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Abelian varieties associated to Gaussian lattices
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Abstract. We associate to a unimodular lattice Γ , endowed with an auto-

morphism i of square −1 , a principally polarized abelian variety AΓ = ΓR/Γ .

We show that the configuration of i -invariant theta divisors of AΓ follows a

pattern very similar to the classical theory of theta characteristics; as a con-

sequence we find that AΓ has a high number of vanishing thetanulls. When

Γ = E8 we recover the 10 vanishing thetanulls of the abelian fourfold discov-

ered by R. Varley.

Introduction

A Gaussian lattice is a free, finitely generated Z[i] -module Γ with a positive

hermitian form Γ × Γ → Z[i] . Equivalently, we can view Γ as a lattice over Z
endowed with an automorphism i of square −1Γ . This gives a complex structure

on the vector space ΓR := Γ⊗ZR ; we associate to Γ the complex torus AΓ := ΓR/Γ .

As a complex torus AΓ is isomorphic to Eg , where E is the complex elliptic

curve C/Z[i] and g = 1
2 rkZ Γ . More interestingly, the hermitian form provides

a polarization on AΓ (see (1.3) below); in particular, if Γ is unimodular, A is a

principally polarized abelian variety (p.p.a.v. for short), which is indecomposable

if Γ is indecomposable.

The first non-trivial case is g = 4, with Γ the root lattice of type E8 (Example

1.2.1). The resulting p.p.a.v. is the abelian fourfold discovered by Varley [V] with

a different (and more geometric) description; it has 10 “vanishing thetanulls” (even

theta functions vanishing at 0), the maximum possible for a 4-dimensional inde-

composable p.p.a.v. In fact this property characterizes the Varley fourfold outside

the hyperelliptic Jacobian locus [D].

Our aim is to explain this property from the lattice point of view, and to extend

it to all unimodular lattices. It turns out that we can mimic the classical theory of

theta characteristics, replacing the automorphism (−1) by i . We will show:

• The group Ai of i -invariant points of AΓ is a vector space of dimension g

over Z/2; it admits a natural non-degenerate bilinear symmetric form b .
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2 ARNAUD BEAUVILLE

• The set of i -invariant theta divisors of AΓ is an affine space over Ai , iso-

morphic to the space of quadratic forms on Ai associated to b (see (2.1)).

• Let Θ be an i -invariant theta divisor, and Q the corresponding quadratic

form. The multiplicity m0(Θ) of Θ at 0 satisfies

2m0(Θ) ≡ σ(Q) + g (mod. 8) ,

where σ is the Brown invariant of the form Q (2.1).

As a consequence, we obtain a high number of i -invariant divisors Θ with

m0(Θ) ≡ 2 (mod. 4); each of them corresponds to a vanishing thetanull. When Γ

is even, this number is 2
g
2−1(2

g
2 − (−1)

g
4 ) ; for g = 4 we recover the 10 vanishing

thetanulls of the Varley fourfold.

1. Gaussian lattices

1.1. Lattices. As recalled in the Introduction, a Gaussian lattice is a free

finitely generated Z[i] -module Γ endowed with a positive hermitian form1 H :

Γ × Γ → Z[i] . We write H(x, y) = S(x, y) + iE(x, y) ; S and E are Z -bilinear

forms on Γ , S is symmetric, E is skew-symmetric, and we have

S(ix, iy) = S(x, y) , E(ix, iy) = E(x, y) , E(x, y) = S(ix, y) .

We will rather view a Gaussian lattice as an ordinary lattice (over Z) with an

automorphism i such that i2 = −1Γ : the last formula above defines E , and we

have H = S + iE .

We have detS = detE = (detH)2 ; the lattice is unimodular when these

numbers are equal to 1. It is even if S(x, x) is even for all x ∈ Γ . We say that Γ

is indecomposable over Z[i] if it cannot be written as the orthogonal sum of two

nonzero Gaussian lattices; this is of course the case if Γ is indecomposable over Z ,

but the converse is false (Example 3 below).

