Small CW-models for Eilenberg-Mac Lane spaces *

in honour of Prof. Dr. Hans-Joachim Baues Bonn, March 2008

^{*}Clemens Berger (Nice)

Part 1. Simplicial sets.

The simplex category Δ is the category of finite non-empty ordinals $[n] = \{0, 1, \ldots, n\}$. A simplicial set is a functor $X : \Delta^{\operatorname{op}} \to \operatorname{Sets}$. The category of simplicial sets is denoted $\widehat{\Delta}$.

The functor $\Delta \to \mathsf{Top} : [n] \mapsto \Delta_n$ induces a left exact topological realisation functor

$$\widehat{\Delta} \to \mathsf{Top} : X \mapsto |X| = X \otimes_{\Delta} \Delta_{-}.$$

The latter is the left adjoint part of a Quillen equivalence, and thus induces an equivalence of homotopy categories $\operatorname{Ho}(\widehat{\Delta}) \simeq \operatorname{Ho}(\mathsf{Top})$.

The Quillen model structure on simplicial sets has the *monomorphisms* as cofibrations, the *realisation weak equivalences* as weak equivalences, and the *Kan fibrations* as fibrations. The resulting homotopy theory of simplicial sets is in a strong sense equivalent to the homotopy theory of topological spaces.

Each simplicial set X defines a (normalised) chain complex $N_*(X; \mathbb{Z})$. The chain functor

$$N_*:\widehat{\Delta}\to\mathsf{Ch}(\mathbb{Z})$$

is obtained by left Kan extension from its restriction to Δ . $N_*(\Delta[n]; \mathbb{Z})$ is isomorphic to the chain complex of the *CW-complex* Δ_n .

Thus, N_* has a right adjoint $K : Ch(\mathbb{Z}) \to \widehat{\Delta}$. Actually, $N_* : \widehat{\Delta} \leftrightarrows Ch(\mathbb{Z}) : K$ is a Quillen pair (for the projective model structure on $Ch(\mathbb{Z})$).

In particular, for a simplicial set X, and a chain complex (A, n) concentrated in degree n:

 $\operatorname{Hom}_{\operatorname{Ch}(\mathbb{Z})}(N_*(X),(A,n)) \cong \operatorname{Hom}_{\widehat{\Delta}}(X,K(A,n)).$

Passing to homotopy classes, we get:

$$H^n(X; A) \cong [X, K(A, n)].$$

Since K factors through the category of abelian groups in $\widehat{\Delta}$, the *Theorem of Dold-Kan* yields:

$$\pi_k(K(A,n)) = H_k((A,n); \mathbb{Z}) = \begin{cases} A & \text{if } k = n; \\ 0 & \text{if } k \neq n. \end{cases}$$

Thus, K(A, n) is an Eilenberg-Mac Lane object of type (A, n) in $\widehat{\Delta}$.

They show that $K(A,n) = \overline{W}^n K(A,0)$ for a simplicial bar construction \overline{W} , and moreover $N_*(\overline{W}^n K(A,0)) \sim B^n N_*(K(A,0))$ for a "more perspicuous" algebraic bar construction B.

Purpose of this talk:

- construct a CW-complex whose chain complex is *isomorphic* to $B^n\mathbb{Z}[A]$;
- Serre's calculation of $H^*(K(\mathbb{Z}/2, n); \mathbb{Z}/2)$ and of $(H\mathbb{Z}/2)^*(H\mathbb{Z}/2)$ on cochain level;
- connections to stable homotopy theory.

Part 2. Geometric Reedy categories.

For any small category \mathcal{A} , $\widehat{\mathcal{A}}$ denotes the category of presheaves on \mathcal{A} , and $\mathcal{A}[a]$ denotes the presheaf represented by the object a of \mathcal{A} . The *subobjects* of a form the so-called *face-poset* F_a of a. The *retractive quotients* of a form the so-called degeneracy-poset of a.

