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Introduction

Theta functions are holomorphic functions on Cg , quasi-periodic with respect to
a lattice. For g = 1 they have been introduced by Jacobi; in the general case they
have been thoroughly studied by Riemann and his followers. From a modern point
of view they are sections of line bundles on certain complex tori; in particular, the
theta functions associated to an algebraic curve C are viewed as sections of a
natural line bundle (and of its tensor powers) on a complex torus associated to C ,
the Jacobian, which parametrizes topologically trivial line bundles on C .

Around 1980, under the impulsion of mathematical physics, the idea emerged
gradually that one could replace in this definition line bundles by higher rank
vector bundles. The resulting sections are called generalized (or non-abelian) theta
functions ; they turn out to share some (but not all) of the beautiful properties of
classical theta functions.

The goal of these lectures is to develop first the modern theory of classical
theta functions (complex tori, line bundles, Jacobians), then to explain how it can
be generalized by considering higher rank vector bundles. We have tried to make
them accessible for students with a minimal background in complex geometry:
Chapter 0 of [13] should be more than enough. At a few places, especially in the
last chapters, we had to use some more advanced results. Also we have not tried to
be exhaustive: sometimes we just give a sketch of proof, or we prove a particular
case, or we just admit the result.

These notes come from a series of lectures given at Tsinghua University in
April 2011. I am grateful to Tsinghua University and Professor S.-T. Yau for the
generous invitation.
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1 The cohomology of a torus

1.1 Real tori

Let V be a real vector space, of dimension n . A lattice in V is a Z-module Γ ⊂ V
such that the induced map Γ⊗ZR→ V is an isomorphism; equivalently, any basis
of Γ over Z is a basis of V . In particular Γ ∼= Zn .

The quotient T := V/Γ is a smooth, compact Lie group, isomorphic to (S1)n .
The quotient homomorphism π : V → V/Γ is the universal covering of T . Thus
Γ is identified with the fundamental group π1(T ).

We want to consider the cohomology algebra H∗(T,C). We think of it as
being de Rham cohomology: recall that a smooth p-form ω on T is closed if
dω = 0, exact if ω = dη for some (p − 1)-form η . Then

Hp(T,C) =
{closed p-forms}

{exact p-forms}
·

Let ℓ be a linear form on V . The 1-form dℓ on V is invariant by translation,
hence is the pullback by π of a 1-form on T that we will still denote dℓ . Let
(x1, . . . , xn) be a system of coordinates on V . The forms (dx1, . . . , dxn) form a
basis of the cotangent space T ∗

a (T ) at each point a ∈ T ; thus a p-form ω on T
can be written in a unique way

ω =
∑

i1<···<ip

ωi1···ip
(x) dxi1 ∧ · · · ∧ dxip

,

where the ωi1···ip
are smooth functions on T (with complex values).

An important role in what follows will be played by the translations ta : x 7→
x + a of T . We say that a p-form ω is constant if it is invariant by translation,
that is, t∗aω = ω for all a ∈ T ; in terms of the above expression for ω , it means
that the functions ωi1...ip

are constant. Such a form is determined by its value
at 0, which is a skew-symmetric p-linear form on V = T0(T ). We will denote by
Altp(V,C) the space of such forms, and identify it to the space of constant p-forms.
A constant form is closed, hence we have a linear map δp : Altp(V,C) → Hp(T,C).
Note that Alt1(V,C) is simply HomR(V,C), and δ1 maps a linear form ℓ to the
class of dℓ .

Proposition 1.1. The map δp : Altp(V,C) → Hp(T,C) is an isomorphism.

Proof . There are various elementary proofs of this, see for instance [8], III.4. To
save time we will use the Künneth formula. We choose our coordinates (x1, . . . , xn)
so that V = Rn , Γ = Zn . Then T = T1 × · · · × Tn , with Ti

∼= S1 for each i , and
dxi is a 1-form on Ti , which generates H1(Ti,C). The Künneth formula gives
an isomorphism of graded algebras H∗(T,C) ∼−→

⊗

i H∗(Ti,C). This means that
H∗(T,C) is the exterior algebra on the vector space with basis (dx1, . . . , dxn),
and this is equivalent to the assertion of the Proposition.

What about H∗(T,Z)? The Künneth isomorphism shows that it is torsion
free, so it can be considered as a subgroup of H∗(T,C). By definition of the
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de Rham isomorphism the image of Hp(T,Z) in Hp(T,C) is spanned by the
closed p-forms ω such that

∫

σ ω ∈ Z for each p-cycle σ in Hp(T,Z). Write
again T = Rn/Zn ; the closed paths γi : t 7→ tei , for t ∈ [0, 1], form a basis
of H1(T,Z), and we have

∫

γi
dℓ = ℓ(ei). Thus H1(T,Z) is identified with the

subgroup of H1(T,C) = HomR(V,C) consisting of linear forms V → C which
take integral values on Γ; it is isomorphic to HomZ(Γ,Z). Applying again the
Künneth formula gives:

Proposition 1.2. For each p , the image of Hp(T,Z) in Hp(T,C) ∼= Altp(V,C)
is the subgroup of forms which take integral values on Γ ; it is isomorphic to
Altp(Γ,Z) .

1.2 Complex tori

From now on we assume that V has a complex structure, that is, V is a complex
vector space, of dimension g . Thus V ∼= Cg and Γ ∼= Z2g . Then T := V/Γ is
a complex manifold, of dimension g , in fact a complex Lie group; the covering
map π : V → V/Γ is holomorphic. We say that T is a complex torus. Beware:

while all real tori of dimension n are diffeomorphic to (S1)n , there are many
non-isomorphic complex tori of dimension g – more about that in Sect. 3.3 below.

The complex structure of V provides a natural decomposition

HomR(V,C) = V ∗ ⊕ V
∗

,

where V ∗ := HomC(V,C) and V
∗

= HomC(V ,C) are the subspaces of C-linear
and C-antilinear forms respectively. We write the corresponding decomposition
of H1(T,C)

H1(T,C) = H1,0(T ) ⊕ H0,1(T ) .

If (z1, . . . , zg) is a coordinate system on V , H1,0(T ) is the subspace spanned by
the classes of dz1, . . . , dzg , while H1,0(T ) is spanned by the classes of dz̄1, . . . , dz̄g .

The decomposition HomR(V,C) = V ∗ ⊕ V
∗

gives rise to a decomposition

Altp(V,C) ∼= ∧pV ∗ ⊕ (∧p−1V ∗ ⊗ V
∗
) ⊕ · · · ⊕ ∧pV

∗

which we write
Hp(T,C) = Hp,0(T ) ⊕ · · · ⊕ H0,p(T ) .

The forms in Altp(V,C) which belong to Hp,0(T ) (resp. H0,p(T )) are those
which are C-linear (resp. C-antilinear) in each variable. It is not immediate to
characterize those which belong to Hq,r(T ) for q, r > 0; for p = 2 we have:

Proposition 1.3. Via the identification H2(T,C) = Alt2(V,C) , H2,0 is the space
of C-bilinear forms, H0,2 the space of C-biantilinear forms, and H1,1 is the space
of R-bilinear forms E such that E(ix, iy) = E(x, y) .

Proof . We have only to prove the last assertion. For ε ∈ {±1} , let Eε be
the space of forms E ∈ Alt2(V,C) satisfying E(ix, iy) = εE(x, y). We have
Alt2(V,C) = E1 ⊕ E−1 , and H2,0 and H0,2 are contained in E−1 .
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For ℓ ∈ V ∗ , ℓ′ ∈ V
∗
, v, w ∈ V , we have

(ℓ ∧ ℓ′)(iv, iw) = ℓ(iv)ℓ′(iw) − ℓ(iw)ℓ′(iv) = (ℓ ∧ ℓ′)(v, w) ,

hence H1,1 is contained in E1 ; it follows that H2,0 ⊕ H0,2 = E−1 and H1,1 =
E1 .

2 Line bundles on complex tori

2.1 The Picard group of a manifold

Our next goal is to describe all holomorphic line bundles on our complex torus T .
Recall that line bundles on a complex manifold M form a group, the Picard group
Pic(M) (the group structure is given by the tensor product of line bundles). It
is canonically isomorphic to the first cohomology group H1(M, O∗

M ) of the sheaf
O∗

M of invertible holomorphic functions on M . To compute this group a standard
tool is the exponential exact sequence of sheaves

0 → ZM → OM
e

−→ O
∗
M → 1

where e(f) := exp(2πif), and ZM denotes the sheaf of locally constant functions
on M with integral values. This gives a long exact sequence in cohomology

H1(M,Z) −→ H1(M, OM ) −→ Pic(M)
c1−→ H2(M,Z) −→ H2(M, OM ) (2.1)

For L ∈ Pic(M), the class c1(L) ∈ H2(M,Z) is the first Chern class of L . It
is a topological invariant, which depends only on L as a topological complex line
bundle (this is easily seen by replacing holomorphic functions by continuous ones
in the exponential exact sequence).

When M is a projective (or compact Kähler) manifold, Hodge theory pro-
vides more information on this exact sequence.1 The image of c1 is the kernel
of the natural map H2(M,Z) → H2(M, OM ). This map is the composition of
the maps H2(M,Z) → H2(M,C) → H2(M, OM ) deduced from the injections of
sheaves ZM →֒ CM →֒ OM . Now the map H2(M,C) → H2(M, OM ) ∼= H0,2 is
the projection onto the last summand of the Hodge decomposition

H2(M,C) = H2,0 ⊕ H1,1 ⊕ H0,2

(for the experts: this can be seen by comparing the de Rham complex with the
Dolbeault complex.)

Thus the image of c1 consists of classes α ∈ H2(M,Z) whose image αC =
α0,2 + α1,1 + α0,2 in H2(M,C) satisfies α0,2 = 0. But since αC comes from
H2(M,R) we have α2,0 = α0,2 = 0: the image of c1 consists of the classes in
H2(M,Z) whose image in H2(M,C) belongs to H1,1 (“Lefschetz theorem”).