1.2. Examples. 1) For g even, the lattice Γ2g is

Γ2g := {(xj) ∈ R2g | xj ∈ 1

2
Z , xj − xk ∈ Z ,

∑
xj ∈ 2Z} .

The inner product is inherited from the euclidean structure of R2g , and the auto-

morphism i is given in the standard basis (ej) by

ie2j−1 = e2j ie2j = −e2j−1 for 1 ≤ j ≤ g .

The lattice Γ2g is unimodular, indecomposable when g > 2, and even if g is

divisible by 4. The first case g = 4 gives the root lattice E8 .

The automorphism i is unique up to conjugacy: for g = 4 this is classical [C],

and for g ≥ 6 this follows easily from the fact that Aut(Γ2g) is the semi-direct

product (Z/2)2g−1 ! S2g , acting by permutation and even changes of sign of the

basis vectors (ej) .

1Our convention is that H(x, y) is C -linear in y .
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ABELIAN VARIETIES ASSOCIATED TO GAUSSIAN LATTICES 3

2) The Leech lattice Λ24 admits an automorphism of square −1 [C-S], also

unique up to conjugacy.

3) Let Γ0 be a lattice, and Γ := Γ0 ⊗Z Z[i] . The inner product of Γ0 extends

to an hermitian inner product on Γ , which is then a gaussian lattice. If Γ0 is

unimodular, resp. even, resp. indecomposable, Γ is unimodular, resp. even, resp.

indecomposable over Z[i] .

1.3. The abelian variety AΓ . Let Γ be a Gaussian lattice, of rank 2g over

Z . We put ΓR := Γ⊗Z R and AΓ := ΓR/Γ . The automorphism i defines a complex

structure on ΓR , so that AΓ is a complex torus. Since Γ is a free Z[i] -module, AΓ

is isomorphic to Eg , where E is the complex elliptic curve C/Z[i] .

The positive hermitian form H extends to ΓR , and its imaginary part E takes

integral values on Γ : this is by definition a polarization on AΓ . The polarization

is principal if and only if Γ is unimodular; the p.p.a.v. AΓ is indecomposable (i.e.

is not a product of two nontrivial p.p.a.v.) if and only if Γ is indecomposable over

Z[i] .

The multiplication by i on ΓR induces an automorphism of AΓ , that we simply

denote i . Conversely, let A = V/Γ be a complex torus, of dimension g , with an

automorphism inducing on T0(A) = V the multiplication by i . Then Γ is a Z[i] -

module, thus isomorphic to Z[i]g , so that A is isomorphic to Eg ; polarizations of

A correspond bijectively to positive hermitian forms on Γ .

2. Linear algebra over (Z/2)[i]

2.1. Linear algebra over Z/2 . We consider a vector space V over Z/2, of

dimension g , with a non-degenerate symmetric bilinear form b on V . The form

x )→ b(x, x) is linear. Two different situations may occur:

• b(x, x) = 0 for all x ∈ V ; in that case b is a symplectic form.

• b(x, x) is not identically zero; it is then easy (using induction on g ) to prove

that V admits an orthonormal basis with respect to b .

A quadratic form associated to b is a function q : V → Z/4 such that

q(x + y) = q(x) + q(y) + 2b(x, y) for x, y ∈ V ,

where multiplication by 2 stands for the isomorphism Z/2 ∼−→ 2Z/4Z ⊂ Z/4Z .

Observe that this implies q(0) = 0 and q(x) ≡ b(x, x) (mod. 2). We denote

by Qb the set of quadratic forms associated to b ; Qb is an affine space over V , the

action of V being given by (α + q)(x) = q(x) + 2b(α, x) for q ∈ Qb , α, x ∈ V .

When b is symplectic, q takes it values in 2Z/4Z ∼= Z/2; the corresponding

form q′ : V → Z/2 is a quadratic form associated to b in the usual sense, that is

satisfies q′(x + y) = q′(x) + q′(y) + b(x, y) for x, y ∈ V .

