SOME REMARKS ON KAHLER MANIFOLDS WITH c. = O

Arnaud BEAUVILLE

These notes consist mainly of comments and applications of the re-~
sults of [B]. We first recall the structure theorem for compact Kihler
manifolds with e, = 0. Up to a finite covering, such a manifold splits
as a product of irreducible factors of 3 possible types : complex tori,
special unitary projective manifolds and Kdhler symplectic manifolds.
After showing a list of examples we give some applications, mainly to
the study of automorphisms. We extend to our manifolds some results of
Nikulin on automorphisms of K3 surfaces. We then consider automorphisms

of symplectic manifolds which induce the identity in cohomology. Finally
we conclude with an example of a birational automorphism (of a projec-
tive symplectic manifold)which is not biregular,contrary to a conjectu~

re of Bogomolov.

Parts of this paper grew out from stimulating discussions at the
Katata Conference. I wish to express my thanks to the Taniguchi
Foundation for making possible such a conference, and to K. Ueno for

organizing it so nicely.

1. The Structure Theorem

Let me first set up some terminology. A manifold is always assumed
to be connected. By a Kidhler manifold I mean a complex manifold which
admits at least one Kdhler metric.

The structure theorem formanifolds with ey = 0 goes back, in a weak
form, to Calabi [C]. A stronger version was proved by Bogomolov in 1974

[Bo]. Finally the proof by S-T. Yau of the Calabi conjecture made



possible to give an easy proof of the strongest possible statement.
This fact seems to have been noticed independently by various mathema-
ticians, in particular S. Kobayashi and M.L. Michelsohn [M].

Theorem

Let X be a compact Kadhler manifold with ch(X) = 0.

1) The universal covering of X is isomorphic to a product

(I:kX Tvyx T X. , where
i 7 9 -

a) Vi is a simply connected projective manifold, of dimension > 3,

with trivial canonical bundle, such that Ho(Vi, 95 ) =0 for
i

0 <p<dﬁﬂV8.

b) Xj is a simply connected compact Kihler manifold, admitting a

holomorphic 2-form mj which is everywhere non-degenerate (as an

alternate form on the holomorphic tangent bundle). Any holomorphic form

on Xj is (up to a scalar) a power of ¢3.

This decomposition is unique, up to the order of the y's and of
;8 amc ot

the X! s.
— J

~

2) There exists a finite &tale cover X of X which is isomerphic to

a product T x I Vi x 1 Xj , where T 1is a complex torus.
i 3

Let us give a sketch of the proof, referring to [Blfor the details.
According to Yau's theorem, X carries a Ricci-flat Kihler metric. The
De Rham theorem ([K-N], IX.8) implies that the universal covering of X
is isomorphic (as a Kdhler manifold) to a product Ek x 1 M.1 , where
for each 1 the manifold Mi has irreducible holonomy. horeover Mi is
compact by the Cheeger-Gromoll theorem [C-G]. Since Mi is Ricci~flat,
its holonomy group Hi is contained in SU(mi). The list of holonomy
groups given by Berger [Be] leaves only two possibilities for Hi’ namely
Hi = SU(mi) and Hi = Sp (mi/Z) (if m, is even).



w

We now consider holomorphic forms on Mi' The Bochner principle
implies that on a compact Kdhler Ricci-flat manifold any holomorphic
form is parallel. Therefore the space of holomorphic p-forms on Mi is
holomorphic to the space of those p-forms at a given point which are
invariant under Hi. From the representation theory of the unitary and
symplectic groups one deduces easily that Mi satisfies property a) of
the theorem if H.1 = SU(mi) and property b) if H.1 = Sp(mi/Z% éin case
Hi = SU(mi) with m, > 3 , we observe that the vanishing of H™’~ implies

that Mi is projective).

This proves the existence of the decomposition 1). The unicity is
deduced easily from the unicity of the De Rham decomposition and the
unicity of a Ricci-flat metric in a given cohomology class. Finally 2)

follows essentially from the classical Bieberbach theorem.

For obvious reasons, manifolds satisfying property a) will be
called special unitary, while those satisfying b) will be called

(irreducible) symplectic.

Let us mention some obvious consequences of the theorem. The funda-
mental group of X 1is an extension of a finite group by a group ZZE
where ¢ is the maximum irregularity of the finite coverings of X.
If X((9k) is nonzero, then E =0 and ﬁl(X) is finite. In any case

the canonical bundle is a torsion element of Pic(X).

The following consequences are perhaps less obvious

Corollary :

Let X be a compact Kdhler manifold with ch(X) =0, of

dimension n.
(1) If n is odd, one has X(CVX) = 0.

(ii) If n=2r, one has 0 < X(é;k) < 2%, The equality X(C?%) = 2f

holds if and only if X 1is a product of K3 surfaces.

(1ii) One has hp’O(X) < (g) for all p. If equality holds for one

value of p with O0<p<n, then X 1is a complex torus.

