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Central reflections and nilpotency in exact Mal’cev categories

Exact Mal’cev categories

Proposition (Tierney)

A category E is abelian iff E is additive and exact.

additive =⇒ ∃


pullbacks of split epis

pushouts of split monos

null-object

=⇒ ∃


products

sums

null-object

pre-additive =⇒ σ-pointed

Lemma

For any σ-pointed category E there is θX ,Y : X + Y → X × Y .

θX ,Y is invertible iff E is linear;

θX ,Y is monic in the category of pointed objects of a topos;

θX ,Y is epic in the category of groups.
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Central reflections and nilpotency in exact Mal’cev categories

Exact Mal’cev categories

Definition

A pre-additive category is

protomodular iff, for every split epi f , section and kernel of f
strongly generate the domain of f ;

Mal’cev iff every reflexive relation is an equivalence relation;

semi-abelian iff protomodular and exact.

Proposition (Bourn)

protomodular =⇒ Mal’cev =⇒ θX ,Y strong epi for all X ,Y

Corollary (for pre-additive categories)

E additive iff E and Eop protomodular iff E and Eop Mal’cev
E abelian iff E and Eop semi-abelian iff E and Eop exact Mal’cev
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Exact Mal’cev categories

Corollary

semi-abelian =⇒ σ-pointed exact Mal’cev =⇒ finitely cocomplete

Examples (of semi-abelian categories)

Groups, Lie algebras, cocommutative Hopf algebras over a field of
characteristic zero, Heyting algebras, loops, ...

Purpose of the talk

A concept of nilpotency for σ-pointed exact Mal’cev categories
based on the notion of central extension.
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Central reflections and nilpotency in exact Mal’cev categories

Central extensions and nilpotency

Fix an exact Mal’cev category E.
The discrete equiv. relation ∆X is the kernel pair of 1X : X → X .
The indiscrete equiv. relation ∇X is the kernel pair of tX : X → ?E.

Definition

Two equiv. relations R, S on X centralize each other iff there is a
map p : R ×X S → X such that p(x , x , y) = y and p(x , y , y) = x .

For R ⊂ X × X and S ⊂ X × X we have R ×X S ⊂ X × X × X .

There is a finest equiv. relation [R,S ] (the Pedicchio-Smith
commutator) such that R and S centralize each other in X/[R, S ].

Definition

An equiv. relation R on X is central iff [R,∇X ] = ∆X ;

A central extension is a regular epi with central kernel pair.
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Central reflections and nilpotency in exact Mal’cev categories

Central extensions and nilpotency

Definition

An n-nilpotent object of E is an n-fold central extension of ?E;

Niln(E) is the subcategory spanned by the n-nilpotent objects;

E is an n-nilpotent category iff Niln(E) = E.

Proposition (for pointed exact Mal’cev categories)

Central equiv. relation are one-to-one with central kernels;

each central extension is the cokernel of its kernel.

Corollary

The abstract notion of n-nilpotent object yields for groups (Lie
algebras) the classical notion of n-nilpotent group (Lie algebra).



Central reflections and nilpotency in exact Mal’cev categories

Central extensions and nilpotency

Definition

An n-nilpotent object of E is an n-fold central extension of ?E;

Niln(E) is the subcategory spanned by the n-nilpotent objects;

E is an n-nilpotent category iff Niln(E) = E.

Proposition (for pointed exact Mal’cev categories)

Central equiv. relation are one-to-one with central kernels;

each central extension is the cokernel of its kernel.

Corollary

The abstract notion of n-nilpotent object yields for groups (Lie
algebras) the classical notion of n-nilpotent group (Lie algebra).



Central reflections and nilpotency in exact Mal’cev categories

Central extensions and nilpotency

Definition

An n-nilpotent object of E is an n-fold central extension of ?E;

Niln(E) is the subcategory spanned by the n-nilpotent objects;

E is an n-nilpotent category iff Niln(E) = E.

Proposition (for pointed exact Mal’cev categories)

Central equiv. relation are one-to-one with central kernels;

each central extension is the cokernel of its kernel.

Corollary

The abstract notion of n-nilpotent object yields for groups (Lie
algebras) the classical notion of n-nilpotent group (Lie algebra).



Central reflections and nilpotency in exact Mal’cev categories

Central extensions and nilpotency

Definition

An n-nilpotent object of E is an n-fold central extension of ?E;

Niln(E) is the subcategory spanned by the n-nilpotent objects;

E is an n-nilpotent category iff Niln(E) = E.