Def. 1. A geometric Reedy category is a small category A such that:

(GR1) any morphism factors uniquely into a retraction followed by a monomorphism;

(GR2) the face-poset of any object is finite and realises to a cone on a sphere;

(GR3) the degeneracy-poset of any object is a lattice;

(GR4) \widehat{A} has a natural cylinder object.

Remark. Baues uses a slightly weaker notion than (GR1-3) in his analysis of Adams' cobar construction (DI-categories with retractions).

(GR2) implies that for any a, F_a is the faceposet of a finite regular CW-complex C_a . In particular, F_a is ranked, and the objects a of \mathcal{A} are graded by $\operatorname{rk}(F_a)$; monics (resp. retractions) rise (resp. lower) this degree. Thus, \mathcal{A} is a Reedy category by (GR1-2).

(GR3) implies (i) $\mathcal{A}[a] \times \mathcal{A}[b]$ is the union of its representable subobjects; (ii) any "element" $\mathcal{A}[a] \to X$ factors uniquely as the "degeneracy" of a "non-degenerate" element (*Eilenberg*).

(GR1-3) imply the existence of a geometric realisation functor

$$|-|_A:\widehat{\mathcal{A}} o \mathsf{Top}$$

mapping $\mathcal{A}[a]$ to C_a , and mapping a general presheaf X to a CW-complex $|X|_{\mathcal{A}}$ with as many cells as there are non-degenerate elements in X.

A natural cylinder for $\widehat{\mathcal{A}}$ is a functorial factorisation of the codiagonal $X \sqcup X \to X$ into a monomorphism $X \sqcup X \rightarrowtail \operatorname{Cyl}(X)$ followed by a realisation weak equivalence $\operatorname{Cyl}(X) \stackrel{\sim}{\longrightarrow} X$.

Recall that the *category of elements* A/X has as objects the elements $A[-] \to X$, and as morphisms commuting triangles of elements of X.

Lemma 1. If \mathcal{A} fulfills (GR1-3), then $|f|_{\mathcal{A}}$: $|X|_{\mathcal{A}} \to |Y|_{\mathcal{A}}$ is a weak equivalence iff \mathcal{A}/f : $\mathcal{A}/X \to \mathcal{A}/Y$ is. Moreover, the nerve of \mathcal{A} is weakly equivalent to $|*|_{\mathcal{A}}$.

Theorem 1. (Cisinski) The presheaf category \widehat{A} for a geometric Reedy category A is a cofibrantly generated model category with monomorphisms as cofibrations, and realisation weak equivalences as weak equivalences. The fibrations are characterised by horn-filler conditions.

The realisation functor $|-|_{\mathcal{A}}$ is the left adjoint part of a Quillen equivalence $\widehat{\mathcal{A}} \leftrightarrows \mathsf{Top}/|*|_{\mathcal{A}}$.

Proposition 1. -

- (i) \triangle is a geometric Reedy category;
- (ii) The product of two geometric Reedy categories is a geometric Reedy category;
- (iii) For any presheaf X on a geometric Reedy category A, the category of elements A/X is a geometric Reedy category.
- **Def. 2.** For a small category A, the wreath-product $\Delta \wr A$ is the category
- with objects the m-tupels $(a_1, \ldots, a_m) \in \mathcal{A}^m$ for varying $m \geq 0$;
- with morphisms all (m+1)-tupels

$$(\phi;\phi_1,\ldots,\phi_m):(a_1,\ldots,a_m)\to(b_1,\ldots,b_n)$$

consisting of a simplicial operator $\phi:[m] \to [n]$ and morphisms $(\phi_i)_{1 \le i \le m}$ in $\widehat{\mathcal{A}}$ of the form

$$\phi_i : \mathcal{A}[a_i] \to \prod_{\substack{\phi(i-1) < k \le \phi(i)}} \mathcal{A}[b_k].$$

A geometric Reedy category \mathcal{A} is called *flat* if the realisation functor $|-|_{\mathcal{A}}$ is *left exact*; in particular this implies $|*|_{\mathcal{A}} = *$.

