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Part 1. Simplicial sets.

The simplex category ∆ is the category of fi-

nite non-empty ordinals [n] = {0,1, . . . , n}.
A simplicial set is a functor X : ∆op → Sets.

The category of simplicial sets is denoted ∆̂.

The functor ∆ → Top : [n] 7→ ∆n induces a

left exact topological realisation functor

∆̂ → Top : X 7→ |X| = X ⊗∆ ∆−.

The latter is the left adjoint part of a Quillen

equivalence, and thus induces an equivalence

of homotopy categories Ho(∆̂) ' Ho(Top).

The Quillen model structure on simplicial sets

has the monomorphisms as cofibrations, the

realisation weak equivalences as weak equiva-

lences, and the Kan fibrations as fibrations.

The resulting homotopy theory of simplicial

sets is in a strong sense equivalent to the ho-

motopy theory of topological spaces.
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Each simplicial set X defines a (normalised)

chain complex N∗(X;Z). The chain functor

N∗ : ∆̂ → Ch(Z)

is obtained by left Kan extension from its re-

striction to ∆. N∗(∆[n];Z) is isomorphic to

the chain complex of the CW-complex ∆n.

Thus, N∗ has a right adjoint K : Ch(Z) → ∆̂.

Actually, N∗ : ∆̂ � Ch(Z) : K is a Quillen pair

(for the projective model structure on Ch(Z)).

In particular, for a simplicial set X, and a chain

complex (A, n) concentrated in degree n:

HomCh(Z)(N∗(X), (A, n)) ∼= Hom
∆̂

(X, K(A, n)).

Passing to homotopy classes, we get:

Hn(X;A) ∼= [X, K(A, n)].
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Since K factors through the category of abelian

groups in ∆̂, the Theorem of Dold-Kan yields:

πk(K(A, n)) = Hk((A, n);Z) =

A if k = n;

0 if k 6= n.

Thus, K(A, n) is an Eilenberg-Mac Lane object

of type (A, n) in ∆̂.

They show that K(A, n) = W
n
K(A,0) for a

simplicial bar construction W , and moreover

N∗(W
n
K(A,0)) ∼ BnN∗(K(A,0)) for a “more

perspicuous” algebraic bar construction B.

Purpose of this talk:

• construct a CW -complex whose chain com-

plex is isomorphic to BnZ[A];

• Serre’s calculation of H∗(K(Z/2, n);Z/2) and

of (HZ/2)∗(HZ/2) on cochain level;

• connections to stable homotopy theory.
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Part 2. Geometric Reedy categories.

For any small category A, Â denotes the cate-

gory of presheaves on A, and A[a] denotes the

presheaf represented by the object a of A.

The subobjects of a form the so-called face-

poset Fa of a. The retractive quotients of a

form the so-called degeneracy-poset of a.

Def. 1. A geometric Reedy category is a small

category A such that:

(GR1) any morphism factors uniquely into a

retraction followed by a monomorphism;

(GR2) the face-poset of any object is finite

and realises to a cone on a sphere;

(GR3) the degeneracy-poset of any object is a

lattice;

(GR4) Â has a natural cylinder object.
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Remark. Baues uses a slightly weaker notion
than (GR1-3) in his analysis of Adams’ cobar
construction (DI-categories with retractions).

(GR2) implies that for any a, Fa is the face-
poset of a finite regular CW-complex Ca. In
particular, Fa is ranked, and the objects a of
A are graded by rk(Fa); monics (resp. retrac-
tions) rise (resp. lower) this degree. Thus, A
is a Reedy category by (GR1-2).

(GR3) implies (i) A[a]×A[b] is the union of its
representable subobjects; (ii) any “element”
A[a] → X factors uniquely as the “degeneracy”
of a “non-degenerate” element (Eilenberg).

(GR1-3) imply the existence of a geometric
realisation functor

| − |A : Â → Top

mapping A[a] to Ca, and mapping a general
presheaf X to a CW -complex |X|A with as
many cells as there are non-degenerate ele-
ments in X.
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A natural cylinder for Â is a functorial factori-

sation of the codiagonal X t X → X into a

monomorphism X tX � Cyl(X) followed by a

realisation weak equivalence Cyl(X)
∼−→ X.