The assertion (i) follows at once from Serre duality. Let X bea

finite covering of X which is isomorphic to a product of manifolds Mi



of dimension m, which either are complex tori, or satisfy property a)
or b). Then

m. m./2
) i<2 M0

with equality if and only if Mi is a K3 surface. Since

(&) <x(®) =T x(&, ) , this implies (ii).
X X i Mi

Let us prove (iii). Let Ti be a complex torus of dimension m, .

0
One has hp’O(Mi) < bnP’ (Ti) >

and equality holds (for O <p<:mi) if and only if Mi is a complex

torus. We conclude that

with equality (for O<p< mi) if and only if X is a complex torus.
It remains to show that in this last case X also is a complex torus.
We can assume that the covering X+ X is Galois ; its Galois group G
must act trivially on HP’O(i). This implies that any element g of C
acts on Hl’o(i) by multiplication by a p-th root of unity A(g). But

then the holomorphic Lefschetz fixed-point formula, applied to g, gives

-0 M@+ ) @+ 4D = aa@nt=0 ,

hence A(g) = 1 , which means that G acts on X by translations, so

that X 1is a torus.

2. Examples

a) Special unitary manifolds.

Except K3 surfaces and their products, all usual examples of
Kédhler manifolds with trivial canonical bundle are special unitary :
hypersurfaces of degree (m+2) inIPm+1,complete intersections of degrees
(dl""’dr) in IPn, with Zdi = n+l ; more generally, weighted comple~

te intersections of degrees (dl""’dr) in the twisted projective space
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IP (e .,en) with Zd.1 Zei. If V is a projective manifold with

1o
ample anticanonical bundle (for instance a complex homogeneous space G/P,

where G is a semi-simplecomplex Lie group and P a parabolic sub-

group), then any smooth hypersurface X € ]— KV| is special unitary.
More generally if Xjs..sX  are ample divisors in V meeting trans-
versally, such that ZXi = - KV, then X =} Xi is special unitary,

i
etc

Let me give another example whichis of a somewhat different nature.
For m=3, 4 or 6, let Em denote the elliptic curve which admits an
automorphism of order m . Put Am = (Em)m. The group uo of
m~th roots of unity acts diagonally on Am’ with a finite number ?f
fixed points. By blowing-up these points, we obtain a manifold Am on
which the group Yo acts in such a way that the locus of fixed p?ints
of a generator is a smooth divisor. Therefore the manifold Xm = Am/um
is smooth. One checks easily that Xm is simply connected and that

its canonical bundle is trivial. For p # q one has
HP9Q(X ) = HP:Q(A )111V= HP:Q(A )an
m m m
: "n : : st 1’0

(here the sign = means '"canonically isomorphic'"). Let V = H (Am) 5
the group u, acts on V by multiplication. Then we have

Hp’q(Xm) = (\Pv et V)lnv, s0 Hp’q(Xm) =0 for p# O,m and
p # gq. This implies that the manifolds Xm are special unitary. They

have some interesting properties : in particular they are rigid, since

1 o1 m—l, _ .m1,] _
B (X ,Ty ) = H (X ,0 ) = H =0

m m

b) Symplectic manifolds

A symplectic structure on a complex manifold X is a holomorphic

2-form on X which is everywhere non-degenerate. The existence of such
a structure implies that X 1is even-dimensional and has trivial cano-
nical bundle. It follows from the structure theorem thata compact Kahler

manifold is symplectic irreducible (in the sense of the theorem) iff it is

simply connected and admits a unique symplectic structure (up to a

scalar).



(r)

Let S be a compact complex surface. We denote by S the r—-th

symmetric product of S (quotient of st by the symmetric group G{r)

and by m: st S(r) the quotient map. The (singular) variety S(r)

parametrizes effective O-cycles of degree r on S. Let S[r] be
the Douady Space of O-dimensional subspaces Z < S with g g(ﬁ’z) =r.

Consider the natural map €: S[r] - S(r) which associates to a
finite subspace the corresponding O-cycle. Let D be the diagonal of

S(r) (locus of cycles 2p1 oo+ pr—l)’ and put E = S_I(D). It is

clear that e: S[r] - E > S(r) - D 1is an isomorphism, so € is a bime-
romorphic morphism. Fogarty has proved that S[r} is smooth, so that
(r)

€ 1is a resolution of the singularities of S . Note that the excep-

tional divisor E is irreducible (Iarrobino).

Proposition 1:

[r]

Let S be a generic K3 surface. Then S is a Kdhler symplectic

manifold, irreducible, of dimension 2r.

Here the word ''generic' means that S 1is allowed to vary in an

open dense subset of the coarse moduli space of Kdhler K3 surfaces,

containing the projective ones (I have to make this rather unpleasant
restriction only because I don't know how to prove that S[r] is
Kdhler for every S). For r = 2, this example has been first noticed

by A. Fujiki (see [F21).

