The cyclic Deligne conjecture for spaces, chain complexes and Hopf algebras1

Clemens Berger

University of Nice
28 April, 2009

Luminy CIRM

1joint work with Michael Batanin (Sydney)
Hochschild cochains
\[C^\bullet(A; A) \]
Gerstenhaber structure
\[C^\bullet(A; A^*) \]
Batalin-Vilkovisky structure
The dg- Deligne conjecture

Multiplicative operads
The coloured operad for multiplicative operads
Condensation of coloured operads
The cobar complex of a bialgebra
The topological Deligne conjecture

Braid and ribbon-braid groups
Coxeter geometry of permutation groups
The categorical Deligne conjecture
The Drinfeld double of a Hopf algebra
Hochschild cochains

Definition
For a (unital associative) K-algebra A and A-bimodule M, the *Hochschild cochain complex* of A with coefficients in M is given by

$$C^n(A; M) = \text{Hom}_K(A \otimes^n, M), \quad n \geq 0,$$

where for $f \in C^n(A; M)$,

$$(\partial_i f)(a_1, \ldots, a_{n+1}) = \begin{cases}
 a_1 f(a_2, \ldots, a_n) & i = 0; \\
 f(a_1, \ldots, a_i a_{i+1}, \ldots, a_n) & i = 1, \ldots, n; \\
 f(a_1, \ldots, a_n) a_{n+1} & i = n + 1.
\end{cases}$$

$$(s_i f)(a_1, \ldots, a_{n-1}) = f(a_1, \ldots, a_i, 1_A, a_{i+1}, \ldots, a_{n-1}).$$

The Hochschild cohomology $HH^{\bullet}(A; M)$ is the cohomology of the cochain complex of the cosimplicial K-module $C^{\bullet}(A; M)$.
There is a cup product

\[\cup : C^m(A; A) \otimes_K C^n(A; A) \to C^{m+n}(A; A) \]

\[(f \cup g)(a_1, \ldots, a_{m+n}) = f(a_1, \ldots, a_m)g(a_{m+1}, \ldots, a_{m+n}) \]

and a brace operation

\[\{-\} : C^m(A; A) \otimes_K C^n(A; A) \to C^{m+n-1}(A; A) \]

where \(f \{ g \}(a_1, \ldots, a_{m+n-1}) \) is defined by

\[
\sum_{1 \leq i \leq m} (-1)^{(i-1)(n-1)} f(a_1, \ldots, a_{i-1}, g(a_i, \ldots, a_{i+n-1}), a_{i+n}, \ldots, a_{m+n-1}).
\]

The bracket \(\{ f, g \} = f \{ g \} - (-1)^{|f|-1(|g|-1)} g \{ f \} \) induces a Lie bracket of degree \(-1\) on \(HH^\bullet(A; A) \).
Gerstenhaber structure

Definition
A Gerstenhaber K-algebra $(H, \cup, \{-, -\})$ is a graded-commutative K-algebra with Lie bracket of degree -1 such that

$$\{f, g \cup h\} = \{f, g\} \cup h + (-1)^{|g|(|f|-1)} g \cup \{f, h\}.$$

Proposition (Gerstenhaber '63)
For any algebra A, the Hochschild cohomology $HH^\bullet(A; A)$ is a Gerstenhaber algebra.

Theorem (F. Cohen '72)
For any field K, the homology $H_\bullet(D_2; K)$ of the little disks operad is the operad for Gerstenhaber K-algebras.

Corollary
For any based space (X, \ast), the homology $H_\bullet(\Omega^2 X; K)$ is a Gerstenhaber K-algebra.
Connes’ coboundary on $C^\bullet(A; A^*)$

For $A^* = \text{Hom}_K(A, K)$, the adjunction

$$\text{Hom}_K(A \otimes^n, A^*) \cong \text{Hom}_K(A \otimes^{n+1}, K)$$

induces a cyclic operator τ_n on $C^n(A; A^*)$ of order $n + 1$. These cyclic operators are compatible with the simplicial operators:

$$\tau_{n+1} \partial_i = \partial_{i-1} \tau_n \quad i > 0, \quad \tau_{n-1} s_i = s_{i-1} \tau_n \quad i > 0.$$

