elementary

• face operators $\epsilon_i^n:[n-1]\to [n],\, 0\le i\le n,\,$ and

• degeneracy operators $\eta_i^n: [n+1] \to [n], 0 \le i \le n$.

$$[m] \xrightarrow{\phi} [n]$$

$$pi$$

$$[p]$$

$$Ob\Delta = \{[n] = \{0, 1, \dots, n\}, n \ge 0\}, Mor\Delta = \{monotone maps\}$$

Remark (\mathcal{E} - \mathcal{M} factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n: [n-1] \to [n], \ 0 \le i \le n$, and
- degeneracy operators $\eta_i^n : [n+1] \to [n], \ 0 \le i \le n$.

Every simplicial operator $\phi:[m] \to [n]$ factors as

$$\mathrm{Ob}\Delta = \{[n] = \{0, 1, \dots, n\}, n \ge 0\}, \, \mathrm{Mor}\Delta = \{\text{monotone maps}\}\$$

Remark (\mathcal{E} - \mathcal{M} factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n : [n-1] \to [n], \ 0 \le i \le n$, and
- degeneracy operators $\eta_i^n : [n+1] \to [n], \ 0 \le i \le n$.

Every simplicial operator $\phi : [m] \rightarrow [n]$ factors as

$$\mathrm{Ob}\Delta = \{[n] = \{0, 1, \dots, n\}, n \ge 0\}, \, \mathrm{Mor}\Delta = \{\text{monotone maps}\}\$$

Remark (\mathcal{E} - \mathcal{M} factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n: [n-1] \to [n], \ 0 \le i \le n$, and
- degeneracy operators $\eta_i^n : [n+1] \to [n], \ 0 \le i \le n$.

Every simplicial operator $\phi:[m] \to [n]$ factors as

$$\mathrm{Ob}\Delta = \{[n] = \{0, 1, \dots, n\}, n \ge 0\}, \, \mathrm{Mor}\Delta = \{\mathsf{monotone} \,\, \mathsf{maps}\}$$

Remark (\mathcal{E} - \mathcal{M} factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n : [n-1] \to [n], \ 0 \le i \le n$, and
- degeneracy operators $\eta_i^n : [n+1] \to [n], 0 \le i \le n$.

Every simplicial operator $\phi : [m] \rightarrow [n]$ factors as

The functor $\Delta \to \operatorname{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension geometric realisation $|-|_{\Delta} : \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}$. Each |X| is a CW-complex with one cell per non-degenerate simplex of X.

Definition (Eilenberg 1944 – simplicial homology)

$$\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{C} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \underline{\operatorname{Ab}}^{\mathbb{N}}$$

$$X_{\bullet} \longmapsto \mathbb{Z}[X_{\bullet}] \longmapsto (C_{\bullet}(X), d_{\bullet}) \longmapsto H_{\bullet}(X)$$

$$C_n^{cell}(|X|) \cong C_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)] \cong \bigcap_{0 \le k \le n} \ker(\epsilon_k^n) = M_n(X)$$

The functor $\Delta \to \operatorname{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension geometric realisation $|-|_{\Delta} : \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}$. Each |X| is a CW-complex with one cell per non-degenerate simplex of X.

$$\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \operatorname{\underline{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{\mathcal{C}} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \operatorname{\underline{Ab}}^{\mathbb{N}}$$

$$X_{\bullet} \longmapsto \mathbb{Z}[X_{\bullet}] \longmapsto (\mathcal{C}_{\bullet}(X), d_{\bullet}) \longmapsto H_{\bullet}(X)$$

$$C_n^{cell}(|X|) \cong C_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)] \cong \bigcap_{0 \le k \le n} \ker(\epsilon_k^n) = M_n(X)$$

The functor $\Delta \to \operatorname{Top}: [n] \mapsto \Delta_n$ yields by left Kan extension geometric realisation $|-|_{\Delta}: \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}$. Each |X| is a *CW-complex* with one cell per *non-degenerate* simplex of X.

Definition (Eilenberg 1944 – simplicial homology)

$$\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \operatorname{\underline{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{\mathcal{C}} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \operatorname{\underline{Ab}}^{\mathbb{N}}$$

$$X_{\bullet} \longmapsto \mathbb{Z}[X_{\bullet}] \longmapsto (\mathcal{C}_{\bullet}(X), d_{\bullet}) \longmapsto H_{\bullet}(X)$$

$$C_n^{cell}(|X|) \cong C_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)] \cong \bigcap_{0 \le k \le n} \ker(\epsilon_k^n) = M_n(X)$$

The functor $\Delta \to \operatorname{Top}: [n] \mapsto \Delta_n$ yields by left Kan extension geometric realisation $|-|_{\Delta}: \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}$. Each |X| is a *CW-complex* with one cell per *non-degenerate* simplex of X.

Definition (Eilenberg 1944 – simplicial homology)

$$\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{\mathcal{C}} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \underline{\operatorname{Ab}}^{\mathbb{N}}$$

$$X_{\bullet} \longmapsto \mathbb{Z}[X_{\bullet}] \longmapsto (\mathcal{C}_{\bullet}(X), d_{\bullet}) \longmapsto \mathcal{H}_{\bullet}(X)$$

$$C_n^{cell}(|X|) \cong C_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)] \cong \bigcap_{0 \le k \le n} \ker(\epsilon_k^n) = M_n(X)$$

The functor $\Delta \to \operatorname{Top}: [n] \mapsto \Delta_n$ yields by left Kan extension geometric realisation $|-|_{\Delta}: \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}$. Each |X| is a *CW-complex* with one cell per *non-degenerate* simplex of X.

Definition (Eilenberg 1944 – simplicial homology)

$$\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{C} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \underline{\operatorname{Ab}}^{\mathbb{N}}$$

$$X_{\bullet} \longmapsto \mathbb{Z}[X_{\bullet}] \longmapsto (C_{\bullet}(X), d_{\bullet}) \longmapsto H_{\bullet}(X)$$

$$C_n^{cell}(|X|) \cong C_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)] \cong \bigcap_{0 \le k \le n} \ker(\epsilon_k^n) = M_n(X)$$

 $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ is a DK-category whenever $(-)^*:\mathcal{E}^{\mathrm{op}}\to\mathcal{M}$ is a faithful identity-on-objects functor sth.