Proposition 2. For any flat geometric Reedy category A, the wreath-product $\Delta \wr A$ is again a flat geometric Reedy category.

Def. 3. The diagonal $\delta_{\mathcal{A}}: \Delta \times \mathcal{A} \to \Delta \wr \mathcal{A}$ is defined by

$$([n],a)\mapsto \overbrace{(a,\ldots,a)}^n.$$

Proposition 3. For any flat geometric Reedy category A, the following diagram commutes:

Part 3. Iterated wreath-products.

Let $\Theta_1 = \Delta$ and, inductively, $\Theta_n = \Delta \wr \Theta_{n-1}$. In particular, there is an iterated diagonal

$$\delta_n: \overbrace{\Delta \times \cdots \times \Delta}^n \to \Theta_n.$$

The objects of Θ_n can be identified with *finite* level-trees of height $\leq n$. Batanin associates to each such level-tree T an n-graph T_* .

Theorem 2. Θ_n is isomorphic to the full subcategory of nCat spanned by the free n-categories on T_* , where T runs through the finite level-trees of height $\leq n$. The associated nerve functor $nCat \to \widehat{\Theta}_n$ is fully faithful.

Remark. The composite $nCat \to \widehat{\Theta}_n \overset{\delta_n^*}{\to} \widehat{\Delta^n}$ is the classical n-simplicial nerve of an n-category. The latter is not a full functor for $n \geq 2$! Although the realisations are homeomorphic (see Prop. 3), the cellular structures are different.

Remark. The morphisms of Θ_n can be described in terms of the tree-structure of its objects. We get in particular a shuffle-formula:

$$\Theta_n[S] \times \Theta_n[T] = \bigcup_{U \in \mathsf{shuff}(S,T)} \Theta_n[U].$$

The realisation functor associates to each tree T a convex subset of a cube of dimension equal to the number of edges of T. The 1-level trees realise to simplices, the linear trees to balls.

Segal's category Γ has as objects the finite sets $\underline{n}=\{1,\ldots,n\}$ and as morphisms $\underline{m}\to\underline{n}$, the m-tupels of pairwise disjoint subsets of \underline{n} . Segal's functor $\gamma:\Delta\to\Gamma:[n]\mapsto\underline{n}$ extends to a functor of wreath-products $\gamma\wr\mathcal{A}:\Delta\wr\mathcal{A}\to\Gamma\wr\mathcal{A}$.

Recall that $\phi:[m]\to[n]$ maps to

$$\gamma(\phi) = (]\phi(0), \phi(1)], \dots,]\phi(m-1), \phi(m)]$$

Def. 4. Define $\gamma_1 : \Theta_1 \xrightarrow{\gamma} \Gamma$, and inductively,

$$\gamma_n: \Theta_n = \Delta \wr \Theta_{n-1} \stackrel{\gamma \wr \gamma_{n-1}}{\longrightarrow} \Gamma \wr \Gamma \stackrel{\alpha}{\longrightarrow} \Gamma$$

where α is induced by disjoint sum.

 $\gamma^{\rm op}:\Delta^{\rm op}\to\Gamma^{\rm op}\subset{\sf Sets}_*$ represents a *circle*, namely $\Delta[1]/\partial\Delta[1].$

 $\gamma_n^{\text{op}}: \Theta_n^{\text{op}} \to \Gamma^{\text{op}} \subset \text{Sets}_*$ represents an n-sphere, namely $\Theta_n[1_n]/\partial \Theta_n[1_n]$ where 1_n is the linear tree of height n.

Each Γ -space $A: \Gamma^{op} \to \text{Top induces a } Segal spectrum <math>(\underline{A}(S^n))_{n>0}$.

Proposition 4. For each $n \geq 0$, there is a homeomorphism $\underline{A}(S^n) \cong |\gamma_n^* A|_{\Theta_n}$.

