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Abstract. Let C be a curve of genus g and L a line bundle of degree 2g on C. Let ML be
the kernel of the evaluation map H0(C, L) ⊗C L → L. We show that when L is general
enough, the rank g bundle ML and its exterior powers are stable, but admit a reducible
theta divisor.

Introduction

Let C be a curve of genus g, and E a vector bundle on C, of rank r; assume that the
slope µ := 1

r
deg E of E is an integer. Let Jν be the translate of the Jacobian of C

parametrizing line bundles of degree ν := g − 1 − µ on C. We say that E admits a
theta divisor if H0(E ⊗ L) = 0 for L general in Jν . If this is the case, the locus

�E = {L ∈ Jν | H0(E ⊗ L) �= 0}

has a natural structure of effective divisor in Jν , the theta divisor of E. Its class in
H2(Jν, Z) is rθ , where θ ∈ H2(Jν, Z) is the class of the principal polarization. This
(generalized) theta divisor plays a key role in the recent work on vector bundles on
curves – see for instance [B] for an overview.

If E admits a theta divisor, it is semi-stable (otherwise E contains a sub-bundle
F of slope > µ, and by Riemann-Roch H0(F ⊗ L), and therefore H0(E ⊗ L), is
non-zero for all L ∈ Jν). The converse does not hold, at least in rank ≥ 4: Raynaud
has constructed examples of stable vector bundles with no theta divisor [R]. Further
examples have been constructed recently by Popa [P].

If E is semi-stable but not stable, its theta divisor (if it exists) is not integral:
more precisely, E admits a filtration with stable quotients E1, . . . , Ep, and we have
�E = �E1 + . . .+�Ep . One may ask, conversely, if the reducibility of �E implies
that E is not stable. A counter-example has been given by Raynaud (unpublished),
who constructed a rank 2 stable vector bundle on a curve of genus 3 with reducible
theta divisor. Such an example can only occur on a special curve, because in rank
2 the divisor �E characterizes the vector bundle E [B-V], and on a general curve
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the only reducible divisors on Jν with cohomology class 2θ are the theta divisors
of rank 2 decomposable bundles.

We describe in this note a counter-example of a different nature, namely a family
of stable vector bundles of rank g which exist on any curve of genus g. They are
defined by the exact sequence

0 → ML −→ H0(C, L) ⊗C OC
evL−→ L → 0

where L is a line bundle generated by its global sections, and evL the evaluation
map. These vector bundles have been intensively studied, notably by Green and
Lazarsfeld (see in particular [L]), Paranjape and Ramanan [P-R], and more recently
in [P] and [F-M-P]. In the latter paper the authors determine the theta divisor of
MK and of its exterior powers; we will take advantage of their result to do the same
in the case of a line bundle L of degree 2g (so that ML has rank g). We will prove
(in a somewhat more precise form):

Theorem. Let C be a non-hyperelliptic curve, and L a sufficiently general line
bundle of degree 2g on C. The vector bundle ML and its exterior powersΛ2ML, . . . ,

Λg−1ML are stable and admit a reducible theta divisor.

An interesting extra feature of our examples is that there exists a semi-stable,
decomposable vector bundle on C with the same theta divisor as ML; thus in rank
≥ 3 the divisor �E does not characterize the bundle E any more.

Notation

We fix a curve C of genus g over the complex numbers; except in Remark 2 below,
we assume throughout that C is not hyperelliptic. We denote by K its canonical
bundle. For d ∈ Z, we denote by Jd the translate of the Jacobian of C parametrizing
line bundles of degree d on C, and by Cd the locus of effective divisor classes in
Jd . If p, q ∈ Z the difference variety Cp − Cq lies in Jp−q .

I. The theta divisor of EL

Let L be a line bundle of degree 2g on the curve C. It is spanned by its global
sections, so we have an exact sequence

0 → ML −→ H0(L) ⊗C OC −→ L → 0,

where ML is a rank g vector bundle. We put EL := M∗
L.

