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Part 1. Simplicial sets.

The simplex category /A is the category of fi-
nite non-empty ordinals [n] = {0,1,...,n}.
A simplicial set is a functor X : A°P — Sets.

—~

The category of simplicial sets is denoted A.

The functor A — Top : [n] — A, induces a
left exact topological realisation functor

A—>Top: X |X|=XQaA_.

The latter is the left adjoint part of a Quillen
equivalence, and thus induces an equivalence
of homotopy categories Ho(A) ~ Ho(Top).

The Quillen model structure on simplicial sets
has the monomorphisms as cofibrations, the
realisation weak equivalences as weak equiva-
lences, and the Kan fibrations as fibrations.
The resulting homotopy theory of simplicial
sets is in a strong sense equivalent to the ho-
motopy theory of topological spaces.



Each simplicial set X defines a (normalised)
chain complex N«(X;Z). The chain functor

Ny : A — Ch(Z)

IS obtained by left Kan extension from its re-
striction to A. N«(A[n];7Z) is isomorphic to
the chain complex of the CW-complex A,.

Thus, Ny has a right adjoint K : Ch(Z) — A.
Actually, Ny : A S Ch(Z) : K is a Quillen pair
(for the projective model structure on Ch(Z)).

In particular, for a simplicial set X, and a chain
complex (A,n) concentrated in degree n:

HomCh(Z)(N*(X), (A,n)) = HomZ(X,K(A,n)).
Passing to homotopy classes, we get:

H™(X: A) & [X, K(A,n)].



Since K factors through the category of abelian
groups in Z, the Theorem of Dold-Kan vyields:

A ifk=mn;

T (K(A,n)) = Hi((A;n); Z) = {o if k% n.

Thus, K(A,n) is an Eilenberg-Mac Lane object
of type (A,n) in A.

They show that K(A4,n) = W' 'K(A,0) for a
simplicial bar construction W, and moreover
N«(W"K(A,0)) ~ B"N4(K(A,0)) for a “more
perspicuous’ algebraic bar construction B.

Purpose of this talk:

e construct a CW-complex whose chain com-
plex is isomorphic to B"Z[A];
e Serre’s calculation of H*(K(Z/2,n);7Z/2) and
of (HZ/2)*(HZ/2) on cochain level;
e connections to stable homotopy theory.
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Part 2. Geometric Reedy categories.

For any small category A, A denotes the cate-
gory of presheaves on A, and Ala] denotes the
presheaf represented by the object a of A.
The subobjects of a form the so-called face-
poset F, of a. The retractive quotients of a
form the so-called degeneracy-poset of a.

Def. 1. A geometric Reedy category is a small
category A such that:

(GR1) any morphism factors uniquely into a
retraction followed by a monomorphism;

(GR2) the face-poset of any object is finite
and realises to a cone on a sphere;

(GR3) the degeneracy-poset of any object is a
lattice;

(GR4) A has a natural cylinder object.



Remark. Baues uses a slightly weaker notion
than (GR1-3) in his analysis of Adams’ cobar
construction (DI-categories with retractions).

(GR2) implies that for any a, F, is the face-
poset of a finite regular CW-complex C,. In
particular, Fy is ranked, and the objects a of
A are graded by rk(Fy); monics (resp. retrac-
tions) rise (resp. lower) this degree. Thus, A
is a Reedy category by (GR1-2).

(GR3) implies (i) Ala] x A[b] is the union of its
representable subobjects; (ii) any “element”
Ala] — X factors uniquely as the ‘“degeneracy”
of a “non-degenerate” element (Eilenberg).

(GR1-3) imply the existence of a geometric
realisation functor

| —|4:A— Top
mapping Ala] to Cg, and mapping a general
presheaf X to a CW-complex |X|4 with as

many cells as there are non-degenerate ele-
ments in X.



A natural cylinder for A is a functorial factori-
sation of the codiagonal X LU X — X into a
monomorphism X L X »— Cyl(X) followed by a
realisation weak equivalence Cyl(X) — X.

Recall that the category of elements A/X has
as objects the elements A[—-] — X, and as mor-
phisms commuting triangles of elements of X.

Lemma 1. If A fulfills (GR1-3), then |f|4 :
| X|4 — |Y|4 is @ weak equivalence iff A/f :
A/X — A/Y is. Moreover, the nerve of A is
weakly equivalent to | x| 4.

Theorem 1. (Cisinski) The presheaf category
A for a geometric Reedy category A is a cofi-
brantly generated model category with mono-
morphisms as cofibrations, and realisation weak
equivalences as weak equivalences. The fibra-
tions are characterised by horn-filler conditions.

The realisation functor |—| 4 is the left adjoint
part of a Quillen equivalence A< Top/|* 4.
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Proposition 1. -

(i) A is a geometric Reedy category;

(ii) The product of two geometric Reedy cat-
egories is a geometric Reedy category;

(iii) For any presheaf X on a geometric Reedy
category A, the category of elements A/X is
a geometric Reedy category.

Def. 2. For a small category A, the wreath-
product A A is the category

e with objects the m-tupels (a1,...,am) € A™
for varying m > 0O;
e with morphisms all (m + 1)-tupels

(¢; 91, -, ¢m) t (a1,...,am) — (b1,...,bn)
consisting of a simplicial operator ¢ : [m] — [n]

and morphisms (¢;)1<i<m in A of the form

¢; : Ala;] — 11 Albg].
¢(i—1)<k<o(i)



A geometric Reedy category A is called flat
if the realisation functor |—| 4 is left exact; in
particular this implies |x| 4 = *.