- (1) $ee^* = 1$ (the idempotent e^*e is called an \mathcal{E} -projector);
- (2) the morphisms f^*e (for $e, f \in \mathcal{E}$) form a subcategory of C;
- (3) Inessential \mathcal{M} -maps form an ideal in \mathcal{M} ;
- (4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be enumerated in such a way that $\phi_i \phi_i$ is an \mathcal{E} -projector for i < j.

Definition (primitive \mathcal{E} -projectors e^*e)

Whenever $e = e_2 e_1$ then either e_1 or e_2 is invertible.

Definition (essential and inessential \mathcal{M} -maps)

 $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ is a DK-category whenever $(-)^*:\mathcal{E}^{\mathrm{op}}\to\mathcal{M}$ is a faithful identity-on-objects functor sth.

- (1) $\it ee^*=1$ (the idempotent $\it e^*e$ is called an $\it {\cal E}$ -projector);
- (2) the morphisms f^*e (for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C} ;
- (3) Inessential \mathcal{M} -maps form an ideal in \mathcal{M} ;
- (4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be enumerated in such a way that $\phi_j \phi_i$ is an \mathcal{E} -projector for i < j.

Definition (primitive \mathcal{E} -projectors e^*e)

Whenever $e = e_2 e_1$ then either e_1 or e_2 is invertible.

Definition (essential and inessential ${\cal M}$ -maps)

 $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ is a DK-category whenever $(-)^*:\mathcal{E}^{\mathrm{op}}\to\mathcal{M}$ is a faithful identity-on-objects functor sth.

- (1) $ee^* = 1$ (the idempotent e^*e is called an \mathcal{E} -projector);
- (2) the morphisms f^*e (for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C} ;
- (3) Inessential \mathcal{M} -maps form an ideal in \mathcal{M} ;
- (4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be enumerated in such a way that $\phi_j \phi_i$ is an \mathcal{E} -projector for i < j.

Definition (primitive \mathcal{E} -projectors e^*e)

Whenever $e = e_2 e_1$ then either e_1 or e_2 is invertible.

Definition (essential and inessential \mathcal{M} -maps)

 $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ is a DK-category whenever $(-)^*:\mathcal{E}^{\mathrm{op}}\to\mathcal{M}$ is a faithful identity-on-objects functor sth.

- (1) $ee^* = 1$ (the idempotent e^*e is called an \mathcal{E} -projector);
- (2) the morphisms f^*e (for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C} ;
- (3) Inessential \mathcal{M} -maps form an ideal in \mathcal{M} ;
- (4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be enumerated in such a way that $\phi_j \phi_i$ is an \mathcal{E} -projector for i < j.

Definition (primitive \mathcal{E} -projectors e^*e)

Whenever $e = e_2 e_1$ then either e_1 or e_2 is invertible.

Definition (essential and inessential \mathcal{M} -maps)

 $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ is a DK-category whenever $(-)^*:\mathcal{E}^{\mathrm{op}}\to\mathcal{M}$ is a faithful identity-on-objects functor sth.

- (1) $ee^* = 1$ (the idempotent e^*e is called an \mathcal{E} -projector);
- (2) the morphisms f^*e (for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C} ;
- (3) Inessential \mathcal{M} -maps form an ideal in \mathcal{M} ;
- (4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be enumerated in such a way that $\phi_i \phi_i$ is an \mathcal{E} -projector for i < j.

Definition (primitive \mathcal{E} -projectors e^*e)

Whenever $e = e_2 e_1$ then either e_1 or e_2 is invertible.

Definition (essential and inessential ${\cal M}$ -maps)

 $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ is a DK-category whenever $(-)^*:\mathcal{E}^{\mathrm{op}}\to\mathcal{M}$ is a faithful identity-on-objects functor sth.

- (1) $ee^* = 1$ (the idempotent e^*e is called an \mathcal{E} -projector);
- (2) the morphisms f^*e (for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C} ;
- (3) Inessential \mathcal{M} -maps form an ideal in \mathcal{M} ;
- (4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be enumerated in such a way that $\phi_j \phi_i$ is an \mathcal{E} -projector for i < j.

Definition (primitive \mathcal{E} -projectors e^*e)

Whenever $e = e_2 e_1$ then either e_1 or e_2 is invertible.

Definition (essential and inessential ${\cal M}$ -maps)

 $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ is a DK-category whenever $(-)^*:\mathcal{E}^{\mathrm{op}}\to\mathcal{M}$ is a faithful identity-on-objects functor sth.

- (1) $ee^* = 1$ (the idempotent e^*e is called an \mathcal{E} -projector);
- (2) the morphisms f^*e (for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C} ;
- (3) Inessential \mathcal{M} -maps form an ideal in \mathcal{M} ;
- (4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be enumerated in such a way that $\phi_i \phi_i$ is an \mathcal{E} -projector for i < j.

Definition (primitive \mathcal{E} -projectors e^*e)

Whenever $e = e_2 e_1$ then either e_1 or e_2 is invertible.

Definition (essential and inessential \mathcal{M} -maps)

 $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ is a DK-category whenever $(-)^*:\mathcal{E}^{\mathrm{op}}\to\mathcal{M}$ is a faithful identity-on-objects functor sth.

- (1) $ee^* = 1$ (the idempotent e^*e is called an \mathcal{E} -projector);
- (2) the morphisms f^*e (for $e, f \in \mathcal{E}$) form a subcategory of \mathcal{C} ;
- (3) Inessential \mathcal{M} -maps form an ideal in \mathcal{M} ;
- (4) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be enumerated in such a way that $\phi_j \phi_i$ is an \mathcal{E} -projector for i < j.

Definition (primitive \mathcal{E} -projectors e^*e)

Whenever $e = e_2 e_1$ then either e_1 or e_2 is invertible.

Definition (essential and inessential \mathcal{M} -maps)

Each epi $e: [m] \rightarrow [n]$ has a maximal section $e^*: [n] \rightarrow [m]$.

The primitive ${\mathcal E}$ -projectors of [n] are the $\eta_i^*\eta_i = \epsilon_i\eta_i,\, 0 \leq i < n$

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n: [n-1] \mapsto [n]$.

Lemma (quotienting out inessential ${\mathcal M}$ -maps)

By axiom (3), there is a locally pointed category $\Xi_{\mathcal{C}}=\mathcal{M}/\mathcal{M}_{iness}.$

Remark (description of
$$\Xi_{\Delta} = \mathcal{M}/\mathcal{M}_{iness}$$
)

$$[0] \longrightarrow [1] \longrightarrow [2] \longrightarrow [3] \longrightarrow [4] \cdots \leadsto [\Xi_{\Delta}^{\mathrm{op}}, \underline{\mathrm{Ab}}]_* = \mathrm{Ch}(\mathbb{Z})$$

Each epi $e: [m] \rightarrow [n]$ has a maximal section $e^*: [n] \rightarrow [m]$.