It results a covariant functor on Connes’ cyclic category

$$\Delta C \to \text{Mod}_K : [n] \mapsto C^n(A; A^*).$$

In particular, $C^\bullet(A; A^*)$ is a mixed complex

$$C^0(A; A^*) \leftrightarrow C^1(A, A^*) \leftrightarrow C^2(A; A^*) \leftrightarrow \cdots$$

and $HH^\bullet(A; A^*)$ has a differential Δ of degree -1:

$$\Delta^n : HH^n(A, A^*) \to HH^{n-1}(A; A^*).$$
Batalin-Vilkovisky structure

Definition

A **Batalin-Vilkovisky algebra** is a Gerstenhaber algebra \((H, \cup, \{-, -\})\) with a differential \(\Delta\) of degree \(-1\) such that

\[
(-1)^{|f|}\{f, g\} = \Delta(f \cup g) - (\Delta f \cup g) - (-1)^{|f|}(f \cup \Delta g).
\]

A **symmetric** \(K\)-**algebra** \(A\) is a \(K\)-algebra equipped with an isomorphism of \(A\)-bimodules \(A \cong A^*\), i.e. a symmetric exact pairing \(<-,->: A \otimes_K A \to K\) such that \(<ab, c>=<a, bc>\).

Proposition (Menichi '04)

For any symmetric algebra \(A\), the Hochschild cohomology \(HH^{\bullet}(A, A)\) is a Batalin-Vilkovisky algebra.

Theorem (Getzler '94)

For any field \(K\), the homology \(H_{\bullet}(fD_2, K)\) of the framed little disks operad is the operad for Batalin-Vilkovisky \(K\)-algebras.
The dg- Deligne conjecture

Theorem (MS '02, KS '02, Vo '02, Ta '04, BF '04)
The Hochschild cochain complex of an algebra A admits a $C_\bullet(D_2)$-action inducing the Gerstenhaber structure on $HH^\bullet(A; A)$.

Theorem (KS '06, TZ '06, Ka '07, BB '09)
The Hochschild cochain complex of a symmetric algebra A admits a $C_\bullet(fD_2)$-action inducing the BV-structure on $HH^\bullet(A; A)$.

Proposition (Gerstenhaber-Voronov '95, Menichi '04)
The Hochschild cochain complex of A is isomorphic to the deformation complex of the endomorphism operad End_A of A.
If A is symmetric, then End_A is multiplicative cyclic.

Proof.
$C^n(A; A) = \text{Hom}(A^\otimes n, A) = \text{End}_A(n) \ni \mu_n$. For $f \in \text{End}_A(n)$, $\partial_0 f = \mu_2 \circ_1 f$, $\partial_n f = \mu_2 \circ_0 f$, $\partial_i f = f \circ_i \mu_2$ if $0 < i < n$.
If A is symmetric then End_A is cyclic and $\tau_n(\mu_n) = \mu_n$. \qed
Multiplicative operads

Definition
A multiplicative (cyclic) operad is a non-symmetric (cyclic) operad \(\mathcal{O} \) equipped with a map of (cyclic) operads \(\text{Ass} \to \mathcal{O} \). A multiplicative (cyclic) operad \(\mathcal{O} \) has an underlying cosimplicial (cocyclic) object \(\mathcal{O}^\bullet \). In a closed monoidal category \(\mathcal{E} \) equipped with \(\delta : \Delta \to \mathcal{E} \), the deformation complex of \(\mathcal{O} \) is \(\text{Hom}_\Delta(\delta^\bullet, \mathcal{O}^\bullet) \).