Recall that the category of elements A/X has

as objects the elements A[−] → X, and as mor-

phisms commuting triangles of elements of X.

Lemma 1. If A fulfills (GR1-3), then |f |A :

|X|A → |Y |A is a weak equivalence iff A/f :

A/X → A/Y is. Moreover, the nerve of A is

weakly equivalent to | ∗ |A.

Theorem 1. (Cisinski) The presheaf category

Â for a geometric Reedy category A is a cofi-

brantly generated model category with mono-

morphisms as cofibrations, and realisation weak

equivalences as weak equivalences. The fibra-

tions are characterised by horn-filler conditions.

The realisation functor |−|A is the left adjoint

part of a Quillen equivalence Â � Top/| ∗ |A.

7



Proposition 1. -

(i) ∆ is a geometric Reedy category;

(ii) The product of two geometric Reedy cat-

egories is a geometric Reedy category;

(iii) For any presheaf X on a geometric Reedy

category A, the category of elements A/X is

a geometric Reedy category.

Def. 2. For a small category A, the wreath-

product ∆ o A is the category

• with objects the m-tupels (a1, . . . , am) ∈ Am

for varying m ≥ 0;

• with morphisms all (m + 1)-tupels

(φ;φ1, . . . , φm) : (a1, . . . , am) → (b1, . . . , bn)

consisting of a simplicial operator φ : [m] → [n]

and morphisms (φi)1≤i≤m in Â of the form

φi : A[ai] →
∏

φ(i−1)<k≤φ(i)

A[bk].
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A geometric Reedy category A is called flat

if the realisation functor |−|A is left exact; in

particular this implies |∗|A = ∗.

Proposition 2. For any flat geometric Reedy

category A, the wreath-product ∆ o A is again

a flat geometric Reedy category.

Def. 3. The diagonal δA : ∆ × A → ∆ o A is

defined by

([n], a) 7→
n︷ ︸︸ ︷

(a, . . . , a) .

Proposition 3. For any flat geometric Reedy

category A, the following diagram commutes:

∆̂ o A
|−|∆oA

- Top

∆̂×A

(δA)∗

? |−
|∆×

A

-
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Part 3. Iterated wreath-products.

Let Θ1 = ∆ and, inductively, Θn = ∆ oΘn−1.

In particular, there is an iterated diagonal

δn :
n︷ ︸︸ ︷

∆× · · · ×∆ → Θn.

The objects of Θn can be identified with finite

level-trees of height ≤ n. Batanin associates

to each such level-tree T an n-graph T∗.

Theorem 2. Θn is isomorphic to the full sub-

category of nCat spanned by the free n-catego-

ries on T∗, where T runs through the finite

level-trees of height ≤ n. The associated nerve

functor nCat → Θ̂n is fully faithful.

Remark. The composite nCat → Θ̂n
δ∗n→ ∆̂n is

the classical n-simplicial nerve of an n-category.

The latter is not a full functor for n ≥ 2 ! Al-

though the realisations are homeomorphic (see

Prop. 3), the cellular structures are different.

10



Remark. The morphisms of Θn can be de-

scribed in terms of the tree-structure of its

objects. We get in particular a shuffle-formula:

Θn[S]×Θn[T ] =
⋃

U∈shuff(S,T )

Θn[U ].

The realisation functor associates to each tree

T a convex subset of a cube of dimension equal

to the number of edges of T . The 1-level trees

realise to simplices, the linear trees to balls.

Segal’s category Γ has as objects the finite

sets n = {1, . . . , n} and as morphisms m → n,

the m-tupels of pairwise disjoint subsets of n.

Segal’s functor γ : ∆ → Γ : [n] 7→ n extends to

a functor of wreath-products γoA : ∆oA → ΓoA.