Though this will not be used in the sequel, let us recall the geometric interpre-
tation of EL. Let ϕ be the morphism of C into the projective space P := P(H0(L))

defined by the linear system |L|; in view of the Euler exact sequence

0 → OP −→ H0(L)∗ ⊗C OP(1) −→ TP → 0,

we have EL = ϕ∗TP ⊗ L−1.
The vector bundle EL has rank g and determinant L, hence slope 2.
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Proposition 1. a) The vector bundle EL has a theta divisor

�EL = (Cg−2 − C) + �L⊗K−1 in Jg−3.

b) EL is semi-stable; it is stable if and only if L is very ample.

Proof. We will first compute set-theoretically the theta divisor �ML of ML. By
definition this is the set of line bundles P ∈ Jg+1 such that the multiplication map
m : H0(L) ⊗ H0(P) → H0(L ⊗ P) is not injective. Let us distinguish three cases:

(i) If h0(P) > 2 we have dim(H0(L) ⊗ H0(P)) > dim H0(L ⊗ P), thus P∈�ML .

(ii) Assume that h0(P) = 2 and that the pencil |P| has a base point. Both spaces
H0(L) ⊗ H0(P) and H0(L ⊗ P) have the same dimension 2g + 2. If m is
injective, it is surjective, and the linear system |L ⊗ P| has a base point; this
is impossible since deg(L ⊗ P) = 3g + 1. Thus we have again P ∈ �ML .

(iii) Finally assume that |P| is a base-point free pencil. From the exact sequence

0 → P−1 −→ H0(P) ⊗C OC −→ P → 0

we get an exact sequence

0 → H0(L ⊗ P−1) −→ H0(L) ⊗C H0(P)
m−→ H0(L ⊗ P);

thus m is not injective in that case if and only if H0(L ⊗ P−1) �= 0.

The line bundles P in case (i) and (ii) are exactly those which can be written
P′(x), for some point x of C and some line bundle P′ in Jg with h0(P′) ≥ 2; the
ones in case (iii) are those of the form L ⊗ P′−1

, with P′ ∈ � ⊂ Jg−1. Since �EL

is the image of �ML by the isomorphism P 	→ K ⊗ P−1 of Jg+1 onto Jg−3, we
obtain (still set-theoretically) �EL = (Cg−2 − C) ∪ �L⊗K−1 . Now Cg−2 − C is an
irreducible divisor with cohomology class (g − 1)θ (see e.g. [F-M-P], Prop. 3.7),
and �L⊗K−1 is a (ordinary) theta divisor; since �EL has cohomology class gθ , we
get the equality a).

Since EL admits a theta divisor, it is semi-stable. Moreover, if EL is not stable,
its stable components are L′ := L ⊗ K−1 and a rank (g − 1) bundle. Thus L′ is
either a sub- or a quotient bundle of EL. The latter case cannot occur since EL is
generated by its global sections and L′ is not. Now using the exact sequence

0 → L−1 ⊗ L′−1 −→ H0(L)∗ ⊗C L′−1 −→ EL ⊗ L′−1 → 0

and Serre duality we see that Hom(L′, EL) is zero if and only if the multiplication
map H0(L)⊗H0(L) → H0(L2) is surjective, that is, L is normally generated [G-L].
By [G-L], Thm. 1, this is the case if and only if L is very ample. ��

Remarks. 1) If L is not very ample, we have L = K(D), with D an effective divisor
of degree 2. The snake lemma applied to the commutative diagram



346 A. Beauville

0 −→ MK −→ H0(K) ⊗ OC −→ K −→ 0
�

�
�

0 −→ ML −→ H0(L) ⊗ OC −→ L −→ 0

provides an exact sequence 0 → MK → ML → OC(−D) → 0; thus EL
is an extension of EK by OC(D). This extension is non-trivial, as we already
observed that OC(D) cannot be a quotient of EL.