The Brown invariant σ(q) ∈ Z/8 of a form q ∈ Qb has been introduced in

[B] as a generalization of the Arf invariant; it can be defined as follows. If b is

symplectic, we put σ(q) := 4 Arf(q′) , where q′ : V → Z/2 is the form defined

39



4 ARNAUD BEAUVILLE

above. Otherwise b admits an orthonormal basis (e1, . . . , eg) ; we have q(ei) = ±1,

and we let g+ (resp. g− ) be the number of basis vectors ei such that q(ei) = 1

(resp. −1). Then σ(q) = g+ − g− (mod. 8).

2.2. Linear algebra over (Z/2)[i] . Let Γ be a unimodular Gaussian lattice

of rank 2g over Z . We put A2 := Γ/2Γ ; this is naturally identified with the

2-torsion subgroup of AΓ . We have the following structures on A2 :

a) A2 is a free (Z/2)[i] -module of rank g . We put ε := 1 + i in (Z/2)[i] ;

then (Z/2)[i] = (Z/2)[ε] , with ε2 = 0. The subgroup Ai of i -invariant elements is

Ker ε = εA2 ; it is a vector space of dimension g over Z/2.

b) The form E induces on A2 a symplectic form e (the Weil pairing for AΓ ).

Since E(x, iy) = −E(ix, y) , we have, for α,β ∈ A2 ,

e(α, εβ) = e(εα,β) hence e(εα, εβ) = 0 ;

thus Ai is a Lagrangian subspace of A2 .

c) The form x )→ S(x, x) induces a quadratic form Q : A2 → Z/4 associated

with the bilinear symmetric form (α,β) )→ e(α, iβ) (2.1). In particular we have

Q(α) ≡ e(α, iα) (mod. 2).

Since S((1 + i)x, (1 + i)x) = 2S(x, x) , we have Q(εα) = 2Q(α) = 2e(α, iα) .

Lemma 1. Let q : A2 → Z/4 be an i-invariant quadratic form associated to e .

The formulas

b(εα, εβ) = e(α, εβ) , Qq(εα) = q(α) − Q(α) for α,β ∈ A2 ,

define on Ai = εA2 a non-degenerate symmetric form b and a quadratic form

Qq : Ai → Z/4 associated with b .

Proof : Since Ai = Ker ε is isotropic for e , the expression e(α, εβ) is a bilinear

function b of εα and εβ ; it is symmetric by b) . If e(α, εβ) = 0 for all β in A2 we

have α ∈ Ai because Ai is Lagrangian, hence εα = 0, so b is non-degenerate.

Put Q̃q(α) = q(α) − Q(α) ∈ Z/4 for α ∈ A2 . We have

Q̃q(α + β) = Q̃q(α) + Q̃q(β) + 2e(α, εβ) .

Take β = εγ . Since q is i -invariant we have q(εγ) = 2e(γ, iγ) = Q(εγ) by c) ,

hence Q̃q(εγ) = 0 and Q̃q(α + εγ) = Q̃q(α) . Thus Q̃q defines a quadratic form

Qq on Ai associated to b .

Let Q(i)
e be the set of i -invariants quadratic forms on A2 associated to e . If

q ∈ Q(i)
e and α ∈ A2 , we have α + q ∈ Q(i)

e if and only if α belongs to A⊥
i = Ai ;

in other words, Q(i)
e is an affine subspace of Qe , with direction Ai .

Lemma 2. The map q )→ Qq is an affine isomorphism of Q(i)
e onto Qb .

Proof : We just have to prove the equality Qα+q = α + Qq for q ∈ Q(i)
e , α ∈ Ai .

Let β ∈ Ai ; we write β = εβ′ for some β′ ∈ A2 . Then

Qα+q(β) = 2e(α,β′) + q(β′) − Q(β′) = 2b(α,β) + Qq(β) .
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Remark 1. Let α ∈ A2 ; we have b(εα, εα) = e(α, εα) = e(α, iα) ≡ Q(α)

(mod. 2), hence the form b is symplectic if and only if Γ is even. In this case we

have e(α, iα) = 0 for all α ∈ A2 ; it follows that Q(i)
e is the set of forms vanishing

on Ai . Since Ai is Lagrangian for e , this implies that these forms, viewed as

quadratic forms A2 → Z/2, are all even (that is, their Arf invariant is 0).

