Feuille d'exercices n°1

1. Diagonalisation de matrices. On considère les matrices

$$A_1 = \begin{pmatrix} -1 & -2 \\ 4 & 5 \end{pmatrix} A_2 = \begin{pmatrix} -10 & -18 \\ 9 & 17 \end{pmatrix} A_3 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1.a. Trouver les valeurs et espaces propres des matrices A_1, A_2, A_3 .

1.b. Trouver des matrices de changement de base P_i telles que $P_i^{-1}A_iP_i$ soit diagonale pour i = 1, 2, 3.

2. Puissances d'une matrice. On pose $A=A_2, P=P_2$ (cf. exercice précédent).

2.a. Calculer les puissances $(P^{-1}AP)^n$ pour $n \in \mathbb{Z}$. En déduire A^n .

2.b. Montrer l'existence d'une matrice $B \in M_2(\mathbb{R})$ telle que $B^3 = A$.

2.c. Montrer qu'il n'existe pas de matrice $C \in M_2(\mathbb{R})$ telle que $C^2 = A$.

2.d. Montrer qu'il existe une matrice $D \in M_2(\mathbb{C})$ telle que $D^2 = A$.

3. Récurrence. On considère la suite définie par $u_0 = 1$, $u_1 = 2$ et

$$u_{n+2} = 2u_n - u_{n+1} \text{ pour } n \ge 0$$

3.a. Trouver une matrice $U \in M_2(\mathbb{R})$ telle que $U \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ u_{n+2} \end{pmatrix}$.

3.b. Diagonaliser U.

3.c. Exprimer u_n comme fonction de n et déterminer $\lim_{n\to\infty}\frac{u_n}{u_{n+1}}$.

4. Matrices unipotentes. On considère une matrice $A \in M_n(\mathbb{R})$ dont le carré est la matrice identité.

4.a. Montrer que les valeurs propres de A appartiennent à $\{\pm 1\}$.

4.b. Montrer que si $A(v) \neq v$ (resp. $A(v) \neq -v$) alors v - A(v) (resp. v + A(v)) est vecteur propre de A pour la valeur propre -1 (resp. +1).

4.c. Montrer que A est diagonalisable.

4.d. Soit $B \in M_n(\mathbb{R})$ une matrice vérifiant $B^n = I_n$, mais $B^m \neq I_n$ pour tout diviseur propre m de n. Montrer que si $n \geq 3$ alors B n'est pas diagonalisable dans $M_n(\mathbb{R})$. Indication: Montrer que B possède une valeur propre $\lambda \in \mathbb{C} \setminus \mathbb{R}$ et que cela est impossible pour une matrice diagonalisable.

Mots-clés : Vecteur propre, valeur propre, matrice diagonalisable