Proposition (for pointed exact Mal’cev categories)

Central equiv. relation are one-to-one with central kernels;

each central extension is the cokernel of its kernel.

Corollary

The abstract notion of n-nilpotent object yields for groups (Lie
algebras) the classical notion of n-nilpotent group (Lie algebra).



Central reflections and nilpotency in exact Mal’cev categories

Central extensions and nilpotency

Definition

An n-nilpotent object of E is an n-fold central extension of ?E;

Niln(E) is the subcategory spanned by the n-nilpotent objects;

E is an n-nilpotent category iff Niln(E) = E.

Proposition (for pointed exact Mal’cev categories)

Central equiv. relation are one-to-one with central kernels;

each central extension is the cokernel of its kernel.

Corollary

The abstract notion of n-nilpotent object yields for groups (Lie
algebras) the classical notion of n-nilpotent group (Lie algebra).



Central reflections and nilpotency in exact Mal’cev categories

Central extensions and nilpotency

Definition

An n-nilpotent object of E is an n-fold central extension of ?E;

Niln(E) is the subcategory spanned by the n-nilpotent objects;

E is an n-nilpotent category iff Niln(E) = E.

Proposition (for pointed exact Mal’cev categories)

Central equiv. relation are one-to-one with central kernels;

each central extension is the cokernel of its kernel.

Corollary

The abstract notion of n-nilpotent object yields for groups (Lie
algebras) the classical notion of n-nilpotent group (Lie algebra).



Central reflections and nilpotency in exact Mal’cev categories

Central extensions and nilpotency

Definition

An n-nilpotent object of E is an n-fold central extension of ?E;

Niln(E) is the subcategory spanned by the n-nilpotent objects;

E is an n-nilpotent category iff Niln(E) = E.

Proposition (for pointed exact Mal’cev categories)

Central equiv. relation are one-to-one with central kernels;

each central extension is the cokernel of its kernel.

Corollary

The abstract notion of n-nilpotent object yields for groups (Lie
algebras) the classical notion of n-nilpotent group (Lie algebra).



Central reflections and nilpotency in exact Mal’cev categories

Central extensions and nilpotency

Definition

A reflective subcategory D of E is a Birkhoff subcategory iff D is
closed under taking subobjects and quotients in E.

Lemma (for Birkhoff subcategories of exact Mal’cev categories)

The associated reflection I : E→ D is a Birkhoff reflection, i.e.

for each X , the unit ηX : X → I (X ) is a regular epi;

for each regular epi f : X → Y , the direct image under f of
the kernel pair of ηX is the kernel pair of ηY .

Proposition (for finitely cocomplete exact Mal’cev categories)

For each n, the subcategory Niln(E) is a Birkhoff subcategory of E.
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Central reflections and nilpotency in exact Mal’cev categories

Central reflections and affine morphisms

Lemma (for σ-pointed exact Mal’cev categories)

The first Birkhoff reflection I 1 : E→ Nil1(E) is abelianization, in
particular Nil1(E) = Ab(E) is an abelian subcategory of E.

Lemma

The relative Birkhoff reflection I n,n+1 : Niln+1(E)→ Niln(E)
defined by Niln(Niln+1(E)) = Niln(E) is a central reflection.

Theorem

The unit of a central reflection is pointwise affine.

Corollary

If I n+1,n(f ) is invertible then f is affine and thus has a central
kernel pair.
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Central reflections and affine morphisms

Definition (Fibration of points and affine maps)

Let PtX (E) be the category of split epis of E with codomain X .
Each f : X → Y induces an adjunction f! : PtX (E) � PtY (E) : f ∗.
A map f is said to be affine if (f!, f

∗) is an adjoint equivalence.

Remark (on affine maps and fibration of points)

Every affine map has a central kernel relation;

Affine maps fulfill two-out-of-three;

If f regular epi then f ∗ fully faithful;

A regular epi f is affine iff f ∗ is essentially surjective;

E protomodular iff f ∗ conservative for all f ;

E additive iff all f are affine.
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Central reflections and nilpotency in exact Mal’cev categories

Aspects of nilpotency

Fix a σ-pointed exact Mal’cev category E.

Remark

Limits in Niln(E) are computed in E;

Colimits in Niln(E) are computed by applying the reflection I n

to the corresponding colimit in E.

Theorem

E is n-nilpotent iff for all X ,Y the map θX ,Y : X + Y → X × Y
exhibits X + Y as an (n − 1)-fold central extension of X × Y .

