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Abstract.

This is a survey lecture on the “theta map” from the moduli space of
SLr-bundles on a curve C to the projective space of r-th order theta functions
on JC. Some recent results and a few open problems about that map are
discussed.

Introduction

These notes survey the relation between the moduli spaces of vector
bundles on a curve C and the spaces of (classical) theta functions on the
Jacobian J of C. The connection appears when one tries to describe
the moduli space Mr of rank r vector bundles with trivial determinant
as a projective variety in an explicit way (as opposed to the somewhat
non-constructive way provided by GIT). The Picard group of the moduli
space is infinite cyclic, generated by the determinant line bundle L ; thus
the natural maps from Mr to projective spaces are those defined by the
linear systems |Lk|, and in the first instance the map ϕL : Mr ��� |L|∗.
The key point is that this map can be identified with the theta map

θ : Mr ��� |rΘ|

which associates to a general bundle E ∈ Mr its theta divisor ΘE , an
element of the linear system |rΘ| on J – we will recall the precise defi-
nitions below. This description turns out to be sufficiently manageable
to get some information on the behaviour of this map, at least when r
or g are small.

We will describe the results which have been obtained so far – most
of them fairly recently. Thus these notes can be viewed as a sequel to
[B2], though with a more precise focus on the theta map. For the con-
venience of the reader we have made this paper independent of [B2], by
recalling in §1 the necessary definitions. Then we discuss the indetermi-
nacy locus of θ (§2), the case r = 2 (§3), the case g = 2 (§4), and the
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higher rank case (§5). Finally, as in [B2] we will propose a small list of
questions and conjectures related to the topic (§6).

§1. The moduli space Mr and the theta map

(1.1) Throughout this paper C will be a complex curve of genus
g ≥ 2. We denote by J its Jacobian variety, and by Jk the variety
(isomorphic to J = J0) parametrizing line bundles of degree k on C.

For r ≥ 2, we denote by Mr the moduli space of semi-stable vector
bundles of rank r and trivial determinant on C. It is a normal, projec-
tive, unirational variety, of dimension (r2 − 1)(g− 1). The points of Mr

correspond to isomorphism classes of vector bundles with trivial deter-
minant which are direct sums of stable vector bundles of degree zero.
The singular locus consists precisely of those bundles which are decom-
posable (with the exception of M2 in genus 2, which is smooth). The
corresponding singularities are rational Gorenstein – that is, reasonably
mild.

(1.2) The Picard group of Mr has been thoroughly studied in
[D-N]; let us recall the main results. Fix some L ∈ Jg−1, and consider
the reduced subvariety

∆L := {E ∈ Mr | H0(C, E ⊗ L) �= 0} .

Then ∆L is a Cartier divisor in Mr; the line bundle L := OMr (∆L),
called the determinant bundle, is independent of the choice of L and
generates Pic(Mr). The canonical bundle of Mr is L−2r.

(1.3) To study the rational map ϕL : Mr ��� |L|∗ associated to
the determinant line bundle, the following construction is crucial. For a
vector bundle E ∈ Mr, consider the locus

ΘE := {L ∈ Jg−1 | H0(C, E ⊗ L) �= 0} .

Since χ(E ⊗ L) = 0 for L in Jg−1, it is readily seen that ΘE is in a
natural way a divisor in Jg−1 – unless it is equal to Jg−1. The latter
case (which may occur only for special bundles) is a serious source of
trouble – see §2 below. In the former case we say that E admits a theta
divisor; this divisor belongs to the linear system |rΘ|, where Θ is the
canonical Theta divisor in Jg−1. In this way we get a rational map

θ : Mr ��� |rΘ| .

Proposition 1.4. [BNR] There is a canonical isomorphism |L|∗ ∼−→ |rΘ|
which identifies ϕL to θ.
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As a consequence, the base locus of |L| is the locus of bundles E
in Mr such that H0(C, E ⊗ L) �= 0 for all L ∈ Jg−1. This is also the
indeterminacy locus of θ (because |L| cannot have a fixed component).

(1.5) The r-torsion subgroup J [r] of J acts on Mr by tensor prod-
uct; it also acts on |rΘ| by translation, and the map θ is equivariant with
respect to these actions. In particular, the image of θ is J [r]-invariant.