Recall that φ : [m] → [n] maps to

γ(φ) = (]φ(0), φ(1)], . . . , ]φ(m− 1), φ(m)]).
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Def. 4. Define γ1 : Θ1
γ→ Γ, and inductively,

γn : Θn = ∆ oΘn−1
γoγn−1−→ Γ o Γ α−→ Γ

where α is induced by disjoint sum.

γop : ∆op → Γop ⊂ Sets∗ represents a circle,

namely ∆[1]/∂∆[1].

γop
n : Θop

n → Γop ⊂ Sets∗ represents an n-

sphere, namely Θn[1n]/∂Θn[1n] where 1n is the

linear tree of height n.

Each Γ-space A : Γop → Top induces a Segal

spectrum (A(Sn))n≥0.

Proposition 4. For each n ≥ 0, there is a

homeomorphism A(Sn) ∼= |γ∗nA|Θn.

The structural maps A(Sn)∧S1 → A(Sn+1) are

induced by suspension functors

σn : Θn → Θn+1 : T 7→ (T ).
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Part 4. Eilenberg-Mac Lane spaces.

The Eilenberg-Mac Lane spectrum represent-
ing cohomology with coefficients in the abelian
group A is induced by the Γ-set

HA : Γop → Sets : n 7→ An.

i.e. HA(Sn) ∼= |γ∗n(HA)|Θn is an EM-space.

Therefore, the Θn-set K(A, n) := γ∗n(HA) is an
EM-object of type (A, n) in Θ̂n.

K(A, n)(T ) = Aγn(T ) for T ∈ Θn.

Proposition 5. N∗(K(A, n);Z) ∼= BnZ[A].

Since Θn is geometric Reedy, |K(A, n)|Θn is
a CW-complex with as many cells as there
are non-degenerate elements in K(A, n) resp.
pruned level-trees of height n whose leaves are
labelled by non-zero elements of A.

# cells in dim 0 1 2 3 4 5 6 7 8 9
K(Z/2Z,1) 1 1 1 1 1 1 1 1 1 1
K(Z/2Z,2) 1 0 1 1 2 3 5 8 13 21
K(Z/2Z,3) 1 0 0 1 1 2 4 7 13 24

13



Remark. For finite A, the generating func-
tion

∑
d≥0 cdt

d for the number cd of cells of
K(A, n) in dimension d is a rational function
of t, which yields for t = −1 an Euler charac-
teristic of the CW -complex |K(A, n)|Θn. We
get the “expected” value

χ(K(A, n)) = (#A)(−1)n
.

Serre’s calculation of H∗(K(Z/2Z, n);Z/2Z).

One considers the path-fibration

ΩK(Z/2, n) → PK(Z/2, n) → K(Z/2, n).

H∗(K(Z/2, n− 1);Z/2)) is an abelian Hopf al-
gebra, i.e. (by Milnor-Moore) the enveloping
algebra of a 2-restricted abelian Lie algebra. A
PBW-basis of the latter has been constructed
inductively by “saturating” a polynomial ba-
sis of H∗(K(Z/2, n − 1);Z/2) under the cup-
squaring operation. Borel’s Theorem yields
then a polynomial basis of H∗(K(Z/2, n);Z/2)
as the image under transgression of the PBW-
basis of H∗(K(Z/2, n− 1);Z/2).
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This calculation can be carried out on cochain
level as soon as cup squares and transgression
can be represented on cochain level.

The cup product is deduced from

N∗(X)⊗N∗(X)
AW ∗
−→ N∗(X ×X)

∆∗
−→ N∗(X).

The cohomological transgression is deduced
from the “homology-suspension”

H∗(K(A, n− 1);Z)
σ∗−→ H∗+1(K(A, n);Z).

A pruned level-tree is called 2-admissible if the
root-vertex has valence 1, for each vertex the
number of incoming edges is a power of 2, and
vertices of same height have same number of
incoming edges. A cocylce is monogenic if it
belongs to the dual basis.

Proposition 6. H∗(K(Z/2Z, n);Z/2Z) is a poly-
nomial algebra generated by the monogenic co-
cycles on 2-admissible trees of height n.
The latter represent the SqI(en), e(I) < n.
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