1In this section and the following we use standard Hodge theory, as explained in [13], 0.6.
Note that Hodge theory is much easier in the two cases of interest for us, namely complex tori
and algebraic curves.
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The kernel of c1 , denoted Pico(M), is the group of topologically trivial
line bundles. The exact sequence (2.1) shows that it is isomorphic to the quo-
tient of H1(M, OM ) by the image of H1(M,Z). We claim that this image is
a lattice in H1(M, OM ) : this is equivalent to saying that the natural map
H1(M,R) → H1(M, OM ) is bijective. By Hodge theory, this map is identified
with the restriction to H1(M,R) of the projection of H1(M,C) = H1,0 ⊕ H0,1

onto H0,1 . Since H1(M,R) is the subspace of classes α+ᾱ in H1(M,C), the pro-
jection H1(M,R) → H0,1 is indeed bijective. Thus Pico(M) is naturally identified
with the complex torus H1(M, OM )/H1(M,Z).

2.2 Flat line bundles

There is another description of Pico(M) which will be of interest for us. Instead
of holomorphic line bundles, defined by holomorphic transition functions, we can
consider flat line bundles, defined by locally constant transition functions; they
are parametrized by H1(M,C∗).

More important for us will be the unitary flat line bundles, defined by locally
constant transition functions with values in the unit circle S1 . Let us assume
for simplicity that H2(M,Z) is torsion free. In that case the diagram of exact
sequences of sheaves

0 // ZM
//

��

RM
e //

��

S1
M

//

��

1

0 // ZM
// OM

e // O∗
M

// 1

gives rise to a diagram in cohomology

0 // H1(M,Z) // H1(M,R)
ε //

π

��

H1(M, S1) //

��

0

0 // H1(M,Z) // H1(M, OM ) // Pico(M) // 0

(the homomorphism ε is surjective because H2(M,Z) is torsion free and therefore
injects into H2(M,R)). We have seen in the previous section that π is bijective,
so the map H1(M, S1) → Pico(M) is an isomorphism. In other words, every line
bundle L ∈ Pico(M) admits a unique unitary flat structure.

2.3 Systems of multipliers

We go back to our complex torus T = V/Γ.

Lemma 2.1. Every line bundle on V is trivial.

Proof . We have H2(V,Z) = 0 and H1(V, OV ) = 0 (see [13], p. 46), hence
Pic(V ) = 0 by the exact sequence (2.1).



Theta Functions, Old and New 105

Let L be a line bundle on T . We consider the diagram

π∗L //

��

L

��
V

π // T

The action of Γ on V lifts to an action on π∗L = V ×T L . We know that π∗L is
trivial; we choose a trivialization π∗L ∼−→ V × C . We obtain an action of Γ on
V ×C , so that L is the quotient of V ×C by this action. An element γ of Γ acts
linearly on the fibers, hence by

γ · (z, t) = (z + γ, eγ(z) t) for z ∈ V, t ∈ C

where eγ is a holomorphic invertible function on V . This formula defines a group
action of Γ on V × C if and only if the functions eγ satisfy

eγ+δ(z) = eγ(z + δ) eδ(z) (“cocycle condition”).

A family (eγ)γ∈Γ of holomorphic invertible functions on V satisfying this
condition is called a system of multipliers. Every line bundle on T is defined by
such a system.

A theta function for the system (eγ)γ∈Γ is a holomorphic function V → C

satisfying
θ(z + γ) = eγ(z)θ(z) for all γ ∈ Γ, z ∈ V .

Proposition 2.2. Let (eγ)γ∈Γ be a system of multipliers, and L the associated
line bundle. The space H0(T, L) is canonically identified with the space of theta
functions for (eγ)γ∈Γ .

Proof . Any global section s of L lifts to a section ŝ = π∗s of π∗L = V ×T L
over V , defined by ŝ(z) = (z, s(πz)); it is Γ-invariant in the sense that ŝ(z +γ) =
γ · ŝ(z). Conversely, a Γ-invariant section of π∗L comes from a section of L .
Now a section of π∗L ∼= V × C is of the form z 7→ (z, θ(z)), where θ : V → C is
holomorphic. It is Γ-invariant if and only if θ is a theta function for (eγ)γ∈Γ .

Let (eγ)γ∈Γ and (e′γ)γ∈Γ be two systems of multipliers, defining line bundles
L and L′ . The line bundle L ⊗ L′ is the quotient of the trivial line bundle
V × (C⊗C) by the tensor product action γ · (z, t⊗ t′) = (z + γ, eγ(z) t⊗ e′γ(z) t′);
therefore it is defined by the system of multipliers (eγe′γ)γ∈Γ . In other words,
multiplication defines a group structure on the set of systems of multipliers, and
we have a surjective group homomorphism

{systems of multipliers} −→ Pic(T ) .

A system of multipliers (eγ)γ∈Γ lies in the kernel if and only if the associated
line bundle admits a section which is everywhere 6= 0; in view of Proposition
2.2, this means that there exists a holomorphic function h : V → C∗ such that

eγ(z) =
h(z + γ)

h(z)
. We will call such systems of multipliers trivial. Thus we

can always multiply a given system (eγ) by a trivial one without changing the
associated line bundle.
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Remark 2.3. (only for the readers who know group cohomology) Put H∗ :=
H0(V, O∗

V ). The system of multipliers are exactly the 1-cocycles of Γ with values
in H∗ , and the trivial systems are the coboundaries. Thus we get a group isomor-
phism H1(Γ, H∗) ∼−→ Pic(T ) (see [20], §2 for a more conceptual explanation of
this isomorphism).

Remark 2.4. The argument in this section apply equally well to flat line bundles,
since obviously H1(V,C∗) = 0. The corresponding systems of multipliers are of
the form a(γ)γ∈Γ , where a : Γ → C∗ is a homomorphism. Similarly, unitary
flat line bundles correspond to homomorphisms Γ → S1 . This is nothing but the
classical isomorphism H1(T, A) ∼−→ Hom(π1(T ), A) for A = C∗ or S1 .

2.4 Interlude: hermitian forms

There are many holomorphic invertible functions on V , hence many systems of
multipliers giving rise to the same line bundle. Our next goal will be to find
a subset of such systems such that each line bundle corresponds exactly to one
system of multipliers in that subset. This will involve hermitian forms on V , so
let us fix our conventions.

A hermitian form H on V will be C-linear in the second variable, C-
antilinear in the first. We put S(x, y) = Re H(x, y) and E(x, y) = Im H(x, y). S
and E are R-bilinear forms on V , S is symmetric, E is skew-symmetric; they
satisfy:

S(x, y) = S(ix, iy), E(x, y) = E(ix, iy), S(x, y) = E(x, iy)

Using these relations one checks easily that the following data are equivalent:

• The hermitian form H ;
• The symmetric R-bilinear form S with S(x, y) = S(ix, iy);
• The skew-symmetric R-bilinear form E with E(x, y) = E(ix, iy).

Moreover,
H non-degenerate ⇐⇒ E non-degenerate ⇐⇒ S non-degenerate.

2.5 Systems of multipliers associated to hermitian forms

We denote by P the set of pairs (H, α), where H is a hermitian form on V , α a
map from Γ to S1 , satisfying:

E := Im(H) takes integral values on Γ, and α satisfies

α(γ + δ) = α(γ)α(δ)(−1)E(γ,δ) .

The law (H, α) · (H ′, α′) = (H + H ′, α α′) defines a group structure on P .
For (H, α) ∈ P , we put

eγ(z) = α(γ)eπ[H(γ,z)+ 1
2H(γ,γ)] .
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We leave as an (easy) exercise to check that this defines a system of multipliers.
The corresponding line bundle will be denoted L(H, α). The map (H, α) 7→
L(H, α) from P onto Pic(T ) is a group homomorphism; we want to prove that it
is an isomorphism.

Proposition 2.5. The first Chern class c1(L(H, α)) is equal to E ∈ Alt2(Γ,Z) ∼=
H2(T,Z) .

Proof . We will use Chern’s original definition of the first Chern class of a line
bundle L on a compact manifold M (see [13], p. 141). One chooses a C∞ metric
h on L ; this is nothing but a C

∞ function L → R+ , which is positive outside
the zero section and satisfies h(λx) = |λ|2h(x) for x ∈ L , λ ∈ C . If s is a local
non-vanishing holomorphic section of L , the 2-form ωL,h := 1

2πi∂∂̄ log h(s) does
not depend on the choice of s ; thus ωL,h is a globally defined closed 2-form, whose
class in H2(M,C) represents c1(L).

To apply this in our situation, we observe that the metric h̃ on V ×C defined
by h̃(z, t) = e−πH(z,z)|t|2 is invariant under Γ; hence it is the pullback of a metric
h on L(H, α). The form π∗ωL,h is equal to ωV ×C,h̃ ; to compute it we apply our
formula to the section s : z 7→ (z, 1) of V × C . We find

ωV ×C,h̃ =
1

2πi
∂∂̄ log e−πH(z,z) =

i

2
∂∂̄ H(z, z) .

It remains to prove that i
2∂∂̄ H(z, z) is the constant 2-form defined by E .

It suffices to prove this when H(x, y) = x̄jyj ; then i
2∂∂̄ H(z, z) = i

2dzj ∧dz̄j . Let
v = (v1, . . . , vg), w = (w1, . . . , wg) two vectors of V ; we have

(dzj ∧ dz̄j)(v, w) = zj(v)z̄j(w) − zj(w)z̄j(v) = vjw̄j − wj v̄j = −2i ImH(v, w) ,

hence our assertion.

(See [20], §2 for a proof in terms of group cohomology.)

Theorem 2.6. The map (H, α) 7→ L(H, α) defines a group isomorphism P
∼−→

Pic(T ) .