The primitive \mathcal{E} -projectors of [n] are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \le i < n$

Remark (essential ${\mathcal M}$ -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n:[n-1]\mapsto [n]$.

Lemma (quotienting out inessential ${\mathcal M}$ -maps)

By axiom (3), there is a locally pointed category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of $\Xi_{\Delta} = \mathcal{M}/\mathcal{M}_{iness}$)

$$[0] \xrightarrow{0} [1] \xrightarrow{[2]} [3] \xrightarrow{} [4] \cdots \leadsto [\Xi_{\Delta}^{op}, \underline{Ab}]_{*} = \mathrm{Ch}(\mathbb{Z})$$

Each epi $e : [m] \rightarrow [n]$ has a maximal section $e^* : [n] \rightarrow [m]$. The primitive \mathcal{E} -projectors of [n] are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \le i < n$.

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n:[n-1]
ightarrow [n].$

Lemma (quotienting out inessential ${\mathcal M}$ -maps)

By axiom (3), there is a locally pointed category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of $\Xi_{\Delta} = \mathcal{M}/\mathcal{M}_{\textit{iness}}$)

$$[0] \xrightarrow{0} [1] \xrightarrow{0} [2] \xrightarrow{0} [3] \xrightarrow{1} [4] \cdots \longrightarrow [\Xi_{\Delta}^{\text{op}}, \underline{\text{Ab}}]_{*} = \text{Ch}(\mathbb{Z})$$

Each epi $e : [m] \rightarrow [n]$ has a maximal section $e^* : [n] \rightarrow [m]$. The primitive \mathcal{E} -projectors of [n] are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \le i < n$.

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n : [n-1] \rightarrow [n]$.

Lemma (quotienting out inessential ${\mathcal M}$ -maps)

By axiom (3), there is a locally pointed category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of $\Xi_{\Delta}=\mathcal{M}/\mathcal{M}_{\mathit{iness}})$

$$[0] \xrightarrow{0} [1] \xrightarrow{0} [2] \xrightarrow{0} [3] \xrightarrow{} [4] \cdots \longrightarrow [\Xi_{\Delta}^{\text{op}}, \underline{Ab}]_{*} = \mathrm{Ch}(\mathbb{Z})$$

Each epi $e : [m] \rightarrow [n]$ has a maximal section $e^* : [n] \rightarrow [m]$. The primitive \mathcal{E} -projectors of [n] are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \le i < n$.

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n : [n-1] \rightarrow [n]$.

Lemma (quotienting out inessential \mathcal{M} -maps)

By axiom (3), there is a *locally pointed* category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of $\Xi_{\Delta}=\mathcal{M}/\mathcal{M}_{\mathit{iness}})$

$$[0] \xrightarrow{0} [1] \xrightarrow{0} [2] \xrightarrow{0} [3] \xrightarrow{} [4] \cdots \sim [\Xi_{\Delta}^{\text{op}}, \underline{\text{Ab}}]_{*} = \text{Ch}(\mathbb{Z})$$

Each epi $e : [m] \rightarrow [n]$ has a maximal section $e^* : [n] \rightarrow [m]$.

The primitive \mathcal{E} -projectors of [n] are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \le i < n$.

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n : [n-1] \rightarrow [n]$.

Lemma (quotienting out inessential \mathcal{M} -maps)

By axiom (3), there is a *locally pointed* category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of $\Xi_{\Delta} = \mathcal{M}/\mathcal{M}_{\textit{iness}}$)

$$[0] \xrightarrow{0} [1] \xrightarrow{0} [2] \xrightarrow{0} [3] \xrightarrow{1} [4] \cdots \sim [\Xi_{\Delta}^{op}, \underline{Ab}]_{*} = \mathrm{Ch}(\mathbb{Z})$$

Each epi $e : [m] \rightarrow [n]$ has a maximal section $e^* : [n] \rightarrow [m]$.

The primitive \mathcal{E} -projectors of [n] are the $\eta_i^* \eta_i = \epsilon_i \eta_i$, $0 \le i < n$.

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n : [n-1] \rightarrow [n]$.

Lemma (quotienting out inessential \mathcal{M} -maps)

By axiom (3), there is a *locally pointed* category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of $\Xi_{\Delta}=\mathcal{M}/\mathcal{M}_{\textit{iness}})$

$$[0] \xrightarrow{0} [1] \xrightarrow{0} [2] \xrightarrow{0} [3] \xrightarrow{0} [4] \cdots \rightsquigarrow [\Xi_{\Delta}^{op}, \underline{Ab}]_{*} = \mathrm{Ch}(\mathbb{Z})$$

Theorem (generalised Dold-Kan correspondence, BCW 2022)

For each Dold-Kan category $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ and each abelian category $\mathcal A$ there is an adjoint equivalence

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_* : K_{\mathcal{C}}$$

Remark (constructing M_C and K_C for general DK-categories C)

Denote $j:\mathcal{M}\hookrightarrow\mathcal{C}$ and $q:\mathcal{M}\twoheadrightarrow\Xi_{\mathcal{C}}=\mathcal{M}/\mathcal{M}_{iness}.$ Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \overset{j^*}{\underset{i}{\rightleftharpoons}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \overset{q_*}{\underset{q^*}{\rightleftharpoons}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_*: K_{\mathcal{C}}$$

Examples

- Γ (Pirashvili 2000) and Flb (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
- cf. Helmstutler 2014, Lack-Street 2015/2020, Walde 2022

For each Dold-Kan category $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\mathcal{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_* : \mathcal{K}_{\mathcal{C}}$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general DK-categories \mathcal{C})

Denote $j:\mathcal{M}\hookrightarrow\mathcal{C}$ and $q:\mathcal{M}\twoheadrightarrow\Xi_{\mathcal{C}}=\mathcal{M}/\mathcal{M}_{iness}.$ Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \overset{j^*}{\underset{j_i}{\rightleftharpoons}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \overset{q_*}{\underset{q^*}{\rightleftharpoons}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_*: K_{\mathcal{C}}$$

- Γ (Pirashvili 2000) and Flb (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
- cf. Helmstutler 2014, Lack-Street 2015/2020, Walde 2022

For each Dold-Kan category $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\mathcal{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_* : \mathcal{K}_{\mathcal{C}}$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general DK-categories $\mathcal{C})$