Proposition 2. For any flat geometric Reedy
category A, the wreath-product A A is again
a flat geometric Reedy category.

Def. 3. The diagonal 64: A x A — AL A s
defined by

n

([n],a) — (a.....a).

Proposition 3. For any flat geometric Reedy
category A, the following diagram commutes:

—IA
AV A 2ATop




Part 3. Iterated wreath-products.

Let ©1 = A and, inductively, ©, = A1 ©,,_1.
In particular, there is an iterated diagonal

n

5n:rA><-T-><A‘—>@n.

The objects of ©,, can be identified with finite
level-trees of height < n. Batanin associates
to each such level-tree T' an n-graph Tk.

Theorem 2. ©, is isomorphic to the full sub-
category of nCat spanned by the free n-catego-
ries on Ty, where T runs through the finite
level-trees of height < n. The associated nerve
functor nCat — ©, is fully faithful.

*

Remark. The composite nCat — @n 5—”> A" s
the classical n-simplicial nerve of an n-category.
The latter is not a full functor for n > 2 I Al-
though the realisations are homeomorphic (see
Prop. 3), the cellular structures are different.
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Remark. The morphisms of ©, can be de-
scribed in terms of the tree-structure of its
objects. We get in particular a shuffle-formula:

On[S] X On[T] = U OnlU].
Ueshuff(S,T)

The realisation functor associates to each tree
T a convex subset of a cube of dimension equal
to the number of edges of T'. The 1-level trees
realise to simplices, the linear trees to balls.

Segal's category [ has as objects the finite
sets n = {1,...,n} and as morphisms m — n,
the m-tupels of pairwise disjoint subsets of n.
Segal’s functor v : A — I : [n] — n extends to
a functor of wreath-products A : A A — MA.

Recall that ¢ : [m] — [n] maps to
v(¢) = (1¢(0), ¢(1)], ..., ]¢(m — 1), &(m)]).
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Def. 4. Define 1 : ©1 -5 I, and inductively,

Zn—
T On =210, 1 St

where o is induced by disjoint sum.

~OP o AOP — [[OP C Sets, represents a circle,
namely A[1]/0A[1].

P o ©9P — [OP C Sets, represents an n-
sphere, namely ©,[1,]/0©x,[1n] where 1, is the
linear tree of height n.

Each M-space A : N°P — Top induces a Segal
spectrum (A(S™))p>0-
Proposition 4. For each n > 0, there is a
homeomorphism A(S™) = |y, Ale, -
The structural maps A(S™)AST — A(S?T1) are
induced by suspension functors

on . Onp — @n—l—l T — (T)
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Part 4. Eilenberg-Mac Lane spaces.

The Eilenberg-Mac Lane spectrum represent-
ing cohomology with coefficients in the abelian
group A is induced by the [-set

HA :T°P - Sets:n+— A%
i.e. HA(S™) = |y5(HA)|e, is an EM-space.

Therefore, the ©p-set K(A,n) := v, (HA) is an
EM-object of type (A,n) in ©y.

K(A,n)(T) = AT for T € ©,.
Proposition 5. N.(K(A,n);Z) = B"Z[A].

Since ©p is geometric Reedy, |K(A,n)le, is
a CW-complex with as many cells as there
are non-degenerate elements in K(A,n) resp.
pruned level-trees of height n whose |leaves are
labelled by non-zero elements of A.

H#cellsindm|0]1(2|3|4|5|6|7]| 8 9
K(Z/27,1) 1/1(1/1}1]1 1|11 1
K(7./27.,2) 1011235813 |21
K(Z/27,3) 1001|1247 |13 |24
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Remark. For finite A, the generating func-
tion Y >qcgt® for the number ¢; of cells of
K(A,n) in dimension d is a rational function
of t, which vields for t = —1 an Euler charac-
teristic of the CW-complex |K(A,n)lg,. We
get the “expected’ value

X(K(A4,n)) = (#A4) D",

Serre’s calculation of H*(K(Z/27Z,n);7Z/27).

One considers the path-fibration
QK(Z/2,n) — PK(Z/2,n) — K(Z/2,n).

H*(K(Z/2,n—1);7Z/2)) is an abelian Hopf al-
gebra, i.e. (by Milnor-Moore) the enveloping
algebra of a 2-restricted abelian Lie algebra. A
PBW-basis of the latter has been constructed
inductively by "saturating” a polynomial ba-
sis of H*(K(Z/2,n — 1);Z/2) under the cup-
squaring operation. Borel's Theorem vyields
then a polynomial basis of H*(K(Z/2,n);7Z/2)
as the image under transgression of the PBW-
basis of H*(K(Z/2,n —1);7Z/2).
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T his calculation can be carried out on cochain
level as soon as cup squares and transgression
can be represented on cochain level.

The cup product is deduced from

N*(X) @ N*(X) Y Ne(x x X) 25 N*(X).

The cohomological transgression is deduced
from the “homology-suspension’

H«(K(A,n—1);Z) =5 Hoy 1 (K(A,n); Z).

A pruned level-tree is called 2-admissible if the
root-vertex has valence 1, for each vertex the
number of incoming edges is a power of 2, and
vertices of same height have same number of
incoming edges. A cocylce is monogenic if it
belongs to the dual basis.

Proposition 6. H*(K(Z/27Z,n); Z/27) is a poly-
nomial algebra generated by the monogenic co-
cycles on 2-admissible trees of height n.

The latter represent the Sq¢l(en), e(I) < n.
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