Proof . Let Q be the group of hermitian forms H on V such that Im(H) is integral
on Γ. By Proposition 2.5 and Section 2.1 we have a commutative diagram

0 // Hom(Γ, S1) //

Lo

��

P //

L

��

Q //

ι

��

0

0 // Pico(T ) // Pic(T )
c1 // H2(T,Z)

with ι(H) = Im(H) ∈ Alt2(Γ,Z) ∼= H2(T,Z).
Let us first prove that ι is bijective onto Im(c1). Let E ∈ Alt2(Γ,Z) ∼=

H2(T,Z); we have seen in Section 2.1 that E belongs to Im(c1) if and only if it
belongs to H1,1 , that is satisfies E(ix, iy) = E(x, y) (Proposition 1.3). By Section



108 Arnaud Beauville

2.4 this is equivalent to E = Im(H) for a hermitian form H ∈ Q ; moreover H is
uniquely determined by E , hence our assertion.

The map Lo associates to a unitary character α : Γ → S1 the unitary flat
bundle L(0, α); we have already seen that it is bijective (Section 2.2 and Remark
2.4). Thus the map (H, α) 7→ L(H, α) is bijective.

2.6 The theorem of the square

This section is devoted to an important result, Theorem 2.8 below, which is ac-
tually an easy consequence of our description of line bundles on T (we encourage
the reader to have a look at the much more elaborate proof in [20], §6, valid over
any algebraically closed field).

Lemma 2.7. Let a ∈ V . We have t∗π(a)L(H, α) = L(H, α′) with α′(γ) =

α(γ)e(E(γ, a) .

Proof . In general, let L be a line bundle on T defined by a system of multipliers
(eγ)γ∈Γ . Then (eγ(z + a))γ∈Γ is a system of multipliers, defining a line bundle
L′ ; the self-map (z, t) 7→ (z + a, t) of V ×C is equivariant w.r.t. the actions of Γ
defined by (eγ(z + a)) on the source and (eγ(z)) on the target, so it induces an
isomorphism L′ ∼−→ t∗π(a)L .

We apply this to the multiplier eγ(z) = a(γ)eπ[H(γ,z)+ 1
2H(γ,γ)] ; we find eγ(z+

a) = eγ(z) eπH(γ,a) . Recall that we are free to multiply eγ(z) by h(z+γ)
h(z) for

some holomorphic invertible function h ; taking h(z) = e−πH(a,z) , our multiplier
becomes eγ eπ[H(γ,a)−H(a,γ)] = eγ e2πiE(γ,a) .

Theorem 2.8 (Theorem of the square). Let L be a line bundle on T .
1) The map

λL : T → Pico(T ), λL(a) = t∗aL ⊗ L−1

is a group homomorphism.

2) Let E ∈ Alt2(Γ,Z) be the first Chern class of L . We have

KerλL = Γ⊥/Γ , with Γ⊥ := {z ∈ V | E(z, γ) ∈ Z for all γ ∈ Γ} .

3) If E is non-degenerate, λL is surjective and has finite kernel.

4) If E is unimodular, λL is a group isomorphism.

Proof . By the Lemma, λL is the composition

T
ε

−→ Hom(Γ, S1)
Lo

−→ Pico(T ) ,

where ε(a), for a = π(ã) ∈ T , is the map γ 7→ e(E(γ, ã), and Lo is the iso-
morphism α 7→ L(0, α) (Theorem 2.6). Therefore we can replace λL by ε in the
proof. Then 1) and 2) become obvious.
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Assume that E is non-degenerate. Let χ ∈ Hom(Γ, S1). Since Γ is a free
Z-module, we can find a homomorphism u : Γ → R such that χ(γ) = e(u(γ)) for
each γ ∈ Γ. Extend u to a R-linear form V → R ; since E is non-degenerate,
there exists a ∈ V such that u(z) = E(z, a), hence ε(π(a)) = χ . Thus ε is
surjective.

Let us denote by e : V → HomR(V,R) the R-linear isomorphism associated
to E . The dual Γ∗ := HomZ(Γ,Z) embeds naturally in HomR(V,R), and Γ⊥ is
by definition e−1(Γ∗); then e identifies Γ⊥ with Γ∗ , so that the inclusion Γ ⊂ Γ⊥

corresponds to the map Γ → Γ∗ associated to E|Γ . This map has finite cokernel,
and it is bijective if E is unimodular; this achieves the proof.

Remark 2.9. We have seen in Section 2.1 that Pico(T ) has a natural structure
of complex torus; it is not difficult to prove that the map λL is holomorphic. In
particular, when E is unimodular, λL is an isomorphism of complex tori.

Corollary 2.10. Assume that c1(L) is non-degenerate. Any line bundle L′ with
c1(L

′) = c1(L) is isomorphic to t∗aL for some a in T .

Proof . L′ ⊗ L−1 belongs to Pico(T ), hence is isomorphic to t∗aL ⊗ L−1 for some
a in T by 3).

The following immediate consequence of 1) will be very useful:

Corollary 2.11. Let a1, . . . , ar in T with
∑

ai = 0 . Then t∗a1
L ⊗ · · · ⊗ t∗ar

L ∼=
L⊗r .

3 Polarizations

In this section we will consider a line bundle L = L(H, α) on our complex torus
T such that the hermitian form H is positive definite. We will first look for a
concrete expression of the situation using an appropriate basis.

3.1 Frobenius lemma

The following easy result goes back to Frobenius:

Proposition 3.1. Let Γ be a free finitely generated Z-module, and E : Γ ×
Γ → Z a skew-symmetric, non-degenerate form. There exists positive integers
d1, . . . , dg with d1 | d2 | · · · | dg and a basis (γ1, . . . , γg; δ1, . . . , δg) of Γ such that

the matrix of E in this basis is

(

0 d

−d 0

)

, where d is the diagonal matrix with

entries (d1, . . . , dg) .

As a consequence we see that the determinant of E is the square of the integer
d1 · · · dg , called the Pfaffian of E and denoted Pf(E). The most important case
for us will be when d1 = · · · = dg = 1, or equivalently det(E) = 1; in that case
one says that E is unimodular, and that (γ1, . . . , γg; δ1, . . . , δg) is a symplectic
basis of Γ.

ab
Note
Marked définie par ab
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Proof . Let d1 be the minimum of the numbers E(α, β) for α, β ∈ Γ, E(α, β) > 0;
choose γ, δ such that E(γ, δ) = d1 . For any ε ∈ Γ, E(γ, ε) is divisible by d1

– otherwise using Euclidean division we would find ε with 0 < E(γ, ε) < d1 .
Likewise E(δ, ε) is divisible by d1 . Put U = Zγ⊕Zδ ; we claim that Γ = U ⊕U⊥ .
Indeed, for x ∈ Γ, we have

x =
E(x, δ)

d1
γ +

E(γ, x)

d1
δ + (x −

E(x, δ)

d1
γ −

E(γ, x)

d1
δ) .

Reasoning by induction on the rank of Γ, we find integers d2 | d3 | · · · | dg and a

basis (γ, γ2, . . . , γg; δ, δ2, . . . , δg) of Γ, such that the matrix of E is

(

0 d

−d 0

)

. It

remains to prove that d1 divides d2 ; otherwise, using Euclidean division again,
we can find k ∈ Z such that 0 < E(γ + γ2, kδ + δ2) < d1 , a contradiction.

3.2 Polarizations and the period matrix

Going back to our complex torus T = V/Γ, we assume given a positive definite
hermitian form H on V , such that E := Im(H) takes integral values on Γ. Such
a form is called a polarization of T ; if E is unimodular, we say that H is a
principal polarization. A complex torus which admits a polarization is classically
called a (polarized) abelian variety; we will see below that it is actually a projective
manifold. It is common to use the abbreviation p.p.a.v. for “principally polarized
abelian variety”.

We choose a basis (γ1, . . . , γg; δ1, . . . , δg) as in Proposition 3.1 (note that E
is non-degenerate by Section 2.4); we put γ′

j :=
γj

dj
for j = 1, . . . , g .

Lemma 3.2. (γ′
1, . . . , γ

′
g) is a basis of V over C .

Proof . Let W = Rγ′
1 ⊕ · · · ⊕ Rγ′

g . Our statement is equivalent to V = W ⊕ iW .
But if x ∈ W ∩ iW , we have H(x, x) = E(x, ix) = 0 since E|W = 0, hence
x = 0.

Expressing the δj ’s in this basis gives a matrix τ ∈ Mg(C) with δj =
∑

i τijγ
′
i . In the corresponding coordinates, we have

Γ = dZg ⊕ τZg

in other words, the elements of Γ are the column vectors dp + τq with p, q ∈ Zg .
The matrix τ is often called the period matrix.

Note that in case the polarization is principal we have γ′
i = γi and Γ =

Zg ⊕ τZg .

Proposition 3.3. The matrix τ is symmetric, and Im(τ) is positive definite.

Proof . Put τ = A + iB , with A, B ∈ Mg(R). We will compare the bases
(γ1, . . . , γg; δ1, . . . , δg) and (γ′

1, . . . , γ
′
g; iγ

′
1, . . . , iγ

′
g) of V over R . The change of
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basis matrix (expressing the vectors of the first basis in the second one) is P =
(

d A
0 B

)

. Therefore the matrix of E in the second basis is

tP−1

(

0 d

−d 0

)

P−1 =

(

0 B−1

−tB−1 tB−1(A − tA)B−1

)

Now the condition E(ix, iy) = E(x, y), expressed in the basis (γ′
1, . . . , γ

′
g;

iγ′
1, . . . , iγ

′
g), is equivalent to A = tA and B = tB ; we have H(γ′

j , γ
′
k) = E(γ′

j , iγ
′
k),

so the matrix of H in the basis (γ′
1, . . . , γ

′
g) (over C) is B−1 , and the positivity

of H is equivalent to that of B .

3.3 The moduli space of p.p.a.v.

In this section we restrict for simplicity to the case the polarization is principal ; we
encourage the reader to adapt the argument to the general case (see for instance
[8], VII.1).

We have seen that the choice of a symplectic basis determines the matrix
τ , which in turn completely determines T and H : we have V = Cg and Γ =
Γτ := Zg ⊕ τZg ; the hermitian form H is given by the matrix Im(τ)−1 , and its
imaginary part E by E(p + τq, p′ + τq′) = tpq′ − tqp′ .