The nilpotency degree of E “measures” the difference between
sum and product in E.

Proposition

E 2-nilpotent iff θX ,Y central extension iff θX ,Y affine extension.
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Central reflections and nilpotency in exact Mal’cev categories

Aspects of nilpotency

Definition (ΞX1,...,Xn for n = 2, 3)

X1 + X2
- X1

ΞX1,X2

X2

?
- ?E

?

X1 + X2
- X1

X1 + X2 + X3
-

-

X1 + X3

-

ΞX1,X2,X3 X2

?
- ?E

?

X2 + X3

?
-

-

X3

?
-
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Central reflections and nilpotency in exact Mal’cev categories

Aspects of nilpotency

Definition (Identity functors of degree n and cross-effects)

PX1,...,Xn = lim←−[0,1]n\{(0,...,0)} Ξ̌ (limit of the punctured cube);

Comparison map θX1,...,Xn : X1 + · · ·+ Xn → PX1,...,Xn ;

The identity functor of E is of degree n iff ΞX1,...,Xn+1 is a limit
cube iff θX1,...,Xn+1 is invertible for all X1, . . . ,Xn+1 in E;

�(X1, . . . ,Xn) = Ker(θX1,...,Xn : X1 + · · ·+ Xn → PX1,...,Xn).

Examples (n=2,3)

PX ,Y = X × Y and θX ,Y : X + Y → X × Y so that
�(X ,Y ) = X � Y co-smash product (Carboni-Janelidze) resp.
second cross-effect (Hartl-van der Linden);

PX ,Y ,Z ⊂ (X + Y )× (X + Z )× (Y + Z ) so that �(X ,Y ,Z )
third cross-effect. The co-smash product is not associative !
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Central reflections and nilpotency in exact Mal’cev categories

Aspects of nilpotency

Proposition (for σ-pointed exact Mal’cev categories)

E is n-nilpotent iff θX1,...,Xn is a central extension for all X1, . . . ,Xn

iff θX1,...,Xn is an affine extension for all X1, . . . ,Xn.

Corollary

If the identity functor of E has degree n then E is n-nilpotent.

Theorem (for σ-pointed exact Mal’cev categories)

E has a quadratic identity functor iff E is 2-nilpotent and moreover
one of the following two conditions is satisfied for all Z :

cobase change (iZ )! : E→ PtZ (E) along initial maps
iZ : ?E → Z preserves binary products;

base change (tZ )∗ : E→ PtZ (E) along terminal maps
tZ : Z → ?E preserves binary sums.
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Central reflections and nilpotency in exact Mal’cev categories

Aspects of nilpotency

Definition

A pre-additive category has semi-exact sums iff for all Z , cobase
change (iZ )! : E→ PtZ (E) preserves binary products and monos.

Theorem

For any pointed exact Mal’cev category E with semi-exact sums
the subcategory Niln(E) has an identity functor of degree n.

Remark

The category of groups (Lie algebras) has semi-exact sums. It
is unclear whether this is preserved under Birkhoff reflection.

The category E of groups (Lie algebras) has centralizers for
subobjects. This implies [Bourn-Gray] that base change
(tZ )∗ : E→ PtZ (E) preserves all colimits, whence
quadraticity of Nil2(E) without computing sums !
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the subcategory Niln(E) has an identity functor of degree n.

Remark

The category of groups (Lie algebras) has semi-exact sums. It
is unclear whether this is preserved under Birkhoff reflection.

The category E of groups (Lie algebras) has centralizers for
subobjects. This implies [Bourn-Gray] that base change
(tZ )∗ : E→ PtZ (E) preserves all colimits, whence
quadraticity of Nil2(E) without computing sums !



Central reflections and nilpotency in exact Mal’cev categories

Aspects of nilpotency

Definition (Higgins-commutator, cf. Hartl-van der Linden)

�(X , . . . ,X ) - X + · · ·+ X - PX ,...,X

[X , . . . ,X ]
?

- X
?

- X/[X , . . . ,X ]
?

Lemma (Iterated binary commutator)

Ker(ηn : X → I n(X )) = [X , [X , · · · , [X ,X ] · · · ]]

Lemma (Hartl-van der Linden)

[X , [X , · · · , [X ,X ] · · · ]] ⊂ [X , . . . ,X ]

Proposition

For any pointed exact Mal’cev category with semi-exact sums:
[X , [X , · · · , [X ,X ] · · · ]] = [X , . . . ,X ].
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