Examen du 17 janvier 2013 Durée : 2h00. Tous documents interdits.

1. Equations différentielles.

1.a. Donner l'ensemble des fonctions deux fois dérivables $\mathbb{R} \to \mathbb{R} : x \mapsto y(x)$ qui sont solutions de l'équation différentielle $y''(x) + y(x) = \sin(x)$.

1.b. Donner l'ensemble des fonctions deux fois dérivables $\mathbb{R} \to \mathbb{R} : x \mapsto y(x)$ qui sont solutions de l'équation différentielle $y''(x) - y'(x) - 2y(x) = (xe^x)^2$.

2. Séries formelles. On pose

$$s(X) = \sum_{n=0}^{\infty} s_n X^n$$
 pour $s_n = \begin{cases} (-1)^m & \text{si } n = 2m; \\ (-1)^m & \text{si } n = 2m + 1. \end{cases}$

2.a. Montrer que s(X) s'identifie à une fraction rationnelle. Indication: écrire s(X) = a(X) + b(X) avec $a(X) = \sum_{m \geq 0} (-1)^m X^{2m}$ et $b(X) = \sum_{m \geq 0} (-1)^m X^{2m+1}$.

2.b. Déterminer la primitive de s(X) qui s'annule en X=0, d'abord sous forme de série formelle, ensuite sous forme de fonction de classe C^{∞} .

En déduire la somme de la série formelle

$$\sum_{n=0}^{\infty} \frac{s_n}{n+1} = 1 + \frac{1}{2} - \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \frac{1}{6} \mp \dots = 1 + \frac{1}{2 \cdot 3} - \frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7} - \frac{1}{8 \cdot 9} \pm \dots$$

3. Matrices. Soit $A_m = \begin{pmatrix} 0 & m & 0 \\ m & 0 & 1 \\ 1 & 1 & m \end{pmatrix} \in M_3(\mathbb{R}).$

3.a. Calculer les valeurs propres de A_m . Pour quels $m \in \mathbb{R}$, le matrice A_m est-elle diagonalisable? Pour quels $m \in \mathbb{R}$, la matrice A_m est-elle inversible?

3.b. On pose $B = A_1$. Trouver une matrice inversible P telle que $P^{-1}BP$ soit diagonale. En déduire exp(B).

4. Polynôme caractéristique et trace. On considère une matrice $A \in M_n(\mathbb{R})$ qu'on suppose diagonalisable avec valeurs propres $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. On pose $p_A(X) = det(A - X.Id_n) \in \mathbb{R}[X]$, et $q_A(X) = det(Id_n - X.A) \in \mathbb{R}[X]$, et $q_A(X) = \frac{1}{q_A(X)} \in \mathbb{R}[[X]]$.

4.a Montrer que $tr(A^k) = (\lambda_1)^k + \cdots + (\lambda_n)^k$ pour $k \in \mathbb{N}$.

4.b. Montrer $q_A(X) = (-1)^n X^n p_A(\frac{1}{X}) = (1 - \lambda_1 . X)(1 - \lambda_2 . X) \cdots (1 - \lambda_n . X)$.

4.c. Pour $\lambda \in \mathbb{R}$, on pose $f_{\lambda}(X) = \sum_{k \geq 1} \frac{(\lambda X)^k}{k} \in \mathbb{R}[[X]]$. Calculer la dérivée de $f_{\lambda}(X)$. En déduire que $f_{\lambda}(X)$ s'identifie au développement de Taylor à l'origine

1

de la fonction réelle $t\mapsto -{\rm ln}(1-\lambda t).$ Conclure que dans $\mathbb{R}[[X]]$ on a

$$\zeta_A(X) = exp(f_{\lambda_1}(X) + \dots + f_{\lambda_n}(X)) = exp(\sum_{k \ge 1} \frac{tr(A^k)}{k} X^k).$$

Barême indicatif : 5+5+5+5