The space of symmetric matrices τ ∈ Mg(C) with Im(τ) positive definite is
denoted Hg , and called the Siegel upper half space. It is an open subset of the
vector space of complex symmetric matrices. From what we have seen it follows
that Hg parametrizes p.p.a.v. (V/Γ, H) endowed with a symplectic basis of the
lattice Γ.

Now we want to get rid of the choice of the symplectic basis. We have
associated to a symplectic basis an isomorphism V ∼−→ Cg which maps Γ to the
lattice Γτ . A change of the basis amounts to a linear automorphism M of Cg ,
inducing a symplectic isomorphism Γτ

∼−→ Γτ ′ . Such an isomorphism is given

by

(

p′

q′

)

= P

(

p
q

)

, where P belongs to the symplectic group Sp(2g,Z), that is,

P ∈ M2g(Z) and tPJP = J , with J =

(

0 1

−1 0

)

.

We have M(p + τq) = p′ + τ ′ q′ , hence

(

1 τ ′
)

= M
(

1 τ
)

P−1 or equivalently

(

1

τ ′

)

= tP−1

(

1

τ

)

tM .

If P =

(

a b
c d

)

, with a, b, c, d ∈ Mg(Z), we have tP−1 = −JPJ =

(

d −c
−b a

)

. We

find

1 = (d − cτ)tM , τ ′ = (−b + aτ)tM , hence τ ′ = (aτ − b)(−cτ + d)−1 .

Thus the group Sp(2g,Z) acts on Hg by (P, τ) 7→ (aτ − b)(−cτ + d)−1 , and two
matrices τ, τ ′ correspond to the same p.p.a.v. with different symplectic bases iff
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they are conjugated under this action. To get a nicer formula, we observe that

(

a −b
−c d

)

= tP t , with t =

(

1 0
0 −1

)

;

since tJt = −J , the map P 7→ tP t is an automorphism of Sp(2g,Z). Composing
our action with this automorphism, we obtain:

Proposition 3.4. The group Sp(2g,Z) acts on Hg by

(

a b
c d

)

· τ = (aτ + b)

(cτ + d)−1 . The quotient Ag := Hg/Sp(2g,Z) parametrizes isomorphism classes
of g -dimensional p.p.a.v.

It is not difficult to show that the action of Sp(2g,Z) on Hg is nice (“properly
discontinuous”), so that Ag is an analytic space ([8], VII.1). A much more subtle
result is that Ag is Zariski open in a projective variety, the Satake compactification
Ag .

We have not made precise in which sense Ag parametrizes p.p.a.v. It is
actually what is called a moduli space; we will give a precise definition in the case
of vector bundles (see Section 4.2 below), which can be adapted without difficulty
to this case.

3.4 Theta functions

Let H be a polarization on T ; we keep the notation of the previous sections. Let
α : Γ → S1 be any map satisfying α(γ + δ) = α(γ)α(δ)(−1)E(γ,δ) .

Theorem 3.5. dim H0(T, L(H, α)) = d1 · · · dg = Pf(E) .

Proof . We first treat the case d1 = · · · = dg = 1. According to Prop. 2.2, we are
looking for theta functions satisfying

θ(z + γ) = α(γ)eπ[H(γ,z)+ 1
2 H(γ,γ)]θ(z) .

Recall that we are free to multiply eγ(z) by h(z+γ)
h(z) for some h ∈ H0(V, O∗

V ) (this

amounts to multiply θ by h). We will use this to make θ periodic with respect
to the basis elements γ1, . . . , γg of Γ.

As before we put W = Rγ1 ⊕ · · · ⊕ Rγg . Since E|W = 0, the form H|W is a
real symmetric form; since V = W ⊕ iW (Lemma 3.2), it extends as a C-bilinear
symmetric form B on V . We put h(z) = e−

π
2 B(z,z) : this amounts to replace H

in eγ(z) by H ′ := H − B . We have

Lemma 3.6. H ′(p + τq, z) = −2i tqz .

Proof . Let w ∈ W . We have H ′(w, y) = 0 for y ∈ W , hence also for any
y ∈ V because H ′ is C-linear in y . On the other hand for z ∈ V we have
H ′(z, w) = (H−B)(z, w) = (H̄−B)(w, z) = (H̄−H)(w, z) = 2iE(z, w). Thus for
z =

∑

ziγi ∈ V we have H ′(γj , z) = 0 and H ′(δj , z) =
∑

k zkH ′(δj , γk) = −2izj ,
hence the lemma.
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Put L = L(H, α). By Cor. 2.10, changing α amounts to replace L by
t∗aL for some a ∈ T . Since the pullback map t∗a : H0(T, L) → H0(T, t∗aL) is an
isomorphism, it suffices to prove the theorem for a particular value of α ; we choose
α(p + τq) = (−1)

tpq . Indeed we have mod. 2:

t(p + p′)(q + q′) ≡ tpq + tp′q′ + (tpq′ − tp′q) = tpq + tp′q′ + E(p + τq, p′ + τq′)

for p, q, p′, q′ ∈ Zg .

Thus our theta functions must satisfy the quasi-periodicity condition

θ(z + p + τq) = θ(z) e(−tqz −
1

2
tqτq) for z ∈ Cg, p, q ∈ Zg .

In particular, they are periodic with respect to the subgroup Zg ⊂ Cg . This im-
plies that they admit a Fourier expansion of the form θ(z) =

∑

m∈Zg c(m)e(tmz).
Now let us express the quasi-periodicity condition; we have:

θ(z + p + τq) =
∑

m∈Zg

c(m)e(tmτq)e(tmz)

and

θ(z)e(−tqz −
1

2
tqτq) =

∑

m∈Zg

c(m)e(t(m − q)z −
1

2
tqτq)

=
∑

m∈Zg

c(m + q)e(−1

2
tqτq)e(tmz) .

Comparing we find c(m + q) = c(m)e(t(m + q
2 )τq). Taking m = 0 gives c(q) =

c(0) e(1
2

tqτq). Thus our theta functions, if they exist, are all proportional to

θ(z) =
∑

m∈Zg

e(tmz +
1

2
tmτm) .

It remains to prove that this function indeed exists, that is that the series con-
verges. But the coefficients c(m) of the Fourier series satisfy |c(m)| = e−q(m) ,
where q is a positive definite quadratic form, and therefore they decrease very fast
as m → ∞ .

Now we treat the case d1 = · · · = dg = d . In this case the form 1
dH is

a principal polarization, so we can take L = L⊗d
0 , where L0 is the line bundle

considered above. The corresponding theta functions satisfy

θ(z + p + τq) = θ(z)e(−dtqz −
d

2
tqτq)

for z ∈ Cg, p, q ∈ Zg (“theta functions of order d”).

We write again θ(z) =
∑

m∈Zg c(m)e(tmz); the quasi-periodicity condition gives

c(m + dq) = c(m)e(t(m +
d

2
)τq) = c(m)e(−1

d
tmτm)e( 1

2d
t(m + dq)τ(m + dq))
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This determines up to a constant all coefficients c(m) for m in a given coset
ε of Zg modulo dZg ; the corresponding theta function is

θ[ε](z) =
∑

m∈ε

e(tmz +
1

2d
tmτm) . (3.1)

By what we have seen the functions θ[ε] , where ε runs through Zg/dZg , form a
basis of the space of theta functions of order d ; in particular, the dimension of
this space is dg .

The proof of the general case is completely analogous but requires more
complicated notations. We will not need it in these lectures, so we leave it as an
exercise for the reader.

3.5 Comments

The proof of the theorem gives much more than the dimension of the space of theta
functions, namely an explicit basis (θ[ε])ε∈Zg/dZg of this space given by formula
(3.1). In particular, when the polarization H is principal, the line bundles L(H, α)
have a unique non-zero section (up to a scalar); the divisor of this section is called
a theta divisor of the p.p.a.v. (T, H). By Corollary 2.10 it is well-defined up
to translation, so one speaks sometimes of “the” theta divisor. The choice of a
symplectic basis gives a particular theta divisor Θτ , defined by the celebrated
Riemann theta function

θ(z) =
∑

m∈Zg

e(tmz +
1

2
tmτm) .

It is quite remarkable that starting from a linear algebra data (a lattice Γ in
V and a polarization), we get a hypersurface Θ ⊂ T = V/Γ. When the p.p.a.v.
comes from a geometric construction (Jacobians, Prym varieties, intermediate Ja-
cobians), this divisor has a rich geometry, which reflects the objects we started
with. In particular it is often possible to recover these objects from the data (T, Θ)
(“Torelli theorem”), or to characterize the p.p.a.v. obtained in this way (“Schottky
problem”).

3.6 Reminder: line bundles and maps into projective space

Let M be a projective variety, and L a line bundle on M . The linear system |L|
is by definition P(H0(M, L)). Sending a nonzero section to its divisors identifies
|L| with the set of effective divisors E on M such that OM (E) ∼= L .

The base locus B(L) of L is the intersection of the divisors in |L| . Assume
that L has no base point, that is, B(L) = ∅ . Then the divisors of |L| passing
through a point m ∈ M form a hyperplane in |L| , corresponding to a point ϕL(m)
in the dual projective space |L|∗ . This defines a morphism ϕL : M → |L|∗ .
Choosing a basis (s0, . . . , sn) of H0(M, L) identifies |L| , hence also its dual |L|∗ ,
to Pn ; then ϕL(m) = (s0(m), . . . , sn(m)), where we have fixed an isomorphism
Lm

∼−→ C to evaluate the si at m .
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If E ∈ |L| , we also denote the linear system |L| by |E| , and the map ϕL by
ϕE . Thus |E| is the set of effective divisors linearly equivalent to E .

3.7 The Lefschetz theorem

Theorem 3.7 (Lefschetz). Let L be a line bundle on T .
1) Assume H0(T, L) 6= 0 . For k ≥ 2 , the linear system |L⊗k| has no base

points.
2) Assume that the hermitian form associated to L is positive definite. For

k ≥ 3 , the map ϕL⊗k : T → |L⊗k|∗ is an embedding.

Proof . Let us prove 1) in the case k = 2 – the proof in the general case is
identical. Let D ∈ |L| . A simple but crucial observation is that

x ∈ t∗aD ⇐⇒ a ∈ t∗xD .