(1.6) The case when θ is a morphism is much easier to analyze:
we know then that it is finite (since |L| is ample, θ cannot contract any
curve), we know its degree by the Verlinde formula, etc. Unfortunately
there are few cases where this is known to happen:

Proposition 1.6. The base locus of |L| is empty in the following cases:
a) r = 2 ;
b) r = 3, g = 2 or 3 ;
c) r = 3, C is generic.

All these results except the case r = g = 3 are due to Raynaud
[R]. While a) and the first part of b) are easy, c) and the second part of
b) are much more involved. We will discuss the latter in §5 below. The
proof of c) is reduced, through a degeneration argument, to an analogous
statement for torsion-free sheaves on a rational curve with g nodes.

§2. Base locus

(2.1) Recall that the slope of a vector bundle E of rank r and degree
d is the rational number µ = d/r. It is convenient to extend the definition
of the theta divisor to vector bundles E with integral slope µ, by putting
ΘE := {L ∈ Jg−1−µ | H0(C, E ⊗L) �= 0}. If δ is a line bundle such that
δ⊗r ∼= detE, the vector bundle E0 := E ⊗ δ−1 has trivial determinant
and ΘE0 ⊂ Jg−1 is the translate by δ of ΘE ⊂ Jg−1−µ.

(2.2) We have the following relations between stability and exis-
tence of the theta divisor:

(2.2 a) If E admits a theta divisor, it is semi-stable;
(2.2 b) If moreover ΘE is a prime divisor, E is stable.

Indeed let F be a proper subbundle of E. If µ(F ) > µ(E), the Riemann-
Roch theorem implies H0(C, F⊗L) �= 0, and therefore H0(C, E⊗L) �= 0,
for all L in Jg−1−µ. If µ(F ) = µ(E), one has ΘE = ΘF + ΘE/F , so that
ΘE is not prime.

(2.3) The converse of these assertions do not hold. We will see in
(2.6) examples of stable bundles with a reducible theta divisor. The first
examples of stable bundles with no theta divisor are due to Raynaud [R].
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They are restrictions of projectively flat vector bundles on J . Choose a
theta divisor Θ on J . The line bundle OJ(nΘ) is invariant under the
n-torsion subgroup J [n] of J . The action of J [n] does not lift to OJ(nΘ),
but it does lift to the vector bundle H0(J,OJ(nΘ))∗ ⊗C OJ (nΘ). Thus
this vector bundle is the pull back under the multiplication nJ : J → J
of a vector bundle En on J . Restricting En to the curve C embedded in
J by an Abel-Jacobi mapping gives the Raynaud bundle Rn. It is well
defined up to a twist by an element of J , has rank ng and slope g

n . It
has the property that H0(C, Rn ⊗ α) �= 0 for all α ∈ J . Thus if n | g
Rn has integral slope and no theta divisor. More generally, Schneider
has shown that a general vector bundle on C of rank ng, slope g−1 and
containing Rn is still stable [S2]. This gives a very large dimension for
the base locus of |L|, approximately (1 − 1

n ) dimMr if r = ng. Some
related results are discussed in [A].

(2.4) Another series of examples have been constructed by Popa
[P]. Let L be a line bundle on C spanned by its global sections. The
evaluation bundle EL is defined by the exact sequence

0 → E∗
L −→ H0(L) ⊗C OC

ev−→ L → 0 ;

it has the same degree as L and rank h0(L)−1. In particular, if we choose
deg L = g + r with r ≥ g + 2, EL has rank r and slope µ = 1 + g

r . Then,
for all p such that 2 ≤ p ≤ r − 2 and pµ ∈ Z, the vector bundle ΛpEL

does not admit a theta divisor (see [S1]). For instance, when r = 2g,
Λ2EL gives a base point of |L| in Mg(2g−1).

(2.5) An interesting limit case of this construction is when µ = 2;
this occurs when L = KC , or r = g. The first case has been studied in
[FMP]. It turns out that the vector bundle ΛpEK has a theta divisor,
equal to Cg−p−1 − Cp (here Ck denotes the locus of effective divisor
classes in Jk). While the proof is elementary for p = 1, it is extremely
involved for the higher exterior powers: it requires going to the moduli
space of curves and computing various divisor classes in the Picard group
of this moduli space. It remains a challenge to find a direct proof.

(2.6) The case deg L = 2g is treated in [B4], building on the results
of [FMP]. Here again ΛpEL admits a theta divisor, at least if L is general
enough; it has two components, namely Cg−p−1−Cp and the translate of
Cg−p−Cp−1 by the class [K⊗L−1]. These are the first examples defined
on a general curve of stable bundles with a reducible theta divisor.