Denote
$$j:\mathcal{M}\hookrightarrow\mathcal{C}$$
 and $q:\mathcal{M}\twoheadrightarrow\Xi_{\mathcal{C}}=\mathcal{M}/\mathcal{M}_{iness}.$ Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \stackrel{d}{\underset{i}{\rightleftharpoons}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \stackrel{q_{i}}{\underset{\sigma}{\rightleftharpoons}} [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_{*}: K_{\mathcal{C}}$$

- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
- o of Helmstutler 2014 Lack-Street 2015/2020 Walde 2022

For each Dold-Kan category $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\mathcal{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_* : \mathcal{K}_{\mathcal{C}}$$

Remark (constructing M_C and K_C for general DK-categories C)

Denote $j:\mathcal{M}\hookrightarrow\mathcal{C}$ and $q:\mathcal{M}\twoheadrightarrow\Xi_{\mathcal{C}}=\mathcal{M}/\mathcal{M}_{iness}$. Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \overset{j^*}{\underset{j_!}{\rightleftarrows}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \overset{q_*}{\underset{q^*}{\rightleftarrows}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_*: \mathcal{K}_{\mathcal{C}}$$

- \bullet Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
- cf. Helmstutler 2014. Lack-Street 2015/2020. Walde 2022

For each Dold-Kan category $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\mathcal{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_* : \mathcal{K}_{\mathcal{C}}$$

Remark (constructing M_C and K_C for general DK-categories C)

Denote $j:\mathcal{M}\hookrightarrow\mathcal{C}$ and $q:\mathcal{M}\twoheadrightarrow\Xi_{\mathcal{C}}=\mathcal{M}/\mathcal{M}_{iness}.$ Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \overset{j^*}{\underset{j_!}{\rightleftarrows}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \overset{q_*}{\underset{q^*}{\rightleftarrows}} [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_*: \mathcal{K}_{\mathcal{C}}$$

- o cf. Helmstutler 2014. Lack-Street 2015/2020. Walde 2022

For each Dold-Kan category $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\mathcal{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_* : \mathcal{K}_{\mathcal{C}}$$

Remark (constructing M_C and K_C for general DK-categories C)

Denote $j:\mathcal{M}\hookrightarrow\mathcal{C}$ and $q:\mathcal{M}\twoheadrightarrow\Xi_{\mathcal{C}}=\mathcal{M}/\mathcal{M}_{iness}.$ Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \overset{j^*}{\underset{j_!}{\rightleftarrows}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \overset{q_*}{\underset{q^*}{\rightleftarrows}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_*: \mathcal{K}_{\mathcal{C}}$$

- Γ (Pirashvili 2000) and FI
 (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
- cf. Helmstutler 2014, Lack-Street 2015/2020, Walde 2022

For each Dold-Kan category $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\mathcal{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_* : \mathcal{K}_{\mathcal{C}}$$

Remark (constructing M_C and K_C for general DK-categories C)

Denote $j:\mathcal{M}\hookrightarrow\mathcal{C}$ and $q:\mathcal{M}\twoheadrightarrow\Xi_{\mathcal{C}}=\mathcal{M}/\mathcal{M}_{iness}.$ Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \overset{j^*}{\underset{j_!}{\rightleftarrows}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \overset{q_*}{\underset{q^*}{\rightleftarrows}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_*: \mathcal{K}_{\mathcal{C}}$$

- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
- cf. Helmstutler 2014, Lack-Street 2015/2020, Walde 2022

For each Dold-Kan category $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\mathcal{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_* : \mathcal{K}_{\mathcal{C}}$$

Remark (constructing M_C and K_C for general DK-categories C)

Denote $j:\mathcal{M}\hookrightarrow\mathcal{C}$ and $q:\mathcal{M}\twoheadrightarrow\Xi_{\mathcal{C}}=\mathcal{M}/\mathcal{M}_{iness}.$ Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \overset{j^*}{\underset{j_!}{\rightleftarrows}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \overset{q_*}{\underset{q^*}{\rightleftarrows}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_*: \mathcal{K}_{\mathcal{C}}$$

- Γ (Pirashvili 2000) and FI[†] (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
- cf. Helmstutler 2014, Lack-Street 2015/2020, Walde 2022

For each Dold-Kan category $\mathcal{C}=(\mathcal{E},\mathcal{M},(-)^*)$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\mathcal{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_* : \mathcal{K}_{\mathcal{C}}$$

Remark (constructing M_C and K_C for general DK-categories C)

Denote $j:\mathcal{M}\hookrightarrow\mathcal{C}$ and $q:\mathcal{M}\twoheadrightarrow\Xi_{\mathcal{C}}=\mathcal{M}/\mathcal{M}_{iness}.$ Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \overset{j^*}{\underset{j_!}{\rightleftarrows}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \overset{q_*}{\underset{q^*}{\rightleftarrows}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_*: \mathcal{K}_{\mathcal{C}}$$

- Γ (Pirashvili 2000) and FI[†] (Church-Ellenberg-Farb 2015)
- Ω_{planar} (Gutierrez-Lukacs-Weiss 2011)
- cf. Helmstutler 2014, Lack-Street 2015/2020, Walde 2022

For any small category A the category $A \wr A$ is defined by

•
$$Ob(\Delta \wr A) = \coprod_{n \geq 0} A^n = \{([m]; A_1, \dots, A_m)\}$$

•
$$(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \to ([n], B_1, \dots, B_n))$$
 is given by $\phi : [m] \to [n]$ and $\phi_{ij} : A_i \to B_j$ whenever $\phi(i-1) < j \le \phi(i-1)$

Definition (B 2007, cf. Joyal 1997)

Put
$$\Theta_1 = \Delta$$
 and $\Theta_n = \Delta \wr \Theta_{n-1}$ for $n > 1$.

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n fully embeds in $n\mathrm{Cat}$, inducing a fully faithful nerve functor

Cat
$$\hookrightarrow \operatorname{Sets}^{\Theta_n^{\circ r}}$$

For any small category A the category $A \wr A$ is defined by

- $Ob(\Delta \wr A) = \coprod_{n \geq 0} A^n = \{([m]; A_1, \dots, A_m)\}$
- $(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \to ([n], B_1, \dots, B_n))$ is given by $\phi : [m] \to [n]$ and $\phi_{ij} : A_i \to B_j$ whenever $\phi(i-1) < j \le \phi(i)$

Definition (B 2007, cf. Joyal 1997)

Put $\Theta_1 = \Delta$ and $\Theta_n = \Delta \wr \Theta_{n-1}$ for n > 1.