By Corollary 2.11 we have t∗aD + t∗−aD ∈ |L⊗2| for all a in T . Given x ∈ T , we
choose a outside the divisors t∗xD and t∗−xD− , where D− denotes the image of
D by the involution z 7→ −z ; then x /∈ t∗aD + t∗−aD , which proves 1).

We will prove only a part of 2), namely the injectivity of ϕL⊗k ; the proof
that its tangent map at each point is injective is analogous but requires some more
preparation. We will do it for k = 3 (the same proof works for all k ) and assume
moreover that the polarization is principal – again the general case requires more
work, see [20], §17.

Let x, y in T such that ϕL⊗3(x) = ϕL⊗3(y). This means that any divisor
E ∈ |L⊗3| passing through x passes through y . Let Θ be the unique element
of |L| . Let a ∈ t∗xΘ; we choose b ∈ T outside t∗yΘ and t∗a−yΘ− , and take
E = t∗aΘ + t∗bΘ + t∗−a−bΘ. We have x ∈ E , hence y ∈ E , but y /∈ t∗bΘ and
y /∈ t∗−a−bΘ, so y ∈ t∗aΘ, that is, a ∈ t∗yΘ. We conclude that the divisors t∗xΘ and
t∗yΘ have the same support. But Θ has no multiple component, since by 1) this
would imply dimH0(T, L) > 1. Thus t∗xΘ = t∗yΘ, and by Theorem 2.8.4) this
implies x = y .

Remark 3.8. A line bundle L such that ϕL⊗k is an embedding for k large enough
is said to be ample. The celebrated (and difficult) Kodaira embedding theorem
states that this is the case if and only if the class c1(L) can be represented by a
(1, 1)-form which is everywhere positive definite (see [13], Section I.4, for a precise
statement and a proof). The Lefschetz theorem gives a much more elementary
version for complex tori. It is also more precise, since it says that k ≥ 3 is enough
for L⊗k to give an embedding. We are now going to discuss the map defined by
L⊗2 in the case of a principal polarization.

3.8 The linear system |2Θ|

Let us again focus on the case of a principal polarization. The Riemann theta
function is even, so its divisor Θτ is symmetric – that is, Θ−

τ = Θτ . From Theorem
2.8.4) one deduces that the symmetric theta divisors are the translates t∗aΘτ where
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a runs through the 22g points of order 2 of T . Note that by Theorem 2.8.1), all
divisors 2Θ, where Θ is a symmetric theta divisor, are linearly equivalent. Thus
the linear system |2Θ| is canonically associated to the principal polarization.

We will denote by iT the involution z 7→ −z . The quotient K := T/iT is
called the Kummer variety of T ; it has 22g singular points, which are the images
of the points of order 2 in T .

Proposition 3.9. Let Θ be an irreducible symmetric theta divisor on T . The
map ϕ2Θ : T → |2Θ|∗ factors through iT and embeds K = T/iT into |2Θ|∗ .

(See Remark 3.10 below for the irreducibility hypothesis.)

Proof . By Theorem 3.7 the map is everywhere defined. Recall that a basis of
H0(T, OT (2Θ)) is given by the theta functions

θ[ε](z) =
∑

m∈ε

e(tmz +
1

4
tmτm) ,

where ε runs through the cosets of Zg/2Zg . Thus ϕ2Θ maps π(z) ∈ T to
(

θ[ε](z)
)

ε∈Zg/2Zg in P2g−1 . Since each ε ∈ Zg/2Zg is stable under the involu-

tion m 7→ −m , the functions θ[ε] are even; therefore ϕ2Θ factors through iT , and
induces a map K → |2Θ|∗ .

Let us prove that this map is injective. Let x 6= y in T with ϕ2Θ(x) =
ϕ2Θ(y). Let a be a general point of t∗xΘ. The divisor t∗aΘ+ t∗−aΘ belongs to |2Θ|
and contains x , hence also y .

Since t∗xΘ 6= t∗yΘ, a does not belong to t∗yΘ; thus y /∈ t∗aΘ, and therefore
y ∈ t∗−aΘ. This means y − a ∈ Θ, and since Θ is symmetric a ∈ t∗−yΘ. We
conclude that t∗xΘ = t∗−yΘ, hence x = −y , which proves our assertion.

The injectivity of the tangent map at the smooth points of K is proved in
the same way; the analysis at the singular points is more delicate, see [18].

Remark 3.10. What if Θ is reducible? It is not difficult to show that T must
be a product of lower-dimensional p.p.a.v.; that is, T = T1 × · · · × Tp and Θ =
Θ1×T2×· · ·×Tp + · · ·+T1×· · ·×Tp−1×Θp . In that case the geometry of (T, Θ)
is determined by that of the (Ti, Θi).

Example 3.11. Suppose g = 2. Then ϕ2Θ embeds K = T/iT in P3 . It is easy
to see that K has degree 4 (hint: use KT = OT = ϕ∗

2ΘOP3(deg(K) − 4)); it
has 16 double points corresponding to the 16 points of order 2 in T . This is the
celebrated Kummer quartic surface, found by Kummer in 1864.

The following remarkable formula explains (in part) the particular role of the
linear system |2Θ| . We use the notations of the proof of Theorem 3.5.

Proposition 3.12 (Addition formula).

θ(z + a) θ(z − a) =
∑

ε∈Zg/2Zg

θ[ε](z) θ[ε](a) for z, a in Cg .
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Proof . We have

θ(z + a) θ(z − a) =
∑

p,q∈Zg

e(t(p + q)z + t(p − q)a +
1

2
(tpτp + tqτq)

)

.

Putting r = p + q , s = p − q defines a bijection of Zg × Zg onto the set of pairs
(r, s) in Zg × Zg with r ≡ s (mod. 2Zg). This set is the union of the subsets
ε × ε ⊂ Zg × Zg for ε ∈ Zg/2Zg ; thus

θ(z + a) θ(z − a) =
∑

ε∈Zg/2Zg

∑

r,s∈ε

e(trz +
1

4
trτr) e(tsa +

1

4
tsτs)

=
∑

ε∈Zg/2Zg

θ[ε](z) θ[ε](a) .

The addition formula has the following geometric interpretation:

Corollary 3.13. Let Θ be a symmetric theta divisor on T . For a ∈ T , put
κ(a) := t∗aΘ + t∗−aΘ ∈ |2Θ| . There is a commutative diagram:

|2Θ|∗

≀

��

T

ϕ2Θ

==zzzzzzzz

κ
!!DD

DD
DD

DD

|2Θ|

Proof . After a translation by a point of order 2 we can assume Θ = Θτ for some
symplectic basis of Γ. We identify both |2Θτ | and its dual to P2g−1 using the
basis (θ[ε])ε∈Zg/2Zg . Then, by the addition formula,

κ(a) =
(

θ[ε](a)
)

ε∈Zg/2Zg = ϕ2Θ(a) .

(For a more intrinsic description of the isomorphism |2Θ| ∼−→ |2Θ|∗ , see [21],
p. 555.)

4 Curves and their Jacobians

In this section we denote by C a smooth projective curve (= compact Riemann
surface) of genus g .

4.1 Hodge theory for curves

We first recall briefly Hodge theory for curves, which is much easier than in the
general case. We start from the exact sequence of sheaves

0 → CC −→ OC
d

−→ KC → 0 ,
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where CC is the sheaf of locally constant complex functions, and KC (also denoted
Ω1

C or ωC ) is the sheaf of holomorphic 1-forms. Taking into account H0(C, OC) =
C and H1(C, KC) ∼= C (Serre duality), we obtain an exact sequence

0 → H0(C, KC)
∂

−→ H1(C,C)
p

−→ H1(C, OC) → 0 .

By definition g = dimH0(C, KC); by Serre duality we have also dimH1(C, OC) =
g , hence dimH1(C,C) = 2g .

We put H1,0 := Im ∂ and H0,1 := H1,0 ; H1,0 is the subspace of classes in
H1(C,C) which can be represented by holomorphic forms, and H0,1 by antiholo-
morphic forms.

Lemma 4.1. Let α 6= 0 in H0(C, KC) ; then i
∫

C α ∧ ᾱ > 0 .

Proof . Let z = x + iy be a local coordinate in an open subset U of C . We can
write α = f(z)dz in U , so that

i

∫

U

α ∧ ᾱ =

∫

U

|f(z)|2 i dz ∧ dz̄ =

∫

U

|f(z)|2 2 dx ∧ dy > 0 .

Proposition 4.2. H1(C,C) = H1,0 ⊕ H0,1 ; the map p induces an isomorphism
H0,1 → H1(C, OC) .

Proof . The second assertion follows from the first and from the above exact
sequence. For dimension reasons it suffices to prove that H1,0 ∩ H0,1 = (0). Let
x ∈ H1,0 ∩ H0,1 . There exists α, β ∈ H0(C, KC) such that x = [α] = [β̄] , hence
α − β̄ = df for some C∞ function f on C . Then β ∧ β̄ = df ∧ β = d(fβ),
hence

∫

C
β ∧ β̄ = 0 by Stokes theorem. By the Lemma this implies β = 0 hence

x = 0.

Proposition 4.3. p(H1(C,Z)) is a lattice in H0,1 ; the hermitian form H on
H0,1 defined by H(α, β) := 2i

∫

C
ᾱ ∧ β induces a principal polarization on the

complex torus H0,1/p(H1(C,Z)) .

Proof . The first assertion has already been proved (Section 2.1). Lemma 4.1
shows that the form H is positive definite on H0,1 = H1,0 . Let a, b ∈ H1(C,Z);
we have

a = ᾱ + α , b = β̄ + β with α = p(a) , β = p(b) .

Their cup-product in H2(C,Z) = Z is given by

a · b =

∫

C

(ᾱ + α) ∧ (β̄ + β) =
1

2i

(

H(α, β) − H(β, α)
)

= Im(H)(α, β) ;

thus Im(H) induces on H1(C,Z) the cup-product, which is unimodular by Poincaré
duality.

