Examen du 7 avril 2016

1 heure

La correction tiendra compte de la clarté et de la concision de la rédaction. L'utilisation de calculatrices et de téléphones portables est interdite.

* *

Exercice 1. — Demi-tours et simplicité de SO(3). Une rotation $\varphi \in SO(3)$ d'axe D et d'angle π est dite un demi-tour autour de l'axe D.

- a) Quelle est la matrice d'un demi-tour autour de D dans un repère orthonormé (e_1, e_2, e_3) tel que $D = \mathbb{R}e_1$? En déduire que le composé de deux demi-tours φ_1, φ_2 autour d'axes D_1, D_2 tels que $D_1 \perp D_2$ est un demi-tour autour de l'axe $D_3 = (D_1 \oplus D_2)^{\perp}$.
- b) Soit φ_1 (resp. φ_2) un demi-tour autour de D_1 (resp. D_2). Montrer que, quelques soient $D_1 \neq D_2$, le composé $\varphi_2\varphi_1$ est une rotation dont on déterminera l'axe et l'angle. En déduire que toute rotation s'écrit comme le composé de deux demi-tours. Conclure que le groupe SO(3) est engendré par les demi-tours.
- c) Soient $\varphi, \varphi_1 \in SO(3)$. Montrer que si φ_1 est un demi-tour autour de D_1 alors $\varphi_2 = \varphi \varphi_1 \varphi^{-1}$ est un demi-tour autour de $D_2 = \varphi(D)$. En déduire que les demi-tours forment une classe de conjugaison de SO(3).
- d) On suppose que H est un sous-groupe distingué de SO(3) non réduit à l'élément neutre. Montrer que H contient une rotation r_{α} d'angle $\alpha \in]0, \pi]$. En déduire que H contient également une rotation r_{β} d'angle $\beta \in [\pi/2, \pi]$.
- e) On admet que pour la rotation r_{β} de (d) il existe une droite vectorielle D tq. $D \perp r_{\beta}(D)$. On notera φ_D le demi-tour autour de D. Montrer que le composé $\varphi_D r_{\beta} \varphi_D^{-1} r_{\beta}^{-1}$ appartient à H et montrer à l'aide de (c), (a) qu'il représente un demi-tour. En déduire à l'aide de (b), (c) que H = SO(3). Conclure que SO(3) est simple.

* *

Exercice 2. — Triangle et tétraèdre réguliers.

- a) Montrer que l'enveloppe convexe T des trois points $(-\frac{\sqrt{3}}{2}, -\frac{1}{2}), (\frac{\sqrt{3}}{2}, -\frac{1}{2}), (0, 1)$ de \mathbb{R}^2 est un triangle équilatéral de \mathbb{R}^2 dont le barycentre est l'origine de \mathbb{R}^2 .
- b) Montrer que l'origine de \mathbb{R}^3 est le barycentre de l'enveloppe convexe Δ des quatre points

$$(0,0,\frac{3}{2\sqrt{2}}),(-\frac{\sqrt{3}}{2},-\frac{1}{2},-\frac{1}{2\sqrt{2}}),(\frac{\sqrt{3}}{2},-\frac{1}{2},-\frac{1}{2\sqrt{2}}),(0,1,-\frac{1}{2\sqrt{2}}).$$

Combien d'arêtes et de faces possède le polyèdre convexe Δ . Vérifier la formule d'Euler.

- c) Montrer que les arêtes de Δ ont toutes la même longueur.
- d) Soit α une arête de Δ . On note H_{α} l'hyperplan de \mathbb{R}^3 contenant α et s_{α} la réflexion par rapport à H_{α} . Montrer que s_{α} fixe deux sommets de Δ et échange les deux autres.
- e) On note \mathcal{I}_{Δ} le sous-groupe de O(3) formé des transformations qui laissent stable l'ensemble des sommets de Δ . Montrer que si $\varphi, \psi \in \mathcal{I}_{\Delta}$ induisent la même application sur les sommets alors $\varphi = \psi$. Montrer à l'aide de (d) que toute permutation de l'ensemble des sommets de Δ qui laisse fixe deux d'entre eux provient d'un élément de \mathcal{I}_{Δ} . En déduire que $\mathcal{I}_{\Delta} \cong \mathfrak{S}_4$

Barême indicatif: 5+5