Again I refer to [B] for a complete proof ; I just want to sketch

[r]‘ Let S: denote the set

of r-uples (Xl""’ xr) with at most two xis equal. Put

how one gets the symplectic structure on S

Sir) = ﬂ(S:) and S£r] = E_I(S(r)). Then the map € : Sir] - Sir) is

easy to understand. Since a subspace with associated cycle 2p is given
by a point of IP(Tp(S)), it is easily checked that ¢ is just the

4y 5o

blowing-up of D NSy, . More precisely, let A = ﬂ—l(D) be

the diagonal of st ; note that AN S: is smooth of codimension 2
. r r r . r
in S, . If n: BA(S*) - 8, denotes the blowing-up of S, along A,

then we get a commutative diagram



n s of

BA(Si) S,
Sir] € . Sir) ,

where p 1s a Galois covering with group G;r, ramified simply along

the exceptional divisor E' of n.

From a nonzero 2-form on S we deduce a symplectic structure ®

on Sr. The form n*w is invariant under G;r , thus descends to a holo-

[rl]

morphic 2-form ¢ on Sy ° with p*p = n*w. We have
pMdiv(e") = div(p*eD)-E'=div(n*w’)-E' = 0 ,

{r]

*x *

[r],
[r]

so by Hartogs'theorem @ extends to a holomorphic 2-form $ on S .

hence div(q;)=0, which implies that ¢ is a symplectic structure on S

Now since E-is irreducible, is of codimension 2 2 in S

glrl_ sir] ;
[r] ~sg{r]
[r]

which means that ¢ is a symplectic structure on § .

The divisor of $r’ which should be contained in S is zero,

[r]

Now let A be a 2-dimensional complex torus. The manifold A

: A(r)

is again symplectic, but not simply connected. Let s - A be

the sum map (defined by s([a1]+...+[ar]) =z ai). By composition
i
with €, we obtain a morphism § : A[r] - A.

The group A acts on A[r]

by translations. Let us also consider
its action on A given by (0,a) ¥ a+ ra . Then the map § is equi-
variant with respect to these actions, so it is smooth and has isomor-

-1
phie fibres.We put Kr—l = § (0). In the same way as prop. !, we prove

in {B]



Proposition 2 :

For A a generic 2-dimensional complex torus, the manifold Kr

is Kahler symplectic, irreducible, of dimension 2r.

The manifold K, is simply the Kummer surface associated to A. So

1
[r]

the manifolds S appear as natural generalizations of K3 surfaces,

while Kr seems to generalize Kummer surfaces. Note however that for

S[r]

r 22 the manifolds and Kr are not isomorphic.

[r]

It turns out that the manifolds S (resp. Kr) have more deforma-
tions than those coming from deformations of S(resp. A) : these defor-
mations furnish new (although not very explicit) examples of Kdhler

symplectic manifolds. At the moment I know no other types of such mani-

folds.

3. Split coverings

In this section we want to state more precisely the assertion 2)
of the structure theorem, and in particular give a corresponding asser-
tion of unicity. This will follow from general remarks about Kdhler
manifolds which are covered by a product of a complex torus and a com-—

pact simply connected manifold.

Lemma :

Let T be a complex torus and S be a compact Kdhler manifold

with bl(S) = 0. Then any automorphism u of Tx8 is of the form

(v,w), with v € Aut(T) and w € Aut(S).
Since the projection TX S > T 1is the Albanese map of T X8,

there is a commutative diagram

TxS > TxS§




V8]

This implies the existence of z map w of T into the complex

Lie group Aut(S) such that

u(t,s) = (v(t), wt(s)) for t €T and s & S.

1. . . .
Now the map t W, W, glves an action of T on S, Since S 1is

Kdhler with bl(S) = 0, it is known that such an action is necessary
trivial (see e.g. [F1]),which implies the lemma.

In what follows, a covering is always assumed to be étale. We'll
say for short that a compact manifold X is split if it is isomorphic
to the product of a torus and a simply connected (compact)manifold.
Let X be a compact manifold ; we'll say that a finite covering X+X
is split if the manifold X 1is split. Finally we'll say that a split
covering TXS - X 1is minimal if it is Galois and if its Galois
group does not contain any element of the form (T,ls), where T is a

translation of the torus T.

Proposition 3 :

Let X be a compact complex manifold which admits a finite split

covering. Then there exists a minimal split covering t: T XS -+ X,

unique (up to a non-unique automorphism). Any split covering of X

factors through m .

We first observe that every finite covering of a split manifold
is split ; therefore there exists a split covering m : T xS - X which
is Galoeis. Let G be its Galois group, and let K be the subgroup of
G consisting of automorphisms (T,ls), where T is a translation. Put
T = ?/K. Then K is a normal subgroup of G (by the lemma) and the
covering m : T xS - X deduced from T is Galois with Galois group

v

G/K, hence is minimal. Let m" : T'X S' » X be another split cove-

ring. Then there exists a Galois covering 7" of X, with Galois
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group G'", which factors through both ™ and 7'. This implies that §'’

is isomorphic to S, and that there is a commutative diagram

N
AN

Let us denote by H and H' the Galois groups of p and p'
respectively. They are subgroups of G'", and their elements are of the
form (T,ls), where T is a translation of T". Then the minimality of

implies X'cK, hence 7' factors through T .