The g -dimensional abelian variety JC := H0,1/p(H1(C,Z)) with the prin-
cipal polarization H is called the Jacobian of C ; it plays an essential role in the
study of the curve.
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4.2 Line bundles on C

To study line bundles on C we use again the exact sequence (2.1):

0 → H1(C,Z)
i

−→ H1(C, OC) −→ Pic(C)
c1−→ H2(C,Z) ∼= Z→ 0 .

Here for a line bundle L on C , c1(L) is simply the degree deg(L) (through the
canonical isomorphism H2(C,Z) ∼= Z): deg(L) = deg(D) for any divisor D such
that OC(D) ∼= L .

Note that i is the composition of the maps H1(C,Z) → H1(C,C)
p

−→
H1(C, OC) deduced from the inclusions of sheaves ZC ⊂ CC ⊂ OC . Hence:

Proposition 4.4. We have an exact sequence 0→JC−→Pic(C)
deg
−→Z→0 .

Thus JC is identified with Pico(C), the group of isomorphism classes of
degree 0 line bundles on C – or the group of degree 0 divisors modulo linear
equivalence. More precisely, one can show that JC is a moduli space for degree 0
line bundles on C . This means the following. Let S be a complex manifold (or
analytic space), and let L be a line bundle on C×S . For s ∈ S , put Ls := LC×{s} .
We say that (Ls)s∈S is a holomorphic family of line bundles on C parametrized
by S . If the line bundles Ls have degree 0, we get a map S → JC ; we want this
map to be holomorphic.

In fact we have even more: the line bundles L in JC form a holomorphic
family. Namely, there exists a line bundle P on C × JC such that PL = L for
each L ∈ JC . Such a line bundle is called a Poincaré line bundle. It is unique up
to tensor product by the pullback of a line bundle on JC .

4.3 The Abel-Jacobi maps

As an illustration, choose a divisor D1 of degree 1 on C and define α : C → JC
by α(p) = OC(p−D1). It is holomorphic (hence algebraic, since both C and JC
are projective manifolds): indeed it is defined by the line bundle OC×C(∆−p∗D1)
on C × C , where ∆ is the diagonal and p the first projection.

More generally, let C(d) denote the d-th symmetric power of the curve C ,
that is, the quotient of Cd by the symmetric group Sd . This is a smooth variety:
indeed since this a local question it suffices to prove it for the affine line C ; but
the map (z1, . . . , zd) 7→ (s1, . . . , sd), where si is the i -th elementary symmetric
function of z1, . . . , zd , identifies C(d) to Cd . Using the map (p1, . . . , pd) 7→ p1 +
· · · + pd we will view the elements of C(d) as effective divisors of degree d on C .

Now we choose a divisor Dd of degree d and define a map αd : C(d) →
JC by αd(E) = OC(E − Dd). Again this is holomorphic, for instance because
αd(p1 + · · ·+ pd) = α(p1) + · · ·+ α(pd) up to a constant. For E ∈ C(d) , the fiber
α−1

d (αd(E)) is the linear system |E| (Sect. 3.6).

Proposition 4.5. For d ≤ g the map αd is generically injective.

Proof . By the observation preceding the Proposition we must prove2 h0(E) = 1
for a general E ∈ C(d) . If D is an effective divisor, we have h0(D−p) = h0(D)−1

2We use the standard notations h0(F) := dimH0(C, F) for a sheaf F on C , and h0(D) :=
h0(OC(D)) for a divisor D .
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for p general in C , hence by induction h0(D − E) = h0(D) − d for E general in
C(d) with d ≤ h0(D). Taking D = K gives h0(K − E) = g − d for d ≤ g , hence
h0(E) = 1 by Riemann-Roch.

Corollary 4.6. αg : C(g) → JC is birational.

Another consequence is that the image of αg−1 : C(g−1) → JC is a divisor
in JC . In fact:

Theorem 4.7 (Riemann). The image of αg−1 : C(g−1) → JC is a theta divisor
of JC .

We have to refer to [1], p. 23 for the proof.

Remark 4.8. 1) Recall that the map αg−1 depends on the choice of a divisor D ,
or equivalently of the line bundle L = OC(D), of degree g − 1. We will denote by
ΘL the corresponding theta divisor; explicitly:

ΘL = {M ∈ JC | H0(M ⊗ L) 6= 0} .

2) There is a way to avoid the inelegant choice of a divisor Dd in the definition
of αd . Let Jd denote the set of isomorphism classes of line bundles of degree d
on C . Choosing a line bundle Ld of degree d defines a bijection JC → Jd (by
M 7→ M ⊗ Ld ). This provides a structure of projective variety on Jd which does
not depend on the choice of Ld . By construction Jd is isomorphic to JC , but
there is no canonical isomorphism.

Now we have a canonical map αd : C(d) → Jd defined simply by αd(E) =
OC(E). In particular we have a canonical divisor Θ ⊂ Jg−1 , which is the locus of
the line bundles L in Jg−1 with H0(L) 6= 0.

3) A consequence of the Riemann theorem is that the theta divisor is irre-
ducible, so a Jacobian cannot be a product of non-trivial p.p.a.v. (Remark 3.10).

5 Vector bundles on curves

As explained in the introduction, generalized theta functions appear when we
replace JC , the moduli space of degree 0 line bundles on C , by the analogous
moduli spaces for higher rank vector bundles. We will now explain what this
means.

5.1 Elementary properties

Let E be a vector bundle on C , of rank r . The maximum wedge power ∧rE is
a line bundle on C , denoted det(E). Its degree is denoted by deg(E). It has the
following properties:

• In an exact sequence 0 → F → E → G → 0 we have det(E) ∼= det(F ) ⊗
det(G);
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• For any line bundle L on C , we have det(E ⊗ L) = det(E) ⊗ L⊗r .
• (Riemann-Roch) h0(E) − h1(E) = deg(E) + r(1 − g).

It will be convenient to introduce the slope µ(E) :=
deg(E)

r
∈ Q . Thus

Riemann-Roch can be written h0(E) − h1(E) = r(µ(E) + 1 − g).

5.2 Moduli spaces

We have seen that the Jacobian of C parametrizes line bundles of degree 0, in the
sense that for any holomorphic family (Ls)s∈S the corresponding map S → JC
is holomorphic. Unfortunately such a nice moduli space does not exist in higher
rank. Indeed we will show the following:

Lemma 5.1. Let L be a non-trivial line bundle on C with no base point (Sect.
3.6) . There exists a holomorphic family of vector bundles (Et)t∈C on C such that:

Et
∼= OC ⊕ OC for t 6= 0 E0

∼= L ⊕ L−1 .

Proof . We first take C = P1 and L = OP1(2). Put F := P1 × C , OF (k) :=
pr∗1OP1(k). Consider the homomorphism

u : O
⊕3
F −→ OF (2) given by (X2, Y 2, tXY ) ,

where t is the coordinate on C and (X, Y ) the homogeneous coordinates on P1 .
The map u is surjective, so its kernel is a rank 2 bundle F on P1 × C . We claim
that

Ft
∼= OP1(−1)⊕2 for t 6= 0 F0

∼= OP1 ⊕ OP1(−2) .

There is a variety of ways to prove this. Perhaps the easiest is to observe that
any vector bundle on P1 is a direct sum of line bundles. Since Ft is a sub-bundle
of O

⊕3
P1 with determinant OP1(−2), it is either OP1(−1)⊕2 or OP1 ⊕ OP1(−2); the

first case occurs if and only if h0(Ft) = 0, that is, if and only if t 6= 0. Then the
vector bundle F(1) on F has the required properties.

Now we consider the general case. Let s be a nonzero section of L ; we can
find a section t of L which does no vanish at the zeroes of s . Then (s, t) defines
a map u : C → P1 such that u∗OP1(1) = L . The vector bundle E := (u, Id)∗F(1)
on C × C has the required properties.

This implies that there is no reasonable moduli space M containing both
O

⊕2
C and L ⊕ L−1 : the family constructed in the lemma would give rise to a

holomorphic map C→ M mapping Cr{0} to a point, and 0 to a different point.
There are two ways to deal with this problem. The sophisticated one, which we
will not discuss here, replaces moduli spaces by a more elaborate notion called
moduli stacks. The reader interested by this point of view may look at [12].

Instead we will follow the classical (by now) approach, which eliminates cer-
tain vector bundles, for instance those of the form L ⊕ L−1 which appear in the
lemma; this is done as follows:
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Definition 5.2. A vector bundle E on C is stable if µ(F ) < µ(E) for every
sub-bundle 0 ( F  E . It is polystable if it is a direct sum of stable sub-bundles
of slope µ(E) .

Theorem 5.3. There exists a moduli space Ms(r, d) for stable vector bundles of
rank r and degree d . It is a smooth connected quasi-projective manifold; it ad-
mits a projective compactification M(r, d) whose points correspond to isomorphism
classes of polystable bundles.

Note that we do not claim that M(r, d) is a moduli space for polystable
bundles; the situation is more complicated. We refer to [19] for a precise statement
as well as the proof.

An important by-product of the proof is the fact that stability is an open
condition: if S is a variety and E a vector bundle on C ×S , the set of s ∈ S such
that Es is stable is Zariski open in S ([19], Prop. 7.2.6).

5.3 The moduli space M(r)

We will in fact focus on a slightly different moduli space. The map det : M(r, d) →
Jd which associates to a vector bundle its determinant is holomorphic. Let L be a
line bundle of degree d ; the fiber det−1(L) is denoted M(r, L). We denote by Jr

the subgroup (isomorphic to (Z/rZ)2g ) of line bundles α ∈ JC with α⊗r ∼= OC .

Proposition 5.4. The map M(r, L) × JC → M(r, d) given by (E, λ) 7→ E ⊗ λ
identifies M(r, d) with the quotient of M(r, L) × JC by Jr acting by α · (E, λ) =
(E ⊗ α, λ ⊗ α−1) .

Proof . Let E in M(r, d). The pairs (F, λ) with F ∈ M(r, L), λ ∈ JC and
E ∼= F ⊗ λ are obtained by taking λ ∈ JC with λ⊗r = det(E) ⊗ L−1 and
F = E ⊗ λ−1 . We can always find such a λ , hence a pair (F, λ), and two such
pairs differ by the action of Jr .