2) If C is hyperelliptic, the divisor Cg−2 − C is equal to �H, where H is the
hyperelliptic pencil on C. By specialization we get �EL = (g−1)�H+�L⊗K−1 .
The line bundle L is not linearly normal [L-M], so EL is not stable.

The difference variety Cg−2 − C is the theta divisor of the bundle EK [P-R];
therefore:

Corollary 1. Assume that L is very ample. The stable bundle EL and the decom-
posable bundle EK ⊕ (L ⊗ K−1) have the same theta divisor. ��

The equality still holds of course when L is not very ample, but becomes im-
mediate, since in that case the second bundle is the sum of the stable components
of the first one.

In view of the results of [B-N-R], this corollary can be rephrased as follows. Let
SUC(g) be the moduli space of semi-stable rank g vector bundles on C with trivial
determinant, and let L be the positive generator of Pic(SUC(g)) (the determinant
bundle). Let BL be the base locus of the linear system |L|.
Corollary 2. The map ϕL : SUC(g) BL −→ P(H0(L)) defined by the line
bundle L is not injective.

Indeed this map can be identified with the map which associates to a vector
bundle its theta divisor [B-N-R]. Twisting EL and EK ⊕ (L ⊗K−1) by a line bundle
λ on C with λ−g = L, we get two different points of SUC(g) BL with the same
image under ϕL. ��

II. The theta divisor of ΛpEL

We now consider the exterior power ΛpEL; this is a vector bundle of rank
(
g
p

)
and

slope 2p, so its theta divisor, if it exists, lies in Jg−1−2p.

Proposition 2. Let 1 ≤ p ≤ g−1. If L is general enough, the vector bundle ΛpEL
is stable and admits a theta divisor1

�Λp
EL

= (Cg−p−1 − Cp) + (Cg−p − Cp−1 + K ⊗ L−1).

1 The second term is the translate of Cg−p − Cp−1 ⊂ Jg+1−2p by the element K ⊗ L−1

of J−2.
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Proof. We first prove that ΛpEL admits a theta divisor when L is general enough.
Since this is an open property, it is sufficient to prove this for a particular choice of
L: we take L = K(D), with D an effective divisor of degree 2. The exact sequence

0 → OC(D) → EL → EK → 0

(Remark 1) gives rise to an exact sequence

0 → Λp−1EK (D) → ΛpEL → ΛpEK → 0.

By [F-M-P] ΛpEK and Λp−1EK admit a theta divisor, hence also so does
Λp−1EK(D) for any divisor D. Since the three vector bundles in the exact
sequence have the same slope 2p, we see that ΛpEL admits a theta divisor.

Let us now prove that the theta divisor �EL , when it exists, is given by the
formula of the Proposition. The divisor Cq −Cg−1−q has cohomology class

(
g−1
q

)
θ

([F-M-P], Prop. 3.7), so both sides of the formula have cohomology class
(
g
p

)
θ . It

suffices therefore to prove that each component of the right hand side is contained
in �Λp

EL
.

As in [P] and [F-M-P], we will use the following observation of Lazarsfeld [L]:
if x1, . . . , xg−1 are generic points of C, there is an exact sequence

0 →
g−1⊕

i=1

OC(xi) −→ EL −→ L(−
∑

xi) → 0.

Put F =g−1⊕
i=1

OC(xi). We have an exact sequence of exterior powers

0 → ΛpF → ΛpEL → Λp−1F ⊗ L(−
∑

xi) → 0,

that is,

0→
⊕

i1<...<ip

OC(xi1+. . .+xip )−→ΛpEL −→
⊕

j1<...<jg−p

L(−xj1−. . .−xjg−p )→0.