3. i-invariant theta divisors

3.1. Reminder on theta characteristics. We first recall the classical theory

of theta characteristics on an arbitrary p.p.a.v. A = V/Γ . Let A2
∼= Γ/2Γ be the

2-torsion subgroup of A , T the set of symmetric theta divisors on A , and Qe the

set of quadratic forms on A2 associated to the Weyl pairing e . The Z/2-vector

space A2 acts on T by translation, and on Qe by the action defined in (2.1); both

sets are affine spaces over A2 , and there is a canonical affine isomorphism q )→ Θq

of Qe onto T . It can be defined as follows ([M], §2). Let γ ∈ Γ , and let γ̄ be its

class in A2 . For z ∈ V , we put

eγ(z) = iq(γ̄)eπH(γ,z+ γ
2 ) .

We define an action of Γ on the trivial bundle V ×C by γ.(z, t) = (z + γ, eγ(z)t) ;

then the quotient of V × C by this action is the line bundle OA(Θq) on A .

3.2. The main results. We go back to the abelian variety AΓ associated to

a Gaussian lattice Γ . We assume that Γ is unimodular. We use the notation of

(2.2). The isomorphism Qe
∼−→ T is compatible with the action of i , so i -invariant

theta divisors correspond to forms q ∈ Q(i)
e .

Let q ∈ Q(i)
e , and let L be the line bundle OAΓ(Θq) . We have i∗L ∼= L ; we

denote by ι : i∗L → L the unique isomorphism inducing the identity of L0 . For

each α ∈ Ai , ι induces an isomorphism ι(α) : Lα → Lα .

Proposition 1. ι(α) is the homothety of ratio iQq(α) .

Proof : The isomorphism ι−1 : L ∼−→ i∗L corresponds to a linear automorphism j

of L above i :

L
j !!

""

L

""
AΓ

i !! AΓ .

Consider the automorphism j̃ : (z, t) )→ (iz, t) of ΓR × C . Since eiγ(iz) = eγ(z) ,

we have j̃(γ.(z, t)) = (iγ).j̃(z, t) . Thus j̃ factors through an isomorphism L → L
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above i which is the identity on L0 , hence equal to j ; that is, we have a commu-

tative diagram:

ΓR × C
j̃

!!

π

""

ΓR × C

π

""
L

j !! L

where π is the quotient map.

Let α ∈ Ai , and let γ be an element of Γ whose class (mod. 2Γ) is α . Then

δ := iγ
2 − γ

2 belongs to Γ . We have

j(π(
γ

2
, t)) = π(

iγ

2
, t) = π(

γ

2
, eδ(

γ

2
)−1t) ,

hence ι(α) = j(α)−1 is the homothety of ratio eδ(
γ
2 ) . Let β be the class of δ in

A2 . Since γ = −(1 + i)δ , we have α = εβ , hence

eδ(
γ

2
) = iq(β)e

π
2 H(δ,γ+δ) = iq(β)−H(δ,δ) = iQq(α) .

From ι : i∗L → L we deduce an isomorphism ι& : L ∼−→ i∗L , inducing on

global sections an automorphism of H0(AΓ, L) .

Proposition 2. ι& acts on H0(AΓ, L) by multiplication by e
iπ
4 (σ(Qq)+g) .

Note that σ(Qq) ≡ g (mod. 2) ([B], Thm. 1.20, (vi)), so this number is a

power of i .

Proof : Since dim H0(AΓ, L) = 1 it suffices to compute Tr ι& . This is given by the

holomorphic Lefschetz formula [A-B] applied to (i, ι) . Since Hi(AΓ, L) = 0 for

i > 0, we find

Tr ι& =
∑

α∈Ai

Tr ι(α)

(1 − i)g
= (1 − i)−g

∑

α∈Ai

iQq(α) .