(2.7) Since |L| has usually a large base locus, it is natural to look at
the systems |Lk| to improve the situation. There has been much progress
on this question in the recent years:



Vector bundles on curves and theta functions 149

Proposition 2.7. (i) [P-R] |Lk| is base point free on Mr for k ≥ [ r2

4 ].
(ii) [E-P] For k ≥ r2 + r, the linear system |Lk| defines an injective

morphism of Mr into |Lk|∗, which is an embedding on the stable locus.

On the other hand Popa [P] has observed that one should not be
too optimistic, at least if one believes in the strange duality conjecture
(see [B2]): this conjecture implies that for n | g the Raynaud bundle
Rn, twisted by an appropriate line bundle, is a base point of |Lk| when
k ≤ n(1 − n

g ).

§3. Rank 2

(3.1) In rank 2 the situation is now well understood. As pointed
out in (1.6), θ : M2 → |2Θ| is a finite morphism. In genus 2, θ is actually
an isomorphism onto P

3 [N-R1]. If C is hyperelliptic of genus g ≥ 3,
it follows from [D-R] and [B1] that θ factors through the involution ι∗

induced by the hyperelliptic involution and embeds M2/〈ι∗〉 into |2Θ|;
moreover the image admits an explicit geometric description [D-R].

(3.2) In the non-hyperelliptic case, after much effort we have now a
complete answer, which is certainly one of the highlights of the subject:

Theorem 3.2. If C is not hyperelliptic, θ : M2 ↪→ |2Θ| is an embedding.

The fact that θ embeds the stable locus of M2 is proved in [B-V1],
and the remaining part in [vG-I]. Both parts are highly nontrivial, and
involve some beautiful geometric constructions.

(3.3) Thus we can identify M2 with a subvariety of |2Θ| ∼= P
2g−1,

canonically associated to C, of dimension 3g − 3 (1.1). This variety is
invariant under the natural action of J [2] on |2Θ| (1.5). Its degree can
be computed from the Verlinde formula (see e.g. [Z], Thm. 1(iii)):

degM2 = (3g − 3)! 2g(2π)2−2gζ(2g − 2) ,

which gives degM2 = 1 for g = 2, 4 for g = 3, 96 for g = 4, etc.
The singular locus SingM2 is the locus of decomposable bundles in

M2 (1.1), which are of the form α⊕α−1, for α ∈ J ; the map α �→ α⊕α−1

identifies SingM2 to the Kummer variety K of J – that is, the quotient of
J by the involution α �→ α−1. The restriction of θ to K = SingM2 is the
classical embedding of K in |2Θ|, deduced from the map α �→ Θα +Θ−α

from J to |2Θ|.
(3.4) The case g = 3, which had been treated previously in [N-

R2], is particularly interesting: we obtain a hypersurface in |2Θ|, of
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degree 4, which is J [2]-invariant and singular along the Kummer variety.
Now Coble shows in [C2] that there is a unique such quartic (the J [2]-
invariance is actually superfluous, see [B5]). Thus in genus 3, the theta
map identifies M2 with the Coble quartic hypersurface.

Coble gives an explicit equation for this hypersurface, which we
now express in modern terms. Recall that Mumford’s theory of the
Heisenberg group allows us to find canonical coordinates (Xv)v∈V in the
projective space |2Θ|, where V is a 3-dimensional vector space over F2.
Then Coble equation reads:

α
∑

u∈V

X4
u +

∑

�={u,v}
αd(�) X2

u X2
v +

∑

P={t,u,v,w}
αd(P )XtXuXvXw = 0

where the second sum (resp. the third) is taken over the set of affine
lines (resp. planes) in V , and d(
) ∈ P(V ) (resp. d(P ) ∈ P(V ∗)) denotes
the direction of the line 
 (resp. of the plane P ).

In many ways the Coble quartic Q ⊂ P
7 can be seen as an analogue

of the Kummer quartic surface in P
3. Pauly has proved that Q shares

a famous property of the Kummer surface, the self-duality : the dual
hypersurface Q∗ ⊂ (P7)∗ is isomorphic to Q [Pa]. The proof is geometric,
and includes several beautiful geometric constructions along the way.

(3.5) In genus 4, M2 is a variety of dimension 9 and degree 96 in
P

15. Oxbury and Pauly have observed that there exists a unique J [2]-
invariant quartic hypersurface singular along M2 [O-P]. A geometric
interpretation of this quartic is not known.