Thus M(r, d) is determined by JC and M(r, L); from now on we will focus
on the latter space. Note that for N ∈ Pic(C) the map E 7→ E ⊗ N induces
an isomorphism M(r, L) ∼−→ M(r, L ⊗ N⊗r); thus up to isomorphism, M(r, L)
depends only of the degree d of L (mod. r ). When r and d are coprime M(r, L) =
Ms(r, L) is smooth, and is a nice moduli space; however the most interesting case
for us will be d = 0, and the moduli space M(r, OC), which we will denote simply
M(r). This is also the moduli space of principal SL(r)-bundles, so its study fits
into the more general theory of principal G-bundles for a semisimple group G .

Let us summarize in the next Proposition some elementary properties of
M(r), which follow from its construction (see [19]). From now on we will assume
that the genus g of C is ≥ 2 (for g ≤ 1 there are no stable bundles of degree 0
and rank > 1).

Proposition 5.5. M(r) is a projective normal irreducible variety, of dimension
(r2 − 1)(g − 1) , with mild singularities (so-called rational singularities) . Except
when r = g = 2 , its singular locus is the locus of non-stable bundles.
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As algebraic varieties, the moduli spaces M(r, L) are very different from
complex tori:

Proposition 5.6. The moduli space M(r, L) is unirational; that is, there exists
a rational dominant map3 PN

99K M(r, L) .

Proof . Using the isomorphism M(r, L) ∼−→ M(r, L⊗N⊗r) we may assume deg(L) >
r(2g − 1), so µ(E) > 2g − 1 for E ∈ M(r, L). Since E is polystable this implies
H0(E∗ ⊗ KC(p)) = 0 for any p ∈ C , hence by Serre duality H1(E(−p)) = 0.
Then the exact sequence

0 → E(−p) → E → Ep → 0

gives for each p a surjection evp : H0(E) ։ Ep ; that is, the global sections of E
generate E at p .

Now we claim that a general subspace of dimension r + 1 of H0(E) still
generates E at each point. For p ∈ C , let Zp be the subvariety of the Grassman-
nian G(r + 1, H0(E)) consisting of subspaces V which do not span Ep . This is
equivalent to dimV ∩ Ker(evp) ≥ 2, so Zp has codimension 2 (exercise!). Thus
Z = ∪p∈CZp has codimension 1 in the Grassmannian; any V in the complement
of Z generates E at each point. For such a V the evaluation map V ⊗ OC → E
is surjective. Its kernel is a line bundle; taking determinants we see that it is L−1 .
Thus E∗ is the kernel of a surjective map V ∗ ⊗ OC → L .

Conversely, let G0 be the open subset of the Grassmannian G(r + 1, H0(L))
parametrizing subspaces which span L at each point. For W ∈ G0 , we have an
exact sequence

0 → FW −→ W ⊗C OC
ev
−→ L → 0 ;

The dual EW := F ∗
W is a rank r vector bundle with determinant L ; we obtain

in this way an algebraic family of such bundles, parametrized by G0 , such that
every element of Ms(r, L) appears in the family. The subspaces W ∈ G0 such
that EW is stable form a Zariski open subset G1 ⊂ G0 (Sect. 5.2), and we have a
surjective map f : G1 → Ms(r, L) such that f(W ) = EW . Since Grassmannians
are rational varieties, composing f with a birational map PN

99K G1 gives the
required rational dominant map.

Corollary 5.7. Any rational map from M(r, L) to a complex torus is constant.

Proof . Let T = V/Γ be a complex torus. In view of the proposition, it suffices
to show that any rational map ϕ : PN

99K T is constant. Let p, q be two general
points of PN . The restriction of ϕ to the line 〈p, q〉 defines a map P1 → T ,
which factors through V since P1 is simply connected, hence is constant. Thus
ϕ(p) = ϕ(q).

3In the rest of this section we assume some familiarity with the notion of rational maps – see
e.g. [13], p. 490.
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5.4 Rationality

The Lüroth problem asks whether an unirational variety X is necessarily rational.
The answer is positive when X is a curve (Lüroth, 1876) or a surface (Castelnuovo,
1895), but not in higher dimension (see for instance [9]).

While M(r, L) is known to be rational when deg(L) is prime to r [17], the
rationality of M(r) is an open problem, already for r = 2 and g = 3 – despite
the fact that in this case we have an explicit description of M(2) as a quartic
hypersurface in P7 (Sect. 6.5).

6 Generalized theta functions

6.1 The theta divisor

Since M(r) is simply connected, there is no hope to describe its line bundles by
systems of multipliers as for complex tori. However we may try to mimic the
definition of the theta divisor: for L ∈ Jg−1 , we put

∆L := {E ∈ M(r) | H0(E ⊗ L) 6= 0}.

Theorem 6.1 ([10]). 1) ∆L is a Cartier divisor on M(r) .
2) The line bundle L = O(∆L) is independent of L , and Pic(M(r)) = Z[L] .

Recall that an effective Cartier divisor is a subvariety locally defined by an
equation – or, globally, as the zero locus of a section of a line bundle. On a singular
variety (as is M(r)) this is stronger than having codimension 1.

Proof . We will only show why ∆L is a divisor on the stable locus M
s(r), referring

to [10] for the rest of the proof. It is a consequence of the following lemma:

Lemma 6.2. Let S be a complex variety, (Es)s∈S a family of vector bundles on
C , with µ(Es) = g − 1 for all s ∈ S . Then the locus

{s ∈ S | H0(C, Es) 6= 0}

is defined locally by one equation (possibly trivial).

Proof . We will use a general fact about cohomology of coherent sheaves (see [20],
§5) : locally on S there exist vector bundles F, G and a homomorphism u : F → G
such that we have for each s in S an exact sequence

0 → H0(C, Es) −→ F (s)
u(s)
−→ G(s) −→ H1(C, Es) → 0 .

By Riemann-Roch we have h0(Es) = h1(Es), hence F and G have the same rank.
We see that H0(C, Es) 6= 0 if and only if det(u(s)) = 0, that is, the section det(u)
of det(G) ⊗ det(F )−1 vanishes at s , hence the lemma.

Coming back to M(r), the construction of the moduli space implies that
locally for the complex topology, there is a “Poincaré bundle”, that is a rank r
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vector bundle E on C × V such that E|C×{E}
∼= E for E in V . Applying the

lemma to E ⊗ L shows that ∆L is a divisor on Ms(r), unless ∆L = M(r). But
this cannot hold: if α is a general element of JC , we have H0(L⊗α) = 0, hence
α⊕r /∈ ∆L .

6.2 Generalized theta functions

By analogy with the case of Jacobians, the sections of H0(M(r), L⊗k) are called
generalized (or non-abelian) theta functions of order k . They are associated to the
group SL(r) (there are more general theta functions associated to each complex
reductive group, but we will not discuss them in these notes).

Like for complex tori, the first question we can ask about these theta functions
is the dimension of the space H0(M(r), L⊗k). The answer, much more intricate
than Theorem 3.5 for complex tori, is known as the Verlinde formula; it has been
first found by E. Verlinde using physics arguments, then proved mathematically
in many different ways – see e.g. [29]. The formula is as follows:

dimH0(M(r), L⊗k) =
( r

r + k

)g ∑

S∐T=[1,r+k]
|S|=r

∏

s∈S

t∈T

∣

∣2 sinπ
s − t

r + k

∣

∣

g−1
(6.1)

For r = 2 it reduces (after some trigonometric manipulations) to:

dimH0(M(2), L⊗k) = (
k

2
+ 1)g−1

k+1
∑

i=1

1

(sin iπ
k+2 )2g−2

·

Even in rank 2, it is not at all obvious that the right hand side is an integer!

6.3 Linear systems and rational maps in Pn

This section is the logical continuation of Section 3.6; we again assume some
familiarity with the notion of rational map ([13], p. 490). We keep our projective
variety M and a line bundle L on M ; we do not assume B(L) = ∅ . We still
have a map M rB(L) → |L|∗ , which we see as a rational map ϕL : M 99K |L|∗ .

Conversely, suppose given a rational map ϕ of M to a projective space
P(V ). We assume that M is normal ; then the indeterminacy locus B of ϕ
has codimension ≥ 2. We assume moreover that the line bundle ϕ∗OP(V )(1) on
M r B extends to a line bundle L on M . By Hartogs theorem the restriction
map H0(M, L) → H0(M rB, L) is bijective, so we get a pullback homomorphism
ϕ∗ : V ∗ → H0(M, L). We have a commutative diagram

|L|∗

P(tϕ∗)

��
�

�

�

�

�

�

�

M

ϕL

<<z
z

z
z

ϕ
""E

E
E

E

P(V )
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Indeed for m general in M , ϕL(m) is the hyperplane of |L| formed by the divisors
passing through m ; its image under P(tϕ∗) is the hyperplane of P(V )∗ formed by
the hyperplanes of P(V ) passing through ϕ(m), and this corresponds by duality
to the point ϕ(m) ∈ P(V ).

6.4 The theta map

We go back to our moduli space M(r) and the generator L of its Picard group.
The next step is to ask for the map defined by the linear systems |L⊗k| . In fact
we will concentrate on the simplest one, namely ϕL . Our task will be to give a
geometric description of this map. In order to do this we associate to each vector
bundle E ∈ M(r) the locus

θ(E) := {L ∈ Jg−1 | H0(E ⊗ L) 6= 0}

Proposition 6.3. θ(E) is either equal to Jg−1 , or is a divisor in Jg−1 , belonging
to the linear system |rΘ| .

Proof . Consider the vector bundle E ⊗ P on C × Jg−1 , where P is a Poincaré
line bundle (Section 4.2). It defines the family of vector bundles (E ⊗ L)L∈Jg−1

on C . These bundles have slope g − 1, hence we can apply Lemma 6.2, which
shows that θ(E) is defined locally by one (possibly trivial) equation.