Example
For \(\mathcal{E} = \text{Ch}(\mathbb{Z}) \) and \(\delta_\mathbb{Z} : \Delta \to \text{Ch}(\mathbb{Z}) : [n] \mapsto N_* (\Delta [n]; \mathbb{Z}) \) we get

\[
C^\bullet (A; A) = \text{Hom}_\Delta (\delta^\bullet_\mathbb{Z}, \text{End}_A^\bullet).
\]

Theorem (Kaufmann '07, BB '09)
For any multiplicative chain operad \(\mathcal{O} \), the deformation complex of \(\mathcal{O} \) admits a \(C_\bullet (D_2) \)-action. If \(\mathcal{O} \) is multiplicative cyclic, this action extends to a \(C_\bullet (fD_2) \)-action.
The coloured operad for multiplicative operads

Let $\mathcal{L}_2(n_1, \ldots, n_k; n)$ be the set of iso-classes of planar rooted trees with n leaves and a bipartite vertex-set such that:

1. one part of the vertex-set is in bijection with $\{1, \ldots, k\}$;
2. the vertex with label i has arity n_i;
3. each edge has at least one labelled extremity;
4. unlabelled vertices have arity $\neq 1$.

Let $C[n] = \mathbb{Z}/(n + 1)\mathbb{Z}$ and put

$$\mathcal{L}^{cyc}_2(n_1, \ldots, n_k; n) = \mathcal{L}_2(n_1, \ldots, n_k; n) \times C[n_1] \times \cdots \times C[n_k].$$

\mathcal{L}_2 and \mathcal{L}^{cyc}_2 are \mathbb{N}-coloured operads for an evident substitution of trees into trees; in \mathcal{L}^{cyc}_2, the cyclic permutations distinguish for each labelled vertex one of its incident edges, the neutral element stands for the edge closest to the root of the tree.

Lemma

\mathcal{L}_2-algebras are multiplicative operads; \mathcal{L}^{cyc}_2-algebras are multiplicative cyclic operads. The category of unary operations of \mathcal{L}_2 (resp. \mathcal{L}^{cyc}_2) is Δ (resp. ΔC).
Condensation of coloured operads

Unary operations of a coloured operad act covariantly on inputs and contravariantly on the output; therefore:

\[\mathcal{L}_2(\cdot, \cdots, \cdot; \cdot): \Delta^{\text{op}} \times \cdots \times \Delta^{\text{op}} \times \Delta \to \text{Sets}. \]

Given \(\delta_{\mathbb{Z}}: \Delta \to \text{Ch}(\mathbb{Z}) \) we can realize multisimplicially, and totalize the resulting cosimplicial chain complex. This yields

\[\xi(\mathcal{L}_2, \delta_{\mathbb{Z}})(k) := \text{Hom}_{\Delta}(\delta^\bullet, \left| \mathcal{L}_2(-, \cdots, -; \cdot) \right|_{\delta_{\mathbb{Z}}^\otimes k}), \quad k \geq 0. \]

Proposition (Day-Street '03, McClure-Smith '04, BB '09)

\(\xi(\mathcal{L}_2, \delta_{\mathbb{Z}}) \) (resp. \(\xi(\mathcal{L}_2^{\text{cyc}}, \delta_{\mathbb{Z}}^{\text{cyc}}) \)) is a chain operad acting on the deformation complex of any multiplicative (cyclic) operad.

Theorem (BB '09)

As chain operads we have \(\xi(\mathcal{L}_2, \delta_{\mathbb{Z}}) \sim C_\bullet(D_2) \) and \(\xi(\mathcal{L}_2^{\text{cyc}}, \delta_{\mathbb{Z}}^{\text{cyc}}) \sim C_\bullet(fD_2). \)
The cobar complex of a bialgebra

Theorem (cf. Gerstenhaber-Schack ’92, Menichi ’04)

The cobar complex ΩA of a bialgebra (resp. involutive Hopf algebra) A has an action by $\xi(L_2, \delta_Z)$ (resp. $\xi(L_2^{cyc}, \delta_Z^{cyc})$). Its homology $H_\bullet(\Omega A; \mathbb{Z})$ is a Gerstenhaber (resp. BV-) algebra.

Proof.