In particular, any compact Kdhler manifold has a unique minimal

split covering, of the form T xII VdeXj, where the V{s are special

unitary, the st are irreducible symplectic and T 1is a complex
torus.
This fact allows to describe the automorphism group of X, or more

precisely to reduce its study to the case in which X is irreducible.

a) Let us write X = (T xS)/G, where the covering is minimal. Then
any automorphism of X extends to T XS, so that the group Aut(X) is

identified with the normalizer of G in Aut(T)x Aut(S).

N
b) Write S =1 Sil , where the S%s are non-isomorphic irreducible

manifolds. Then by the unicity property in the structure theorem,

s
Aut(S) is isomorphic to I Aut(Sil).
i

c) Let Y be an irreducible manifold. Then again by the unicity pro-

perty, Aut(Yn) is the semi-direct product of the symmetric

rou G’n hy,Aut(Y)n . every automorphism u of ¥ satisfies
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u(yl,...,yn) = (ul(yo'l)""’ un(y_n)) for some Upsenesly € Aut(Y)
and some ¢ € G;n .
In the next sections we will investigate some properties of the

groups Aut(Y).

4. Automorphisms and torsion

In this section we extend to manifolds of higher dimension some

results of Nikulin [N] on automorphisms of K3 surfaces.

Let X be a compact complex manifold of dimension n, with trivial

canonical bundle, and let G be a finite group of automorphisms of X.

. *
There exists a character o : G -~ & such that
g*w = a(g)w for g€ G, we HO(X ,KX)
The image of a is a cyclic subgroup b of order m of € , so that
we get an exact sequence

1 > G ¢ —= >y ——1

The number m will be called the index of G. If g & G, the

index of g is defined as the index of the subgroup generated by g.
Obviously it divides the index of G, and the index of G is the

largest index of its elements. The following fact is equally obvious.

Proposition 4 :

Assume G acts freely on X. Then the index of G equals the order

of the canonical bundle in Pic(X/G).

We now assume that X 1is K&hler. Let SX be the subgroup of
Hn(X, Z) consisting of elements orthogonal to e , and let TX denote
the orthogonal of SX in HH(X, Z). We denote by oy the rank of the

subgroup of HH(X, Z) spanned by analytic cycles (so that pnf 0 when
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n is odd, and oy <rk (SX)).

Proposition 5 :

The index m of G satisfies (m) <rk (T‘(), and in particular

< .

om) <b_ -p_.
Let g € G be an element of index m. Since "’ is contained in

(TX) , alg) is an eigenvalue of g* acting on TX. Therefore its mini-
T

. . 3 3 - . *
mal polynomial (I)m divides the characteristic polynomial of g ,hence

< = b - <b-op .
@ (@)<rk(Ty)= b ~rk(Sy) <b - p,

Remark : Assume that for some integer p, the group G acts faithfully
on Hp(X,II) or more generally that the elements of G acting trivially
on Hp(X,E) acts also trivially on H%*°. Then the argument of the proof
shows that the index m of G satisfies (m) <bp. This applies in par-

ticular to complex tori, for which we get the bound ¢(m) <b] = 2n.

In case X is symplectic irreducible, we can get better results.

There is a character 8 : G- € such that

2
g*© = () for g€ G, © € H (X,0).

The image of B is a cyclic subgroup psof € , and we call s the
r
symplectic index of G. If dim(X) = 2r one has o =3 , hence m= s/d,

where d is the g.c.d. of s and r. In particular m divides s.

Proposition 6

(i) If X 1is not projective themn s = 1.

(ii) o(s) (hence also @(m)) divides b~ p, -

. 2 . .
To prove (i), we assume s >1. Since H (X, @) is dense 1in
. . 1,1
HZ(X,IR) and the cone of Kdhler classes 1s open 1n HR’ (X), there
exists an element ¢ € HZ(X,Q) whose (1,1)-component is a Kdhler class.

Then the class h = I g*c has the same property, and is moreover
g€ G
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. . . 2,0 . . .
invariant under G. Since H’ does nct contaln any nonzero invariant
element, we conclude that h 1is of tvpe (1,1) and therefore a Kdhler

class. Since h 1is rational, this izplies that X 1is projective.

To prove (ii), we can assume therefore that X 1s projective. We
recall that we have defined in [B],§8 a canonical integral symmetric

e 2 . . .
bilinear form q on H (X, Z) with the following properties

(1) Hl’l is orthogonal to H2’0 with respect to qE

(ii) The restriction of a4y to Hl’1 ﬂHz(X,IR) has signature (1,b2—3L

If w is a Kahler class, then qIR(w)> 0.