The structural maps $\underline{A}(S^n) \wedge S^1 \to \underline{A}(S^{n+1})$ are induced by suspension functors

$$\sigma_n: \Theta_n \to \Theta_{n+1}: T \mapsto (T).$$

Part 4. Eilenberg-Mac Lane spaces.

The Eilenberg-Mac Lane spectrum representing cohomology with coefficients in the abelian group A is induced by the Γ -set

$$HA: \Gamma^{\mathsf{op}} \to \mathsf{Sets}: \underline{n} \mapsto A^{\underline{n}}.$$

i.e.
$$\underline{HA}(S^n) \cong |\gamma_n^*(HA)|_{\Theta_n}$$
 is an EM-space.

Therefore, the Θ_n -set $K(A, n) := \gamma_n^*(HA)$ is an EM-object of type (A, n) in $\widehat{\Theta}_n$.

$$K(A,n)(T) = A^{\gamma_n(T)}$$
 for $T \in \Theta_n$.

Proposition 5. $N_*(K(A, n); \mathbb{Z}) \cong B^n \mathbb{Z}[A]$.

Since Θ_n is geometric Reedy, $|K(A,n)|_{\Theta_n}$ is a CW-complex with as many cells as there are non-degenerate elements in K(A,n) resp. pruned level-trees of height n whose leaves are labelled by non-zero elements of A.

# cells in dim	0	1	2	3	4	5	6	7	8	9
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1	0	1	1	2	3	5	8	13	21
$K(\mathbb{Z}/2\mathbb{Z},3)$	1	0	0	1	1	2	4	7	13	24

Remark. For finite A, the generating function $\sum_{d\geq 0} c_d t^d$ for the number c_d of cells of K(A,n) in dimension d is a rational function of t, which yields for t=-1 an Euler characteristic of the CW-complex $|K(A,n)|_{\Theta_n}$. We get the "expected" value

$$\chi(K(A,n)) = (\#A)^{(-1)^n}.$$

Serre's calculation of $H^*(K(\mathbb{Z}/2\mathbb{Z},n);\mathbb{Z}/2\mathbb{Z})$.

One considers the path-fibration

$$\Omega K(\mathbb{Z}/2,n) \to PK(\mathbb{Z}/2,n) \to K(\mathbb{Z}/2,n).$$

 $H^*(K(\mathbb{Z}/2,n-1);\mathbb{Z}/2))$ is an abelian Hopf algebra, i.e. (by Milnor-Moore) the enveloping algebra of a 2-restricted abelian Lie algebra. A PBW-basis of the latter has been constructed inductively by "saturating" a polynomial basis of $H^*(K(\mathbb{Z}/2,n-1);\mathbb{Z}/2)$ under the cup-squaring operation. Borel's Theorem yields then a polynomial basis of $H^*(K(\mathbb{Z}/2,n);\mathbb{Z}/2)$ as the image under transgression of the PBW-basis of $H^*(K(\mathbb{Z}/2,n-1);\mathbb{Z}/2)$.

This calculation can be carried out on cochain level as soon as cup squares and transgression can be represented on cochain level.

The cup product is deduced from

$$N^*(X) \otimes N^*(X) \xrightarrow{AW^*} N^*(X \times X) \xrightarrow{\Delta^*} N^*(X).$$

The cohomological transgression is deduced from the "homology-suspension"

$$H_*(K(A, n-1); \mathbb{Z}) \xrightarrow{\sigma_*} H_{*+1}(K(A, n); \mathbb{Z}).$$

A pruned level-tree is called 2-admissible if the root-vertex has valence 1, for each vertex the number of incoming edges is a power of 2, and vertices of same height have same number of incoming edges. A cocylce is *monogenic* if it belongs to the dual basis.

Proposition 6. $H^*(K(\mathbb{Z}/2\mathbb{Z}, n); \mathbb{Z}/2\mathbb{Z})$ is a polynomial algebra generated by the monogenic cocycles on 2-admissible trees of height n.

The latter represent the $Sq^{I}(e_n), e(I) < n$.