The bialgebra A is a comonoid in the monoidal category of A-modules. Therefore: $(\Omega A)_n = A^\otimes n \cong \text{Hom}_A(A, A^\otimes n)$. This \mathbb{Z}-linear operad is multiplicative via the diagonal of A. If A has an involutive antipode then the operad is multiplicative cyclic. □

Remark

(a) $\Omega C_\bullet(\Omega X; \mathbb{Z}) \sim C_\bullet(\Omega^2 X; \mathbb{Z})$ (Adams). The $\xi(L_2, \delta_Z)$-action on $\Omega C_\bullet(\Omega X; \mathbb{Z})$ corresponds to the $C_\bullet(D_2)$-action on $C_\bullet(\Omega^2 X; \mathbb{Z})$.

(b) If A is involutive, the $\xi(L_2^{cyc}, \delta_Z^{cyc})$-action induces a cocyclic structure on ΩA yielding $HC^\bullet(A)$ of Connes-Moscovici ’99.

(c) $\xi(L_2, \delta_Z)$ contains the second filtration stage of the surjection operad of MS ’03, BF ’04 as a suboperad. Cyclic extension?
The topological Deligne conjecture

There is a cosimplicial resp. cocomplex space

\[\delta_{\text{top}} : \Delta \to \text{Top} : [n] \mapsto \Delta^n \text{ resp. } \delta_{\text{cyc}}^{\text{top}} : \Delta C \to \text{Top} : [n] \mapsto \Delta^n \times S^1. \]

Theorem (McClure-Smith '04, Salvatore '09, BB '09)

The operad \(\xi(\mathcal{L}_2, \delta_{\text{top}}) \) is weakly equivalent to \(D_2 \) and acts on the deformation complex of multiplicative operads in spaces.

The operad \(\xi(\mathcal{L}_2^{\text{cyc}}, \delta_{\text{cyc}}^{\text{top}}) \) is weakly equivalent to \(fD_2 \) and acts on the deformation complex of multiplicative cyclic operads in spaces.

Remark (cf. Markl '99, Salvatore-Wahl '03, Salvatore '09)

\[fD_2(k) \cong D_2(k) \times (S^1)^k, \quad \xi(\mathcal{L}_2^{\text{cyc}}, \delta_{\text{cyc}}^{\text{top}})(k) \cong \xi(\mathcal{L}_2, \delta_{\text{top}})(k) \times (S^1)^k. \]

For \(n = 1 \):

\[fD(1) \cong D(1) \times S^1, \quad \text{Hom}_{\Delta C}(\delta_{\text{cyc}}^{\text{top}}, \delta_{\text{cyc}}^{\text{top}}) \cong \text{Hom}_{\Delta}(\delta_{\text{top}}, \delta_{\text{top}}) \boxtimes S^1. \]

Proposition (Sinha '06)

The simplicial 2-sphere \(S^2 = \Delta[2]/\partial \Delta[2] \) is an \(\mathcal{L}_2 \)-coalgebra in finite pointed sets. For a based space \((X, \ast)\), \(\Omega^2 X \) is the deformation complex of the multiplicative operad \((X, \ast)(S^2, \ast)\).
Braid and ribbon-braid groups

\mathcal{S}_k denotes the *permutation group* on k letters. \mathcal{S}_k^\pm denotes the *signed permutation group* on k letters.

$\mathcal{S}_k^\pm = \mathcal{S}_k \wr \mathcal{S}_2 = \mathcal{S}_k \ltimes (\mathcal{S}_2)^k$ acts on $fD_2(k) = D_2(k) \times (S^1)^k$.

Definition (Braid and ribbon-braid groups on k strands)

\[
\begin{align*}
B_k &= \pi_1(D_2(k)/\mathcal{S}_k) \\
RB_k &= \pi_1(fD_2(k)/\mathcal{S}_k^\pm) \\
PB_k &= \pi_1(D_2(k)) \\
PRB_k &= \pi_1(fD_2(k))
\end{align*}
\]

Proposition (Asphericity of $D_2(k)$ and $fD_2(k)$)

\[
\begin{align*}
D_2(k)/\mathcal{S}_k &= K(B_k, 1) \\
fD_2(k)/\mathcal{S}_k^\pm &= K(RB_k, 1) \\
D_2(k) &= K(PB_k, 1) \\
fD_2(k) &= K(PRB_k, 1)
\end{align*}
\]

Corollary

The coverings $D_2(k) \to D_2(k)/\mathcal{S}_k$ and $fD_2(k) \to fD_2(k)/\mathcal{S}_k^\pm$ are classified by the short exact sequences $1 \to PB_k \to B_k \to \mathcal{S}_k \to 1$ and $1 \to PRB_k \to RB_k \to \mathcal{S}_k^\pm \to 1$.