This gives:

• H0(ΛpEL(−x1 − . . .−xp)) �= 0, hence the inclusion Cg−p−1 −Cp ⊂ �Λp
EL

;

• H0(ΛpML ⊗ L(−x1 − . . . − xg−p)) �= 0, hence H0(ΛpML ⊗ L(−D)) �=
0 for all D in Cg−p − Cp−1; by Serre duality this gives H0(ΛpEL ⊗ K⊗
L−1(D)) �= 0, hence the inclusion Cg−p − Cp−1 + K ⊗ L−1 ⊂ �Λp

EL
.

It remains to prove that ΛpEL is stable. Since L is generic, EL is stable (Propo-
sition 1), so ΛpEL is polystable – that is, direct sum of stable bundles with the same
slope 2p. If ΛpEL is not stable for L generic, it is decomposable for all values of
L; we will see that this is not the case when L is of the form K(D), with D effective
of degree 2. In that case we have by Remark 1 an exact sequence

0 → Λp−1EK (D) −→ ΛpEL −→ ΛpEK → 0

where Λp−1EK (D) and ΛpEK are stable with slope 2p; if ΛpEL is decomposable,
this exact sequence splits. The following easy lemma shows that this is not the case,
and thus concludes the proof of the Proposition. ��



348 A. Beauville

Lemma. Let X be a scheme over a field of characteristic 0, and let

(E) 0 → M → E → F → 0

be a non-split exact sequence of vector bundles on X, with rk M = 1. The associated
exact sequences

(ΛpE) 0 → Λp−1F ⊗ M −→ ΛpE −→ ΛpF → 0

do not split for 1 ≤ p ≤ rk F.

Proof. Let i : F∗ ⊗ M → Hom(ΛpF,Λp−1F ⊗ M) be the linear map deduced
from the interior product. A straightforward computation shows that the class of
the extension (ΛpE) in H1(X, Hom(ΛpF,Λp−1F ⊗ M)) is the image by H1(i)

of the class of the extension (E) in H1(X, F∗ ⊗ M). But in characteristic zero i

admits a retraction c−1ρ, where c = (rk F−1
p−1

)
and ρ : Hom(ΛpF,Λp−1F ⊗ M) →

F∗ ⊗ M is the map deduced from the interior product ΛpF∗ ⊗Λp−1F → F∗. Thus
H1(i) is injective, and the lemma follows. ��

As in section I this gives:

Corollary 1. The vector bundles ΛpEL and ΛpEK ⊕ (Λp−1EK ⊗ L ⊗ K−1) have
the same theta divisor. In particular, the map ϕL : SUC(

(
g
p

)
) BL −→ P(H0(L))

defined by the line bundle L is not injective. ��
Let us conclude by a link with the main theme of [F-M-P], the so-called minimal

resolution conjecture for the curve C embedded into Pg := P(H0(L)). We have
to refer to [F-M-P] for the statement of the conjecture, which is a bit technical.
Let us just say that it describes, for all general finite subsets � ⊂ C of cardinality
≥ g + 1, the minimal graded resolution of the ideal I� of � in the coordinate ring
S = C[X0, . . . , Xg] of Pg . By Corollary 1.8 of [F-M-P], this conjecture holds if
and only if each of the bundles ΛpEL admit a theta divisor. Thus:

Corollary 2. The curve C, embedded into Pg by a general linear system of degree
2g, satisfies the “minimal resolution conjecture” in the sense of [F-M-P]. ��

References

[B] Beauville, A.: Vector bundles on curves and generalized theta functions: recent
results and open problems. Current topics in complex algebraic geometry, 17–
33, Math. Sci. Res. Inst. Publ. 28, Cambridge Univ. Press (1995)

[B-N-R] Beauville, A., Narasimhan, M.S., Ramanan, S.: Spectral curves and the gener-
alised theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)

[B-V] Brivio, S., Verra, A.: The theta divisor of SUC(2, 2d)s is very ample if C is not
hyperelliptic. Duke Math. J. 82, 503–552 (1996)
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