(3.6) In arbitrary genus, the quartic hypersurfaces in |2Θ| contain-
ing M2 have been studied in [vG] and [vG-P]. Here is one sample of
their results:

Proposition 3.6. Assume that C has no vanishing thetanull. A J [2]-
invariant quartic form F on |2Θ| vanishes on M2 if and only if the
hypersurface F = 0 is singular along K.

(Note that though the action of J [2] on |2Θ| does not come from a
linear action, it does lift to the space of quartic forms on |2Θ|. Requiring
the invariance of F is stronger than the invariance of the corresponding
hypersurface.)

Van Geemen and Previato also describe the quartics containing
M2 in terms of the Prym varieties associated to C – this is related to
the Schottky-Jung configuration studied by Mumford.
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§4. Genus 2

(4.1) Going to higher rank, it is natural to look first at the genus
2 case. There a curious numerical coincidence occurs, namely

dimMr = dim |rΘ| = r2 − 1 .

Recall that θ is a finite morphism for r = 2, 3 (1.6). However
already for r = 4 it is only a rational map: the Raynaud bundle R2 has
rank 4 and slope 1 (2.3), so once twisted by appropriate line bundles of
degree −1 it provides finitely many (actually 16) base points of |L|.

We have seen that θ is an isomorphism in rank 2. In rank 3 there
is again a beautiful story, surprisingly analogous to the rank 2, genus 3
case. Indeed the Coble quartic has a companion, the Coble cubic : this
is the unique cubic hypersurface C ⊂ |3Θ|∗ singular along J1 embedded
in |3Θ|∗ by the linear system |3Θ| (this is implicit in Coble [C1]; see [B5]
for a modern explanation).

Theorem 4.2. The map θ : M3 → |3Θ| is a double covering; the
corresponding involution of M3 is E �→ ι∗E∗, where ι is the hyperelliptic
involution. The branch locus S ⊂ |3Θ| of θ is a sextic hypersurface,
which is the dual of the Coble cubic C ⊂ |3Θ|∗.

This is fairly straightforward (see [O]) except for the duality state-
ment, which was conjectured by Dolgachev and proved in [O] (a different
proof appears in [N]).

(4.3) Like for the Coble quartic we get an explicit equation for C by
choosing a level 3 structure on C, which provides canonical coordinates
(Xv)v∈V on |3Θ|∗, where V is a 2-dimensional vector space over F3.
Then from [C1] we get the following equation for C:

α0

∑

v∈V

X3
v + 6

∑

�={u,v,w}
αd(�)XuXvXw = 0 ,

where the second sum is taken over the set of affine lines in V , and
d(
) ∈ P(V ) is the direction of the line 
. The 5 coefficients (αi) satisfy
the Burkhardt equation

α4
0 − α0

∑

p∈P(V )

α3
p + 3

∏

p∈P(V )

αp = 0

(see [H], 5.3).

(4.4) In rank r ≥ 4 we start getting base points, and this causes a
lot of trouble – since θ is only rational, we cannot compute its degree
using intersection theory. However we still have:
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Proposition 4.5. [B6] The rational map θ : Mr ��� |rΘ| is generically
finite (or, equivalently, dominant).

The idea is to prove the finiteness of θ−1(Θ + ∆), where ∆ is a
general element of |(r − 1)Θ|. Any decomposable bundle in that fibre
must be of the form OC⊕F for some F ∈ Mr−1 with ΘF = ∆; reasoning
by induction on r we can assume that there are finitely many such F .
Thus the whole point is to control the stable bundles E with ΘE = Θ+∆.
Now the condition ΘE ⊃ Θ means by definition H0(C, E(p)) �= 0 for
all p ∈ C, or equivalently H0(C, E′(−p)) �= 0 for all p ∈ C, where
E′ := E∗ ⊗ K−1

C is the Serre dual of E. Since h0(E′) = r by stability
of E, this implies that the global sections of E′ generate a subbundle
of rank < r. A precise analysis of this situation allows us to prove that
there are only finitely many such bundles E with ΘE = Θ + ∆.

(4.6) The map θ is no longer finite in rank r ≥ 4, in fact it admits
some fibres of dimension ≥ [ r

2 ]− 1 [B6]. When r is even, this is seen by
restricting θ to the moduli space of symplectic bundles: the correspond-
ing moduli space has dimension 1

2r(r + 1), but its image under θ lands
in the subspace |rΘ|+ of |rΘ| corresponding to even theta functions of
order r, which has dimension r2

2 + 1. For r odd one considers bundles
of the form OC ⊕ F with F symplectic.