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n fully embeds in $n\mathrm{Cat}$, inducing a fully faithful nerve functor

$$nCat \hookrightarrow Sets^{\Theta_n^{or}}$$

For any small category A the category $A \wr A$ is defined by

- $\mathrm{Ob}(\Delta \wr A) = \coprod_{n \geq 0} A^n = \{([m]; A_1, \dots, A_m)\}$
- $(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \to ([n], B_1, \dots, B_n))$ is given by $\phi : [m] \to [n]$ and $\phi_{ij} : A_i \to B_j$ whenever $\phi(i-1) < j \le \phi(i)$

Definition (B 2007, cf. Joyal 1997)

Put $\Theta_1 = \Delta$ and $\Theta_n = \Delta \wr \Theta_{n-1}$ for n > 1.

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n fully embeds in $n\mathrm{Cat}$, inducing a fully faithful nerve functor

$$nCat \hookrightarrow Sets^{\Theta_n^{or}}$$

For any small category A the category $\Delta \wr A$ is defined by

- $\mathrm{Ob}(\Delta \wr A) = \coprod_{n \geq 0} A^n = \{([m]; A_1, \dots, A_m)\}$
- $(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \to ([n], B_1, \dots, B_n))$ is given by $\phi : [m] \to [n]$ and $\phi_{ij} : A_i \to B_j$ whenever $\phi(i-1) < j \le \phi(i)$

Definition (B 2007, cf. Joyal 1997)

Put $\Theta_1 = \Delta$ and $\Theta_n = \Delta \wr \Theta_{n-1}$ for n > 1.

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n fully embeds in $\mathrm{nCat},$ inducing a fully faithful nerve functor

$$nCat \hookrightarrow Sets^{\Theta_n^{or}}$$

For any small category A the category $\Delta \wr A$ is defined by

- $\mathrm{Ob}(\Delta \wr A) = \coprod_{n \geq 0} A^n = \{([m]; A_1, \dots, A_m)\}$
- $(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \to ([n], B_1, \dots, B_n))$ is given by $\phi : [m] \to [n]$ and $\phi_{ij} : A_i \to B_j$ whenever $\phi(i-1) < j \le \phi(i)$

Definition (B 2007, cf. Joyal 1997)

Put $\Theta_1 = \Delta$ and $\Theta_n = \Delta \wr \Theta_{n-1}$ for n > 1.

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n fully embeds in $\mathrm{nCat},$ inducing a fully faithful nerve functor

$$nCat \hookrightarrow Sets^{\Theta_n^{or}}$$

For any small category A the category $\Delta \wr A$ is defined by

- $Ob(\Delta \wr A) = \coprod_{n \geq 0} A^n = \{([m]; A_1, \dots, A_m)\}$
- $(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \to ([n], B_1, \dots, B_n))$ is given by $\phi : [m] \to [n]$ and $\phi_{ij} : A_i \to B_j$ whenever $\phi(i-1) < j \le \phi(i)$

Definition (B 2007, cf. Joyal 1997)

Put $\Theta_1 = \Delta$ and $\Theta_n = \Delta \wr \Theta_{n-1}$ for n > 1.

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n fully embeds in nCat, inducing a fully faithful nerve functor

$$nCat \hookrightarrow Sets^{\Theta_n^{op}}$$

Remark (2-categorical structure of [2]([2],[0]) in Θ_2)

Proposition (full embedding $\Theta_n \hookrightarrow nCat$)

$$\Theta_n(S, T) = \text{nCat}(\mathcal{F}_n(S_*), \mathcal{F}_n(T_*))$$

where $\mathcal{F}_n : nGrph \to nCat$ is left adjoint to the forgeful functor.

Remark (2-categorical structure of [2]([2],[0]) in Θ_2)

Proposition (full embedding $\Theta_n \hookrightarrow nCat$)

$$\Theta_n(S,T) = \mathrm{nCat}(\mathcal{F}_n(S_*), \mathcal{F}_n(T_*))$$

where $\mathcal{F}_n : nGrph \to nCat$ is left adjoint to the forgeful functor.

Remark (2-categorical structure of [2]([2],[0]) in Θ_2)

Proposition (full embedding $\Theta_n \hookrightarrow nCat$)

$$\Theta_n(S,T) = \text{nCat}(\mathcal{F}_n(S_*), \mathcal{F}_n(T_*))$$

where $\mathcal{F}_n : nGrph \to nCat$ is left adjoint to the forgeful functor.

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called *geometric* if

- lacktriangle the \mathcal{E} -quotients of any object form a *lattice*
- igorplus the ${\mathcal M}$ -face poset of any object is a cone over a sphere
- \bigcirc $\mathcal C$ has a terminal object without proper $\mathcal M$ -faces

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\mathrm{op}} \to \mathrm{Sets}$ on a geometric DK-category has CW -realisation |X| whose chain complex $C^{\mathit{cell}}_*(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called *geometric* if

- ullet the \mathcal{E} -quotients of any object form a *lattice*
- @ the \mathcal{M} -face poset of any object is a *cone over a sphere*

Proposition (CW-realisation)

Any presheaf $X:\mathcal{C}^{\mathrm{op}} o \mathrm{Sets}$ on a geometric DK-category has CW-realisation |X| whose chain complex $C_*^{cell}(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called *geometric* if

- ullet the $\mathcal E$ -quotients of any object form a *lattice*
- ② the \mathcal{M} -face poset of any object is a cone over a sphere
- ${\color{red} { @} }$ ${\color{red} {\cal C}}$ has a terminal object without proper ${\color{red} {\cal M}}$ -faces

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\mathrm{op}} \to \mathrm{Sets}$ on a geometric DK-category has CW-realisation |X| whose chain complex $C_*^{cell}(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called *geometric* if

- f 0 the ${\cal E}$ -quotients of any object form a lattice
- $oldsymbol{0}$ the \mathcal{M} -face poset of any object is a cone over a sphere
- \odot $\mathcal C$ has a terminal object without proper $\mathcal M$ -faces

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\mathrm{op}} \to \mathrm{Sets}$ on a geometric DK-category has CW-realisation |X| whose chain complex $C^{cell}_*(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $\mathcal{M}_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called *geometric* if

- $oldsymbol{0}$ the \mathcal{E} -quotients of any object form a *lattice*
- $oldsymbol{0}$ the \mathcal{M} -face poset of any object is a cone over a sphere
- $oldsymbol{\circ}$ $\mathcal C$ has a terminal object without proper $\mathcal M$ -faces