Let S be an irreducible variety, and E a vector bundle on C × S , with
deg(Es) = 0 for each s . Lemma 6.2, applied to the vector bundle E ⊗ P on
C ×S × Jg−1 , gives a line bundle N on Jg−1 ×S and a section τ of N with zero
locus Z = ∪s θ(Es). Put

So := {s ∈ S | θ(Es) 6= Jg−1} ;

So is the projection on S of the complement of Z in Jg−1 × S , so it is a Zariski
open subset of S .

Applying this locally to our moduli space M(r), we see that the vector bun-
dles E ∈ M(r) with θ(E) = Jg−1 form a closed analytic (and therefore alge-
braic) subset of M(r). Let M(r)o be the complement of this subset. When
E runs through M(r)o , the Chern class c1(θ(E)) is constant. So if we fix
E0 ∈ M(r)o , we have a rational map M(r) 99K Pico(Jg−1) mapping E ∈ M(r)o

to OJ(θ(E) − θ(E0)). By Corollary 5.7 this map is constant, hence OJ(θ(E)) is
independent of E .

Let α1, . . . , αr be distinct elements of JC . We have

θ(α1 ⊕ · · · ⊕ αr) = t∗α1
Θ + · · · + t∗αr

Θ ∈ |rΘ|

(see Corollary 2.11). Thus whenever θ(E) 6= Jg−1 we have θ(E) ∈ |rΘ| .

Thus we have a rational map θ : M(r) 99K |rΘ| .

Theorem 6.4 ([6]). There is a natural isomorphism

H0(M(r), L) ∼−→ H0(Jg−1, O(rΘ))∗
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making the following diagram commutative:

|L|∗

≀

��

M(r)

ϕL

<<x
x

x
x

θ
""F

F
F

F

|rΘ|

Sketch of proof : For L ∈ Jg−1 , let HL be the hyperplane in |rΘ| consisting of
the divisors passing through L . By definition the pullback of HL under θ is the
divisor ∆L . Thus, as explained in Section 6.3, we get a commutative diagram

|L|∗

λ

��
�

�

�

�

�

�

�

M(r)

ϕL

<<x
x

x
x

θ
""F

F
F

F

|rΘ|

with λ := P(tθ∗). It remains to prove that λ is bijective. Surjectivity is not
difficult, let us prove it in the case r = 2. If λ is not surjective, the image of θ is
contained in a hyperplane of |2Θ| . But this image contains all the divisors θ(α ⊕
α−1) = t∗αΘ + t∗−αΘ for α ∈ JC ; and Corollary 3.13 implies that these divisors
span |2Θ| (otherwise the image of ϕ2Θ would be contained in a hyperplane).

We have dim |rΘ| = rg − 1 by Theorem 3.5, so the crucial point is to prove
the same equality for dim |L| . Of course this follows (in a non-trivial way) from
the Verlinde formula (6.1); in [6], since the Verlinde formula was not yet available,
we constructed a rational dominant map from a certain abelian variety to the
moduli space, and applied Theorem 3.5 to get the result.

Corollary 6.5. The base locus of the linear system |L| on M(r) is the set of
vector bundles E ∈ M(r) such that θ(E) = Jg−1 .

Thus the rather mysterious map ϕL is identified with the more concrete map
θ ; one usually refers to θ , or ϕL , as the theta map. We will now see that this
explicit description allows a good understanding of the theta map in the rank 2
case.

6.5 Rank 2

In rank 2 the theta map is by now fairly well understood. We summarize what is
known in one theorem:
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Theorem 6.6. 1) The theta map θ : M(2) → |2Θ| is a morphism.
2) If C is not hyperelliptic or g = 2 , θ is an embedding.
3) If C is hyperelliptic of genus ≥ 3 , θ is 2-to-1 onto its image in |2Θ| ,

and this image admits an explicit description.

This is the conjunction of various results. Part 1) is due to Raynaud [28],
part 3) to Bhosle-Ramanan [11]. In case 2), the fact that θ is generically injective
was proved in [2]; from this Brivio and Verra deduced that θ embeds Ms(2), and
this was extended to M(2) in [14].

Recall that M(2) has dimension 3g − 3. In particular:

Corollary 6.7 ([23]). For g = 2 , θ : M(2) → |2Θ| ∼= P3 is an isomorphism.

Consider the map k : JC → M(2) given by k(L) = L⊕L−1 . The composition
θ ◦k is the map κ studied in Section 3.8; thus k embeds the Kummer variety K of
JC into M(2), and the restriction of θ to K is the natural embedding of K into
|2Θ| . For g > 2 K is the singular locus of M(2) (Proposition 5.5); when C is
not hyperelliptic, we obtain a variety in |2Θ| which is singular along the Kummer
variety.

For g = 3 and C not hyperelliptic, a very nice application appears in [24].
In that case dimM(2) = 6, so θ embeds M(2) as a hypersurface in |2Θ| ∼= P7 .
It is not difficult to prove that it has degree 4 (for instance by computing its
canonical bundle). Now Coble had found long ago that there is a unique quartic
hypersurface in |2Θ| which is singular along the Kummer variety, for which he
had written down an explicit equation (see [3] for a modern account). Therefore
this hypersurface is M(2).

We will illustrate the methods used to prove the above results by giving the
proof of 1).

6.6 Raynaud’s theorem

We will prove part 1) of Theorem 6.6 in the following form:

Proposition 6.8. Let E ∈ M(2) . Then θ(E) 6= Jg−1 .

Proof . If E = L ⊕ L−1 , we have θ(E) = ΘL + ΘL−1 6= Jg−1 . Therefore we may
assume that E is stable.

Suppose θ(E) = Jg−1 . Put F = E ⊗L for some L in Jg−1 ; our hypothesis
becomes h0(F ⊗α) > 0 for all α ∈ JC . Put h := minα∈JC h0(F ⊗α). Replacing
F by F ⊗ α for an appropriate α we may assume h0(F ) = h . We will use the
semi-continuity theorem in cohomology, which implies that there is a Zariski open
subset U ⊂ JC (containing 0) such that h0(F ⊗ α) = h for α ∈ U ([20], §5).

Put F ′ := F ∗ ⊗ KC ; let p ∈ C . The Riemann-Roch theorem gives
(

h0(F (p)) − h0(F )
)

+
(

h0(F ′) − h0(F ′(−p)
)

= 2 .

For p general we have h0(F ′) − h0(F ′(−p) ≥ 1, hence h0(F (p)) − h0(F ) ≤ 1.
But h0(F (p)) = h would imply h0(F (p− q)) < h for q general, contradicting the
definition of h . Thus h0(F (p)) = h + 1.
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Put G := F (p). We have h0(G) = h+1, and h0(G(−q)) = h0(F (p− q)) = h
for q general in C . From the exact sequence

0 → G(−q) → G → Gq → 0

we see that the global sections of G generate a rank 1 subsheaf L0 of G . This
is not necessarily a sub-line bundle because the quotient G/L0 may have torsion;
but it is contained in a unique sub-line bundle L , the kernel of the projection from
G to the torsion-free quotient of G/L (sometimes called the saturation of L0 in
G). This sub-line bundle L has the property that any rank 1 subsheaf M ⊂ G
with h0(M) > 0 is contained in L . Indeed if s is a nonzero section of M , at a
general point x of C s(x) generates Mx and Lx ; therefore the map M → G/L
is zero generically, hence everywhere.

Now take q, r general in C and consider G(q−r). As before its global sections
generate a sub-line bundle L′ ⊂ G(q − r). But we have L(q − r) ⊂ G(q − r),
and h0(L(q − r)) > 0 since h0(L) = h0(G) ≥ 2. Hence L(q − r) ⊂ L′ . But
symmetrically we have L′(r − q) ⊂ L , hence L(q − r) = L′ . In particular we find
h0(L(q−r)) = h = h0(L) for q, r general in C . This implies h0(L(q)) = h0(L)+1,
hence by Riemann-Roch h0(K ⊗ L−1) = h0(K ⊗ L−1(−q)) for q general; this is
possible only if h0(K ⊗ L−1) = 0. Applying again Riemann-Roch and using
h0(L) ≥ 2, we get deg(L) ≥ g + 1 > µ(G), a contradiction.

6.7 Higher rank

In contrast with the rank 2 case, not much is known in higher rank. It is known
since [28] that there exist stable bundles E with θ(E) = Jg−1 – that is, base
points for the linear system |L| ; in fact, they exist as soon as r ≥ g + 2, and even
r ≥ 4 if C is hyperelliptic [26]. On the other hand, in rank 3 there are no base
points for g = 2 [28], g = 3 [4], or if C is general enough [28].

The situation is somewhat particular when g = 2, since dimM(r) = dim |rΘ| =
r2 − 1.

Proposition 6.9. Let g = 2 .

1) θ : M(r) 99K |rΘ| is generically finite.
2) Its degree is 1 for r = 2 , 2 for r = 3 , 30 for r = 4 .

Part 1) is proved in [4]. The rank 2 case has been discussed in Corollary
6.7. In rank three θ : M(3) → |3Θ| ∼= P8 is a double covering, branched along a
sextic hypersurface which can be explicitly described [25]. The case r = 4 is due
to Pauly [27].

Let us conclude with a

Conjecture 6.10. For g ≥ 3 , the theta map θ : M(r) 99K |rΘ| is generically
2-to-1 onto its image if C is hyperelliptic, and generically injective otherwise.

This is unknown even for r = g = 3.
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6.8 Further reading

There are a number of topics which I would have liked to cover in these lectures
but could not by lack of time. Here are a few of them, with references to the
literature:

• The beautiful interplay between curves and their Jacobians: Torelli theorem,
Schottky problem, etc. A nice overview can be found in [22]; some of the
topics are developed in [1].

• The heat equation and its extension to generalized theta functions. The
original paper [16] of Hitchin is of course somewhat advanced, but still quite
readable.

• Higgs bundles. Though not directly related to generalized theta functions,
this is an important subject with many applications. Here again one can look
at the original paper [15] of Hitchin; see also [7] for a short introduction.

• Principal bundles. This amounts to replace the group SL(r) by any semi-
simple group. Essentially all we have said extends to this set-up. There
are few results on the theta map, see [5] for the orthogonal and symplectic
groups.
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