(4.7) It would be interesting to find the degree of θ, which is un-
known already in genus 4. For trivial reasons it has to grow exponentially
with g (see [B6], 2.3). Brivio and Verra have found a nice geometric in-
terpretation of the generic fibre of θ which might lead at least to a good
estimate for deg θ [B-V2].

§5. Higher rank and genus

Not much is known here. We already mentioned the following result
proved in [B6]:

Proposition 5.1. In genus 3 the map θ : M3 → |3Θ| is a finite
morphism.

The proof is rather roundabout, and gives actually a more inter-
esting result: the complete list of stable vector bundles E of rank 3 and
degree 0 such that ΘE ⊃ Θ. It turns out that each bundle in this list
admits a theta divisor. Since ΘE = J implies ΘE ⊃ Θ, Proposition 5.1
follows.

(5.2) The idea for establishing that list is to translate the problem
into a classical question of projective geometry. Similarly to the genus 2
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case, the condition ΘE ⊃ Θ means H0(E(p+ q)) �= 0 for all p, q in C, or
equivalently H0(E′(−p−q)) �= 0, where E′ := E∗⊗K−1

C is the Serre dual
of E. One checks that stability implies h0(E′) = 6 and h0(E′(−p)) = 3
for p general in C. This gives a family of 2-planes in P(H0(E′)) ∼= P

5,
parametrized by C, such that any two planes of the family intersect.
It turns out that the maximal such families have been classified in a
beautiful paper by Morin [M]: there are three families given by linear
algebra (like the 2-planes contained in a given hyperplane), and three
coming from geometry: the 2-planes contained in a smooth quadric, the
tangent planes to the Veronese surface, and the planes intersecting the
Veronese surface along a conic. Translating back this result in terms of
vector bundles gives the list we were looking for.

(5.3) This list also shows that θ−1(Θ + ΘF ) = {OC ⊕ F} for F
general in M2. This might indicate that θ has degree one; it would
follow if we could prove the injectivity of its tangent map at OC ⊕E for
some E in M2, perhaps in the spirit of [vG-I].

§6. Questions and conjectures

The list of results ends at this point, but let me finish with a (small)
list of open problems. About the general behaviour of the theta map,
the most optimistic statement would be:

Speculation 6.1. For g ≥ 3, θ is generically injective if C is not hyper-
elliptic, and generically two-to-one onto its image if C is hyperelliptic.

Note that in the hyperelliptic case θ factors as in thm. 4.2 through
the non-trivial involution E �→ ι∗E∗. Admittedly the evidence for 6.1 is
very weak: the only case where it is known is in rank 2.

As for base points, Proposition 1.6 leads naturally to:

Conjecture 6.2. Every bundle E ∈ M3 has a theta divisor.

(6.3) There exists an integer r(C) such that θ is a morphism for
r < r(C) but only a rational map for r ≥ r(C) (observe that if E ∈ Mr

has no theta divisor, so does E ⊕F for any F in Ms, s ≥ 1). We know
very little about this integer: we have r(C) = 4 for g = 2, 4 ≤ r(C) ≤ 8
for g = 3, and r(C) ≤ 1

2 (g + 1)(g + 2) [A].

Questions 6.4. a) Does r(C) depend only on g?
b) Put r(g) := min r(C) for all curves C of genus g. Is r(g) an

increasing function of g?
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The next question does not involve directly the theta map, but it
is related to several questions about the existence of theta divisors.

Conjecture 6.5. Let π : C′ → C be a finite morphism between smooth
projective curves of genus ≥ 2. The direct image π∗L of a general vector
bundle L on C′ is stable.

One reduces readily to the case when L is a line bundle. The
problem depends in a crucial way on the degree of L: one can prove for
instance that π∗L is stable (for L generic) if |χ(L)| < g + g2

r , where r is
the degree of π and g the genus of C (see [B3]).

One of the relations between this conjecture and the existence of
theta divisors is the following: the conjecture for a general line bundle L
of degree d is implied by the existence of a vector bundle E of rank r and
degree g(C′)− 1− d such that π∗E admits a prime theta divisor. Indeed
we have Θπ∗L⊗E = (π∗)−1(ΘL⊗π∗E); if Θπ∗E is prime, so is Θπ∗L⊗E for
general L, and as in (2.2) this implies that π∗L is stable.
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