Proposition (CW-realisation)

Any presheaf $X: \mathcal{C}^{\mathrm{op}} \to \mathrm{Sets}$ on a geometric DK-category has CW-realisation |X| whose chain complex $C^{cell}_*(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $\mathcal{M}_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

A DK-category $\mathcal{C} = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called *geometric* if

- f 0 the ${\cal E}$ -quotients of any object form a *lattice*
- $oldsymbol{0}$ the \mathcal{M} -face poset of any object is a cone over a sphere
- $oldsymbol{\circ}$ C has a terminal object without proper \mathcal{M} -faces

Proposition (CW-realisation)

Any presheaf $X:\mathcal{C}^{\mathrm{op}} \to \mathrm{Sets}$ on a geometric DK-category has CW -realisation |X| whose chain complex $C^{\mathit{cell}}_*(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

A DK-category $C = (\mathcal{E}, \mathcal{M}, (-)^*)$ is called *geometric* if

- lacktriangledown the \mathcal{E} -quotients of any object form a *lattice*
- $oldsymbol{0}$ the \mathcal{M} -face poset of any object is a cone over a sphere
- $oldsymbol{\circ}$ C has a terminal object without proper \mathcal{M} -faces

Proposition (CW-realisation)

Any presheaf $X:\mathcal{C}^{\mathrm{op}} \to \mathrm{Sets}$ on a geometric DK-category has CW -realisation |X| whose chain complex $C^{\mathit{cell}}_*(|X|)$ is isomorphic to the "totalisation" of the Moore normalisation $M_{\mathcal{C}}(\mathbb{Z}[X])$.

Proposition (B 2007, Bergner-Rezk 2017, BCW 2022)

$$M_{\Theta_n}: \mathcal{A}^{\Theta_n^{\mathrm{op}}} \simeq [\Xi_{\Theta_n}^{\mathrm{op}}, \mathcal{A}]_*: K_{\Theta_n}$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^n A$ with one k-cell for $0 \le k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type K(A, n);
- \bullet $C_*^{cell}(|B^nA|_{\Theta_n})$ is the "totalisation" of $M_{\Theta_n}(\mathbb{Z}[B^nA])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n)$ = generalised Fibonacci number)

		1	2	3	4	5	6	7		9	10
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21	34
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24	44

$$M_{\Theta_n}: \mathcal{A}^{\Theta_n^{\mathrm{op}}} \simeq [\Xi_{\Theta_n}^{\mathrm{op}}, \mathcal{A}]_*: K_{\Theta_n}$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^n A$ with one k-cell for $0 \le k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type K(A, n);
- \bullet $C^{cell}_*(|B^nA|_{\Theta_n})$ is the "totalisation" of $M_{\Theta_n}(\mathbb{Z}[B^nA])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n) = \text{generalised Fibonacci number}$)

		1	2	3	4	5	6	7		9	10
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21	34
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24	44

$$M_{\Theta_n}: \mathcal{A}^{\Theta_n^{\mathrm{op}}} \simeq [\Xi_{\Theta_n}^{\mathrm{op}}, \mathcal{A}]_*: K_{\Theta_n}$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category $B^n A$ with one k-cell for $0 \le k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type K(A, n);
- $C_*^{cell}(|B^nA|_{\Theta_n})$ is the "totalisation" of $M_{\Theta_n}(\mathbb{Z}[B^nA])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n) = \text{generalised Fibonacci number}$)

		1	2	3	4	5	6	7		9	10
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21	34
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24	44

$$M_{\Theta_n}: \mathcal{A}^{\Theta_n^{\mathrm{op}}} \simeq [\Xi_{\Theta_n}^{\mathrm{op}}, \mathcal{A}]_*: K_{\Theta_n}$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category B^nA with one k-cell for $0 \le k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type K(A, n);
- $C_*^{cell}(|B^nA|_{\Theta_n})$ is the "totalisation" of $M_{\Theta_n}(\mathbb{Z}[B^nA])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n) = \text{generalised Fibonacci number}$

		1	2	3	4	5	6	7		9	10
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21	34
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24	44

$$M_{\Theta_n}: \mathcal{A}^{\Theta_n^{\mathrm{op}}} \simeq [\Xi_{\Theta_n}^{\mathrm{op}}, \mathcal{A}]_*: K_{\Theta_n}$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category B^nA with one k-cell for $0 \le k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type K(A, n);
- $C_*^{cell}(|B^nA|_{\Theta_n})$ is the "totalisation" of $M_{\Theta_n}(\mathbb{Z}[B^nA])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z},n)=$ generalised Fibonacci number

		1	2	3	4	5	6	7		9	10
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21	34
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24	44

$$M_{\Theta_n}: \mathcal{A}^{\Theta_n^{\mathrm{op}}} \simeq [\Xi_{\Theta_n}^{\mathrm{op}}, \mathcal{A}]_*: K_{\Theta_n}$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category B^nA with one k-cell for $0 \le k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type K(A, n);
- $C_*^{cell}(|B^nA|_{\Theta_n})$ is the "totalisation" of $M_{\Theta_n}(\mathbb{Z}[B^nA])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z},n)=$ generalised Fibonacci number

		1	2	3	4	5	6	7		9	10
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21	34
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24	44

$$M_{\Theta_n}: \mathcal{A}^{\Theta_n^{\mathrm{op}}} \simeq [\Xi_{\Theta_n}^{\mathrm{op}}, \mathcal{A}]_*: K_{\Theta_n}$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is a strict n-category B^nA with one k-cell for $0 \le k < n$ and A as endo-n-object;
- $|B^n A|_{\Theta_n}$ is a CW-complex of type K(A, n);
- $C^{cell}_*(|B^nA|_{\Theta_n})$ is the "totalisation" of $M_{\Theta_n}(\mathbb{Z}[B^nA])$.

Example (# cells of $K(\mathbb{Z}/2\mathbb{Z}, n)$ = generalised Fibonacci number)

# cells in dim	0	1	2	3	4	5	6	7	8	9	10
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1	0	1	1	2	3	5	8	13	21	34
$K(\mathbb{Z}/2\mathbb{Z},3)$	1	0	0	1	1	2	4	7	13	24	44

Example (action of
$$\Xi_{\Theta}$$
, on $C_*^{cell}(K(Z/2,2))$ for $2 \le * \le 6$)

$$(1; 1) \leftarrow (1; 2) \leftarrow (1; 3) = (2; 2, 1) \leftarrow (2; 2, 2)$$

$$(2; 1, 1) \leftarrow (2; 1, 2) \leftarrow (2; 1, 3)$$

$$(3; 1, 1, 1)$$

Theorem (Serre 1953)

$$H^*(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[Sq^J(\iota_2), J \text{ admissible}, e(J) < n]$$

Each $Sq^{J}(\iota_{2})$ is represented by an admissible cocycle of ht n.