It follows that the subgroup S clﬁ(X, Z) of algebraic cycles is

X

2 . .
orthogonalto H ,o’ and that the form ¢ restricted to SX is non-dege-

nerate (since X is assumed to be projective, SX contains an element h

with q(h) >0). Let TX denote the orthogonal of S, in HZ(X, Z), and let

X
g € G. I claim that g* acts trivially on TX in the following two
cases

a) B(g)=1.

b) There exists a nonzero element t of TX with g¥*t = t.

To prove this claim, observe that for any t in TX

q(g*w , g¥t) = B(g) q(w, g¥t) = q(w,t).

In case a) we get
* =
ght -t es NI =(0),
while in case b) we get (B(g)-1) q(w,t) = 0. Since t does not belong

to SX this implies R(g) = 1, hence the result by case a).

Now let g be an element of G with symplectic index s.
: . d
Applying a) to gs we get (g*)S =1, while b) applied to g , for all d
dividing s, shows that the eigenvalues of g* on TX are primitive

s—th roots of unity. Therefore the characteristic polynomial of g* is
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a power of ¢s, which implies (ii).
It is interesting to observe that prop. 6(ii) extends to automor-

phisms of infinite order

Proposition 7 :

Let X be a projective symplectic irreducible manifold, and let

G = Aut(X). There exists an integer s and a surjective character

B : G~ Mg such that

g*0 = B(g)o for all g€ G, Q€ HO(X,Q)Z().

Moreover (s) divides b2 = Py

We first notice that the only assumption on g which is needed in
the proof of prop. 6(ii) is that the eigenvalues of g* acting on TX
are roots of unity. By Kronecker's theorem, it is enough to prove that

: 2,0 0,2 2
all these eigenvalues have modulus 1. Put E = (H ® H Yy N HT(X,IR).
Since (TX)IR contains E, it admits an orthogonal decomposition

1,1

(TX)IR =E® (Tx)mﬂ H .

The form q 1is positive on the first space and negative on the second
one. Since g* preserves this decomposition and is unitary on each

space, the assertion follows.

We will now try to apply these results to get a bound for the order of
the canonical bundle. Recall that for a surface S with ch(S) = 0,

one has ngm = G% with m=1,2,3,4 or 6.

Proposition 8 :

Let X be a compact Kdhler threefold with ch(X) = 0. Then there

exists an integer m < 66, with @(m) < 20, such that the bundle Ky@m

is trivial.
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According to the structure theorem, one can write X = %X/G,
where X is one of the following :
a) A special unitary threefold.
b) A product E x S, where E is an elliptic curve and S a K3 surface.
c) A complex torus.

In case a), ome has X (G?X) = X(Cyi) = 0, thus ho(KX) =1 and
KX is trivial. In case c¢), the index m of G satisfies (p(m)ﬁib1 =6
(remark following prop. 5), hence m<l18.

In case b), let Gt denote the subgroup of those elements in G
which act by translation onm E. Suppose first Gt # G, and let g be an
element of G-Gt. Then g must act freely on S, therefore its image in

Aut(S) is a fixed point free involution of index 2. The same must be
true for gh, for any h € Gt; this implies that h has index 1. We con-
clude in this case that the index of G 1is 2.

Suppose now that G=Gt’ i.e. G acts on E by translations. Then
the index of G equals its index as a subgroup of Aut(S). Nikulin's
result (prop. 6) then gives @(m) <21, which implies @(m) < 20 and

m <66 (exercise!).

Remarks. 1) I must honestly admit that prop. 8 does not use the full
force of the structure theorem. In fact the weak version of [C] (proved

without appealing to Calabi conjecture in [F1]) would suffice.

2) According to [N], Dolgachev has given an example of a K3
surface with an automorphism of index 66. This implies that there exists

aprojective threefold whose canonical bundle has order 66.

3) Let us try to extend the proof, say in dimension 4. We can
write X = X/G, where X is one of the following :
a) A special unitary or irreducible symplectic fourfold.

b) A product E XV, where E 1is an elliptic curve and V a special
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unitary threefold.
c) A product T XS, where T 1is a 2-dimensional torus and S a K3

surface.
d) A complex torus,

In case a) one has X(C%Y) = 2 or 3, thus G has order < 3. In
case d) we find as before @(m)< 8. Case c) can be treated in the
same way as case b) of prop. 8; one finds m <150. The difficulty comes
from case b) : we need a bound for the index of an arbitrary automor-—
phism (of finite order) of the threefold V. The only way I can imagine
to get such a bound would be to get a uniform bound for b3(V), for all
threefolds V with trivial canonical bundle. I have not even a feeling

whether one should expect such a bound to hold or not.

5. Automorphisms inducing the identity in cohomology

An important point in the construction of the universal family of
marked K3 surfaces is the following result [B-R].