Problem

Describe the operad structure of D_2 (resp. fD_2) in terms of the pure braid (resp. ribbon-braid) groups.
Coxeter geometry of permutation groups

The braid group B_k is an Artin group with presentation
$< s_1, \ldots, s_{k-1} | s_isj = sjsi$ if $|i - j| > 1$ and $s_isi+1si = si+1sisi+1 >$. The pure Artin group $PB_k = \text{Ker}(B_k \to \mathfrak{S}_k) \cong \pi_1(C^k - \mathcal{A}_{\mathfrak{S}_k})$ where $\mathcal{A}_{\mathfrak{S}_k}$ is the complexified braid arrangement.

The Salvetti complex $Sal_{\mathfrak{S}_k}$ is a partially ordered set of the same equivariant homotopy type as $C^k - \mathcal{A}_{\mathfrak{S}_k}$.

$Sal_- : (\text{Coxeter groups}) \to (\text{posets})$

is a functor commuting with finite products. Thus, $(PB_k)_{k \geq 0}$ is a categorical operad. Similarly, $(PRB_k)_{k \geq 0}$ is a categorical operad.

Proposition

$D_2 \sim K(PB, 1)$ and $fD_2 \sim K(PRB, 1)$ as operads. Moreover, PB-algebras are braided strict monoidal categories; PRB-algebras are ribbon-braided (i.e. balanced) strict monoidal categories.

Corollary (B ’98, Salvatore-Wahl ’03)

The nerve of a braided (resp. ribbon-braided) strict monoidal category is E_2 (resp. framed E_2).
The categorical Deligne conjecture

Consider the cosimplicial category

$$\delta_{\text{Cat}} : \Delta \to \text{Cat} : [n] \mapsto [n][n]^{-1}$$

Proposition

There are weak equivalences of categorical operads

$$PB \sim \xi(L_2, \delta_{\text{Cat}}) \quad \text{and} \quad PRB \sim \xi(L_{2, \text{cyc}}, \delta_{\text{cyc}}).$$

Definition

A central element of a monoidal category \mathcal{E} is a pair (A, c_A) where $c_{A,-} : A \otimes - \cong - \otimes A$ and $c_{A,B \otimes C} = (1_B \otimes c_{A,C}) \circ (c_{A,B} \otimes 1_C)$. The center $\mathcal{Z}\mathcal{E}$ is the category of central elements.

Proposition

For $\mathcal{E} = \text{Mod}_H$, $\mathcal{Z}\mathcal{E} \simeq \text{Mod}_{DH}$ where DH is the Drinfeld double of the Hopf algebra H.
The Drinfeld double of a Hopf algebra

Proposition (Street ’04)
\[Z \mathcal{E} = \text{Hom}_{\Delta}(\delta_{\text{Cat}}, \text{End}\mathcal{E}) \]

Corollary
The center of a monoidal category is braided monoidal; in particular, the Drinfeld double of a Hopf algebra is “braided”.

Definition
An involutive category is a closed monoidal category \mathcal{E} such that the duality functor $(_)^* = \text{Hom}(_ , I)$ is self-adjoint. A Hopf algebra H is called quasi-involutive if Mod_H is involutive.

Proposition
The category \mathcal{E}_f of symmetric duality objects of an involutive category \mathcal{E} has a multiplicative cyclic endomorphism-operad $\text{End}\mathcal{E}_f$.

Corollary
The center of \mathcal{E}_f is ribbon-braided; in particular, the Drinfeld double of a quasi-involutive Hopf algebra is “ribbon-braided”.