Example (action of Ξ_{Θ_2} on $C_*^{cell}(K(Z/2,2))$ for $2 \le * \le 6$) (1;5) $(1;4) \iff (2;3,1)$ $(1;1) \leftarrow (1;2) \leftarrow (1;3) \iff (2;2,1) \leftarrow (2;2,2)$ (2;1,1) 0 (2;1,2) (2;1,3)(3; 1, 1, 1)

Theorem (Serre 1953)

$$H^*(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[Sq^J(\iota_2), J \text{ admissible}, e(J) < n]$$

Each $Sq^{J}(\iota_{2})$ is represented by an admissible cocycle of ht n.

Example (action of Ξ_{Θ_2} on $C_*^{cell}(K(Z/2,2))$ for $2 \le * \le 6$)

$$(1; 5)$$

$$(1; 4) \iff (2; 3, 1)$$

$$(1; 1) \multimap (1; 2) \multimap (1; 3) \iff (2; 2, 1) \multimap (2; 2, 2)$$

$$(2; 1, 1) \multimap (2; 1, 2) \multimap (2; 1, 3)$$

$$(3; 1, 1, 1)$$

Theorem (Serre 1953)

$$H^*(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[Sq^J(\iota_2), J \text{ admissible}, e(J) < n]$$

Each $Sq^{J}(\iota_{2})$ is represented by an admissible cocycle of ht n.

$$X(A) = N_{X(A)} \oplus D_{X(A)} = \bigcap_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \ker(X(\phi)) \oplus \sum_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \operatorname{im}(X(\phi))$$

If
$$\phi, \psi, \psi \phi \in \operatorname{Proj}_{\mathcal{E}}(A)$$
 then $\psi \phi \psi = \psi \phi = \phi \psi \phi$.

Proposition

Let $(x_i)_{1 \le i \le n}$ be a family of projectors of an R-module X such that $x_i x_j x_i = x_i x_j = x_j x_i x_j$ for i < j. Then we get a direct sum decomposition $X = N_X \oplus D_X := \bigcap_{1 \le i \le n} \ker(x_i) \oplus \sum_{1 \le i \le n} \operatorname{im}(x_i)$.

Corollary

Let $X:\mathcal{C}^\mathrm{op}\to\mathcal{A}$ be a presheaf on a Dold-Kan category \mathcal{C} with \mathcal{A} abelian. Then, for each object A of \mathcal{C} , we get

$$X(A) = N_{X(A)} \oplus D_{X(A)} = \bigcap_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \ker(X(\phi)) \oplus \sum_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \operatorname{im}(X(\phi))$$

Proof

If
$$\phi, \psi, \psi \phi \in \operatorname{Proj}_{\mathcal{E}}(A)$$
 then $\psi \phi \psi = \psi \phi = \phi \psi \phi$.

Proposition

Let $(x_i)_{1 \le i \le n}$ be a family of projectors of an R-module X such that $x_i x_j x_i = x_i x_j = x_j x_i x_j$ for i < j. Then we get a direct sum decomposition $X = N_X \oplus D_X := \bigcap_{1 \le i \le n} \ker(x_i) \oplus \sum_{1 \le i \le n} \operatorname{im}(x_i)$.

Corollary

Let $X:\mathcal{C}^\mathrm{op}\to\mathcal{A}$ be a presheaf on a Dold-Kan category \mathcal{C} with \mathcal{A} abelian. Then, for each object A of \mathcal{C} , we get

$$X(A) = N_{X(A)} \oplus D_{X(A)} = \bigcap_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \ker(X(\phi)) \oplus \sum_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \operatorname{im}(X(\phi))$$

Proof

If $\phi, \psi, \psi \phi \in \operatorname{Proj}_{\mathcal{E}}(A)$ then $\psi \phi \psi = \psi \phi = \phi \psi \phi$

Proposition

Let $(x_i)_{1 \le i \le n}$ be a family of projectors of an R-module X such that $x_i x_j x_i = x_i x_j = x_j x_i x_j$ for i < j. Then we get a direct sum decomposition $X = N_X \oplus D_X := \bigcap_{1 \le i \le n} \ker(x_i) \oplus \sum_{1 \le i \le n} \operatorname{im}(x_i)$.

Corollary

Let $X:\mathcal{C}^\mathrm{op}\to\mathcal{A}$ be a presheaf on a Dold-Kan category \mathcal{C} with \mathcal{A} abelian. Then, for each object A of \mathcal{C} , we get

$$X(A) = N_{X(A)} \oplus D_{X(A)} = \bigcap_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \ker(X(\phi)) \oplus \sum_{\phi \in \operatorname{Prim}_{\mathcal{E}}(A)} \operatorname{im}(X(\phi))$$

Proof.

If $\phi, \psi, \psi \phi \in \operatorname{Proj}_{\mathcal{E}}(A)$ then $\psi \phi \psi = \psi \phi = \phi \psi \phi$.

Let Γ by a finite quiver with $V(\Gamma) = \{1, ..., n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i,j) \in E(\Gamma)$ then i < j. The Catalan monoid C_{Γ} is generated by $x_i, i \in V(\Gamma)$, with relations:

- $x_i^2 = x_i$ for $i \in V(\Gamma)$;
- $x_i x_j x_i = x_j x_i = x_j x_i x_j$ if $(i, j) \in E(\Gamma)$;
- $x_i x_j = x_j x_i$ if $(i, j) \notin E(\Gamma)$ and $(j, i) \notin E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

$$1 = \sum_{\{i_1, \dots, i_k\} \sqcup \{j_1, \dots, j_{n-k}\} = \underline{n}} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1}) (1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).$$

Let Γ by a finite quiver with $V(\Gamma) = \{1, ..., n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i,j) \in E(\Gamma)$ then i < j. The Catalan monoid C_{Γ} is generated by $x_i, i \in V(\Gamma)$, with relations:

- $x_i^2 = x_i$ for $i \in V(\Gamma)$;
- $x_i x_j x_i = x_j x_i = x_j x_i x_j$ if $(i, j) \in E(\Gamma)$;
- $x_i x_j = x_j x_i$ if $(i, j) \notin E(\Gamma)$ and $(j, i) \notin E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

$$1 = \sum_{\{i_1, \dots, i_k\} \sqcup \{j_1, \dots, j_{n-k}\} = \underline{n}} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1}) (1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).$$

Let Γ by a finite quiver with $V(\Gamma) = \{1, ..., n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i,j) \in E(\Gamma)$ then i < j. The Catalan monoid C_{Γ} is generated by $x_i, i \in V(\Gamma)$, with relations:

- $x_i^2 = x_i$ for $i \in V(\Gamma)$;
- $x_i x_j x_i = x_j x_i = x_j x_i x_j$ if $(i, j) \in E(\Gamma)$;
- $x_i x_j = x_j x_i$ if $(i, j) \notin E(\Gamma)$ and $(j, i) \notin E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

$$1 = \sum_{\{i_1, \dots, i_k\} \cup \{j_1, \dots, j_{n-k}\} = \underline{n}} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1}) (1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).$$

Let Γ by a finite quiver with $V(\Gamma) = \{1, ..., n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i,j) \in E(\Gamma)$ then i < j. The Catalan monoid C_{Γ} is generated by $x_i, i \in V(\Gamma)$, with relations:

- $x_i^2 = x_i$ for $i \in V(\Gamma)$;
- $x_i x_j x_i = x_j x_i = x_j x_i x_j$ if $(i, j) \in E(\Gamma)$;
- $x_i x_j = x_j x_i$ if $(i, j) \notin E(\Gamma)$ and $(j, i) \notin E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

$$1 = \sum_{\{i_1, \dots, i_k\} \sqcup \{j_1, \dots, j_{n-k}\} = \underline{n}} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1}) (1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).$$

Let Γ by a finite quiver with $V(\Gamma) = \{1, ..., n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i,j) \in E(\Gamma)$ then i < j. The Catalan monoid C_{Γ} is generated by $x_i, i \in V(\Gamma)$, with relations:

- $x_i^2 = x_i$ for $i \in V(\Gamma)$;
- $x_i x_j x_i = x_j x_i = x_j x_i x_j$ if $(i, j) \in E(\Gamma)$;
- $x_i x_j = x_j x_i$ if $(i, j) \notin E(\Gamma)$ and $(j, i) \notin E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

$$1 = \sum_{\{i_1, \dots, i_k\} \sqcup \{j_1, \dots, j_{n-k}\} = \underline{n}} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1}) (1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).$$

Let Γ by a finite quiver with $V(\Gamma) = \{1, ..., n\}$ and edge set $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$ such that if $(i,j) \in E(\Gamma)$ then i < j. The Catalan monoid C_{Γ} is generated by $x_i, i \in V(\Gamma)$, with relations:

- $x_i^2 = x_i$ for $i \in V(\Gamma)$;
- $x_i x_j x_i = x_j x_i = x_j x_i x_j$ if $(i, j) \in E(\Gamma)$;
- $x_i x_j = x_j x_i$ if $(i, j) \notin E(\Gamma)$ and $(j, i) \notin E(\Gamma)$.

Proposition (Kudryatseva-Mazorchuk 2009)

$$1 = \sum_{\{i_1, \dots, i_k\} \sqcup \{j_1, \dots, j_{n-k}\} = \underline{n}} x_{i_k} \cdots x_{i_2} x_{i_1} (1 - x_{j_1}) (1 - x_{j_2}) \cdots (1 - x_{j_{n-k}}).$$

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_{\Gamma}]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i \ (0 \le i < n)$ is the Catalan monoid C_{L_n} of the *linear quiver* because $x_i x_j = x_j x_i$ if $|i j| \ge 2$.
- $C_{[n]}$ consists of those $\phi:[n] \to [n]$ sth. $\phi(i) \ge i$ for all i.
- $\#C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_{\Gamma}]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i \ (0 \le i < n)$ is the Catalan monoid C_{L_n} of the *linear quiver* because $x_i x_j = x_j x_i$ if $|i j| \ge 2$.
- $C_{[n]}$ consists of those $\phi:[n] o [n]$ sth. $\phi(i) \geq i$ for all i.
- $\#C_{[n]} = \frac{1}{n+2} {2n+2 \choose n+1}$

Remark (Kiselman monoids C_{K_n})

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_{\Gamma}]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i$ $(0 \le i < n)$ is the Catalan monoid C_{L_n} of the *linear quiver* because $x_i x_j = x_j x_i$ if $|i j| \ge 2$.
- $C_{[n]}$ consists of those $\phi:[n] \to [n]$ sth. $\phi(i) \ge i$ for all i.
- $\#C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_{\Gamma}]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i$ $(0 \le i < n)$ is the Catalan monoid C_{L_n} of the *linear quiver* because $x_i x_j = x_j x_i$ if $|i j| \ge 2$.
- $C_{[n]}$ consists of those $\phi:[n] \to [n]$ sth. $\phi(i) \ge i$ for all i.
- $\#C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_{\Gamma}]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i$ $(0 \le i < n)$ is the Catalan monoid C_{L_n} of the *linear quiver* because $x_i x_j = x_j x_i$ if $|i j| \ge 2$.
- $C_{[n]}$ consists of those $\phi:[n] \to [n]$ sth. $\phi(i) \ge i$ for all i.

•
$$\#C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$$

Remark (Kiselman monoids C_{K_n}

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_{\Gamma}]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i$ $(0 \le i < n)$ is the Catalan monoid C_{L_n} of the *linear quiver* because $x_i x_j = x_j x_i$ if $|i j| \ge 2$.
- $C_{[n]}$ consists of those $\phi:[n] \to [n]$ sth. $\phi(i) \ge i$ for all i.
- $\#C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})

The idempotents of C_{Γ} induce the simple modules while the decomposition of 1 induces the irreducible components of $\mathbb{Q}[C_{\Gamma}]$.

Example (Catalan monoids inside Δ)

- The submonoid $C_{[n]} \subset \Delta([n], [n])$ generated by the primitive projectors $x_i = \epsilon_i \eta_i$ $(0 \le i < n)$ is the Catalan monoid C_{L_n} of the *linear quiver* because $x_i x_j = x_j x_i$ if $|i j| \ge 2$.
- $C_{[n]}$ consists of those $\phi:[n]\to[n]$ sth. $\phi(i)\geq i$ for all i.
- $\#C_{[n]} = \frac{1}{n+2} \binom{2n+2}{n+1}$

Remark (Kiselman monoids C_{K_n})