Let S be a K3 surface. Then any automorphism of S inducing the

identity on HZ(S,E) is the identity.

In this section we will investigate the analogous question for the

symplectic manifolds Kr— and S[r] (§2). Let us consider the first one.

1

A[r]

Recall that Kr~1 is the fibre of the sum map S : - A. Let Ar

denote the group of points of order r in A. Then the action of Ar

0 A[r]

[ by translations restricts to an action of Ar on K

r-1°

Proposition 9 :

For r >3, the group A_ acts trivially on H2(Kr_1,m)-

According to [B], §7 the restriction map

Pallho o we e
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. Ll . .
1s surjective. But 1in A r the operations of A are homotopic to the

identity, thus induce the identity on cohomology, hence the result.

[r]

We now turn to the manifolds S .

Lemma [ @

Let S be a (Kahler) K3 surface with Pic(S) = 0. Let f be a

meromorphic map from S to S. Then either £ maps S to a point,

or f 1is an automorphism.

Since S contains no curves, the map f : S + S 1is actually
holomorphic (otherwise its indeterminacy points would give rise to
curves on S). The image of f cannot be a curve, so f is either
trivial or surjective. In this last case the morphism f 1is finite
(because its fibres contain no curves). Its discriminant curve being
empty, £ is an étale covering, hence an automorphism since § is

simply connected.

Lemma 2 :

Under the hypotheses of lemma 1, assume moreover that S has no non-

trivial automorphisms. Then the group of bimeromorphic transformations

of s¥ is equal to the symmetric group e& (acting by permutation of

the factors).

Let u be a bimeromorphic transformation of s*. There exists a
Zariski open set U in s* such that the restriction of u to U is
a holomorphic embedding. Let Pys-eesby denote the projections from st
onto S. We will prove by induction on £ that, after a permutation
of the coordinates,

p;° u(s) = pi(s) for s€U and 1 <i< g.

Assume the result is proved for some integer #(0<f<r). Fix(r-1)

points SpaneesBgs BgiosenesS, general enough so that
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({sl}X... X{szb<Sx ...x{sr}) Nu+o,
and consider the meromorphic map from S to S defined by
s = Pj'u(sl’""SZ’S’SZ+2""’sr)'

By construction, for some j > 2+1, this map is nontrivial (and will
remain so for general si s), hence by lemma | is the identity.
Permuting the last (r-%) coordinates so that j = £+] we get by conti-

nuity P, ° u(s) = p2+1(s) for all s in U. This proves the lemma.

Note that a generic K3 surface fulfills the hypotheses of lemma 2.

[r]

Lemma 3 : Under the hypotheses of lemma 2, the group Aut(S ) is
reduced to the identity.

Recall that there is an irreducible divisor E in S[r] such that
the natural map e: S{r] -E - S[r] -D 1is an isomorphism. Let

A=LUA denote the diagonal of sf. since A is of codimension > 2,

i, 3t
Tr

st- A is simply connected and the map 7 : sf-a s - E is the

universal covering of S[r] - E.

Let u be an automorphism of § [r]_ It follows from [Fo] (see also

(B], §6) that Pic(s ™)

) is the infinite cyclic group generated by a
line bundle L such that L92 = (@(E). Therefore u preserves E, and

. . r s . .
induces an automorphism of S - A, that is a bimeromorphic transforma-

tion of S*. We conclude with the help of lemma 2.

Proposition 10 :

Let S be a K3 surface and r an integer. Then any automorphism u

of S[r] inducing the identity on H2(S[r]

,L) is the identity.

Let f :%¥—a>M be a Kuranishi family for X = S[r], such that X
is the fibre at a point o €. Then there exists an opén neighborhood

M of o in M and a diagram
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=1

x' >
f if
ms v >M
so that v (o) = o and EIX =u .

We can assume that the local system sz*(m) on® is trivial. The
choice of a trivialisation sz*(m) > L’M (with L = HZ(X,E)) allows to
define a period map p :WM + IP(L), which is an embedding when M is
small enough ([B], §8). Since u induces the identity on HZ(X,E) we
get pov =p, thus v 1s the identity, and we conclude that u

extends to an automorphism u of ¥ above M.,

Now let g: J - M be a Kuranishi family for S, and let
g[r] : f[r] - N be the corresponding family of Douady spaces. Accor-

ding to [B], §9, we can identify 7 to a smooth hypersurface in % ,

g[r]

passing through o, such that is obtained by pulling-back to u

the family f. In particular u restricts to an automorphism of f[ﬂ

above Q’L . But there exists a dense subset T of 41 such that for
t in T, the K3 surface S=jft has Pic(S) = 0 and Aut(S) = {1}.
Then lemma 3 implies Il_t = Id for t€T. Since T is dense this gives

u = Id.

Remark : It is also easy to give an example of a special unitary
manifold X of dimension m and of a non-trivial automorphism of X

inducing the identity on Hm(X,u‘.). Take for instance X.,= A /o, (§2).
3 73°73

3,0 3

Then one has HZ(XB,E) = H ® Ho’ , so that any automorphism of X

3

of index 1 acts trivially on H3(X3,(1'.). There are many such automor-

phisms, for instance the translations by the points of A3 fixed under

113-
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6. Birational Transformations

In this section we will answer negatively the following conjecture
of Bogomolov [Bo] : any birational automorphism of a projective mani-
fold with trivial canonical bundle is biregular. The counter-examples
we give are symplectic manifolds. The question is still open for spe-

cial unitary manifolds.

Let us first recall a particular case of a construction which is
due to Mukai [Mu]. Let X be a complexsymplectic manifold, of dimen-
sion 2r, and let P be a submanifold of X isomorphic to "
Then P is totally isotropic with respect to the symplectic form @ on X
(because w]P = 0). So ¢ 1induces an isomorphism from the normal bun-
dle of P in X onto its cotangent bundle. Let ¢e: X+ X be the
blowing-up of X along P. The exceptional divisor E of X is then
isomorphic to the projective cotangent bundle of P, which can be des-
cribed as the incidence correspondence in P xP*(locus of pairs (p,h)
such that the point p belongs to the hyperplane h). From this one

deduces easily that E can beblowmdown to P*, giving rise to a

symplectic manifold X' and to a diagram

X
X X!

The bimeromorphic map ¢'o €~! (which obviously is not biregular
at the points of P) is called by Mukai the elementary transformation
along P. We will give an example where X' is isomorphic to X (I don't
know whether this holds in general).

Let us consider the manifold 8[2]

f2]

associated with a smooth quar-
. 3 .
tic surface ScIP”. Given Z € S there exists a unique line 2(Z)

. 3 . . . .
in TP such that the subscheme Z of S is contained in £(Z). We define
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[2]

in this way a morphism 2 : S + G, where G denotes the Grassmann
. . . 3 .
manifold of lines in TP”. If Z 1is general enough, the line £(Z)

meets S along 4 distinct points, so that

2(z).s =z Uz,

21 . : ;
where Z' € § is disjoint from Z. By associating to Z the resi-

[2]

dual subscheme Z', we define a birational involution ¢ of S , such

that the diagram

is commutative.

Proposition 11 :

[2]

(i) The birational map ¢ is defined at a point Z € S if and

only if the line £(Z) is not contained in S.

(ii) If S contains p lines d ...,dp then ¢ 1is the composition

l’
dg%!..,d[z].

of the Mukai elementary transforms along the planes o

Suppose first that £(Z) is not contained in S. Then the morphism

: S[zl*

2 G is finite in a neighborhood of £(Z). This ig enough to imply

. 2 2
that ¢ is defined at Z. Consider indeed the closure T 1in S[ ]XGS[ !

. 2 . . o
of the graph of ¢ : the first projection [ = S[ ], which is finite

and birational, must be an isomorphism.

]

Suppose now that S contains a line d. We observe that S[ZIXG[Z

8[2]>< S[Z:I :

is locally a complete intersection in if (xl,...,x4) is a

[2] S[2]

local coordinate system on G, the 4-dimensional variety § X is
defined by the 4 equations prT g*xi - pr; f%i =0 (1<i<4). In parti-

L. . [zlxgz']
cular it is Cohen-Macaulay, therefore its two components T and d
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intersect along a 3-dimensional variety. This shows that Gis not defi-

ned at the points of d[z], thus proving (i).

J[21

-1 . .
Put P = = ¢ (d). It is a submanifold of S[z], isomorphic

to the projective plane. Let us consider the diagram

(2] , Sl

S
‘P
7| 2
$
Gy — ¢ ,

where the horizontal maps are obtained by blowing-up the plane P in

2 s . .
S[ ] and the point d in G. We'll denote by E and T the exceptional

divisors of ng] and Gd respectively. The technical part of the

proof is contained in the following lemma.

Lemma
The induced map £: E >~ T 1is finite.

Proof : Let Zo be a point of d[z]. We choose a hyperplane at infi-

nity in IP3 away from Zo’ and affine coordinates (x,y,z) such that Z
has equations x2+ ax =y =2z =0 for some a€ Ll (so that d is the

line y=z=0). A local coordinate system in (IP3)[2] at

A is then
o
given by (r,s,t,u,v,w), where a subspace Z close to Zo is defined by

. 2
=0, with f1 = x"+ (atr)x+s, f2 = y-tx-u, f3 = Z-VX-W.

. 2
Let F(x,y,z) = 0 be the equation of S. Then Z belongs to S[ ]

f1 = f2 = f3
if and only if F belongs to the ideal (fl’fz’f3) of tix,y,z], which

can be expressed by the condition
(%) fl(x) divides F(x,tx+ u,vx+w) (in C{x]).

The line &(Z) is given by f2= f3= 0. We can take (t,u,v,w) as

local coordinates on G near d, so that £ is simply the projection on

the last four coordinates.
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~

Let Z0 be a point of E above Zo. We can assume that £2(Z ) 1is
o
the point of T corresponding to the direction u=v=w=0 at d, so that

we can take local coordinates (t,u’',v',w') on G, near Z(ZO) such that

d
u=tu',v=tv',s=tw'. Then (r,s;t,u’',v',w') are local coordinates at

20 on (IPB)[z] blown-up along d[z].

[2]
P

In this local chart the submani-

fold S is defined as follows : since d is contained in S, one can

write
F(x,y,2) =y G(x,y,2) + z H(x,y,2) ;

then the condition (*) becomes

fl(x) divides (x+u') G(x,t(x+w),t(v'x+w))+(vx+w)H(x,t(x+u'),

t(v'zx+w')).
The exceptional divisor E is defined by t= 0, thus a point of E
has coordinates (r,s;u',v'w') with the condition

fl(x) divides (x+u') G(x,0,0)+(v'x+w') H(x,0,0) .

Now we claim that this last polynomial cannot vanish identically,
for any given value of (u',v',w') : for this would imply that the line
. 3 . . .
in IP Qm €le] given by y = e(xtu'), z = e(v'x+w') (with 52 = 0) 1is

3

in @ 2, €[e],which isimpossible since}f(d,Nd/s)=0,Thereforegivan(ulv;w')

there are at most 6 possibilities for (r,s). This shows that the map

-

2: E~>T 1is quasi-finite at every point of E, hence the lemma.
. . [2] . ..
The lemma implies that the map £ : Sp '~ Gd is finite. Then the
argument used in the proof of (i) shows that o extends to an involution

[2]

of SE?] which is defined at every point of E. Let ¢ : X + § denote

[2]

the blowing-up of S along the union of the planes Pl""’Pp’ and

-1 . . - .
E. = ¢ (Pi)‘ Then © extends to a biregular involution 1 of X , with
T(E;) = E;. Recall that E, is jdentified with the incidence corres-

pondence in Pi X P; . Now since Pic(Ei) =Z@ Z , one checks easily

. . . . 2
that Ei has only two rulings (i.e two IPl—flbratlons onto IP7),
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given by the projections on Pi and P:. The involution T must exchange
these rulings, because otherwise o would be defined on P, . Therefo-
re the morphism €' = £oT _blows down each divisor Ei onto P; , and we

have a commutative digram

b >

This achieves the proof of the proposition.

The preceding construction extends to higher-dimensional projec-

tive space. In fact, for any K3 surface S of degree 2r in IPr+1, the

[r]

manifold S admits a (non-trivial) birational automorphism. A gene-

[r]

ric subspace Z € S is made up of r distinct points, which span a

codimension 2 linear subspace £(Z) in IPr+1, intersecting S in 2r
distinct points. We define a birational automorphism © of S[r] by

associating to Z the residual intersection (£(Z).S) - Z.

Contrary to the case r = 2, the map ¢ is never biregular for r =3,

I will just sketch the idea of the proof and insist on two examples.

I'11 assume for simplicity that Pic(S) = Z

Let G denote the Grassmann manifold of codimension 2 linear

1

subspaces of b1 , and let X be the closure in S[r]

X G of the

graph of the rational map Z» £(Z), that is the locus of pairs (Z,m)
[r]

with Z <w. If g,n denoté the projections of X on S and G, we

get a commutative diagram
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The map € 1s an isomorphism outside the subvariety B of S[r]
which parametrizes those subspaces Z € S[r] which are contained in a

r-2 .
P . Assume that B 1is smooth and that no Z € B 1is contained in

r~3 . . .
P (this will be the case in our two examples). Then X 1is smooth
and ¢ is the blowing up of S[r] along B. Because of the hypothesis

on Pic(S8), the map n is finite, so as in prop. Il o extends to a

biregular involution T of X, and we find a diagram

So again g is obtained by blowing up B and blowing down the excep-—
tional divisor onto B along another ruling. Let us consider now the

low-dimensional cases.

a) r=3.
Then S is a complete intersection of a smooth quadric Q and a
.. 4 . 31 . . Sy s . .
cubic in IP . A point Z of S is in B when it 1s contalned 1n a
line d. This happens exactly when d is contained in Q; thus B is
. . . . . . . 3
isomorphic to the variety of lines contained in Q, that is to P .

(31

So ¢ is the elementary transformation of § along B.

b) £ = 4.

Then S 1is the base locus of a net N of quadrics in IPS.
The points Z of B are in one-to-one correspondence with the 2-planes
lying in one quadric of the net. We get in this way a morphism B —»N,
which factors as B —lla 3 ——Hﬁ>N, where p 1is a IP3—bund1e and T
a two-sheeted covering ramified along a sextic (so that T is a K3

surface). In this case ¢ is the elementary transformation along the

IP3—bund1e P in the sense of Mukai [Mu].
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