We have (1 − i)−g = 2−
g
2 e

iπg
4 and

∑
α∈Ai

iQq(α) = 2
g
2 e

iπ
4 σ(Qq) ([B], Thm.

1.20, (xi)), hence the result.

Proposition 3. Let α ∈ Ai , and let mα(Θq) be the multiplicity of Θq at α .

We have

2mα(Θq) ≡ σ(Qq) + g − 2Qq(α) (mod. 8) .

Proof : Let θ be a nonzero section of H0(AΓ, L) . Choose a local non-vanishing

section s of L around α . We can write θ = fs in a neighborhood of α , with

f ∈ OAΓ,α . We have ι&(θ) = ikθ with 2k ≡ σ(Qq) + g (mod. 8) (Proposition 2),

hence

(i∗f)ι&(s) = ikfs .

We look at this equality in mm
α L/mm+1

α L , where mα is the maximal ideal of OAΓ,α

and m := mα(Θ) . We have i∗f = imf (mod. mm+1
α ) , and ι&(s) = ι(α)s (mod. mαL) .

We obtain imι(α) = ik , hence the result in view of Proposition 1.
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Corollary. The number of i-invariant theta divisors Θ with m0(Θ) ≡ 2

(mod. 4) is

2
g
2−1(2

g
2 − (−1)

g
4 ) if Γ is even, and 2g−2 − 2

g
2−1 cos

πg

4
if Γ is odd;

each of these divisors corresponds to a vanishing thetanull.

Proof : According to the Proposition, we have m0(Θq) ≡ 2 (mod. 4) if and only if

σ(Qq) ≡ 4 − g (mod. 8). When q runs over Q(i)
e , Qq runs over Qb (Lemma 2.2),

so we must find how many elements Q of Qb satisfy σ(Q) ≡ 4 − g (mod. 8).

If Γ is even (so that g is divisible by 4), we identify Qb with the set of

quadratic forms Q : A2 → Z/2 associated with the symplectic form b ; the previous

congruence becomes Arf(Q) ≡ 1+ g
4 (mod. 2). There are 2

g
2−1(2

g
2 +1) such forms

with Arf invariant 0 and 2
g
2−1(2

g
2 − 1) with Arf invariant 1, hence the result.

Assume that Γ is odd; we choose an orthonormal basis (e1, . . . , eg) for b . The

forms Q ∈ Qb are determined by their values Q(ei) = ±1; the condition is that

the number g+ of +1 values satisfies

2g+ − g ≡ 4 − g (mod. 8) , hence g+ ≡ 2 (mod. 4) .

The number of forms with the required property is thus the number of subsets

E ⊂ {1, . . . , g} with Card(E) ≡ 2 (mod. 4), that is
(

g

2

)
+

(
g

6

)
+. . . =

1

4

[
(1+1)g+(1−1)g−(1+i)g−(1−i)g

]
= 2g−2−2

g
2−1 cos

πg

4
.

Thus we find a number of vanishing thetanulls asymptotically equivalent to

2g−1 when Γ is even, and 2g−2 when Γ is odd. These numbers are rather modest,

at least by comparison with the number of vanishing thetanulls of a hyperelliptic

Jacobian, which is asymptotically equivalent to 22g−1 . However, when Γ is even,

the vanishing thetanulls of AΓ have the particular property of being “syzygetic”

in the classical terminology, which just means that the corresponding quadratic

forms (3.1) lie in an affine subspace of Qe which consists of even forms (Remark

1). Such a subspace has dimension ≤ g , and it might be that the number given

by the Corollary in the even case is the maximum possible for a syzygetic subset

of vanishing thetanulls.

4. Complements

4.1. Automorphisms. The automorphism group of AΓ is the centralizer of

i in Aut(Γ) . This group can be rather large: it has order 46080 for Γ = E8 and

2012774400 for Γ = Λ24 [C-S]. For the lattice Γ2g (Example 1.2.1) with g > 4, it

has order 22g−1g! .

For the lattice Γ = Γ0 ⊗Z Z[i] of Example 1.2.3, Aut(AΓ) is generated by i

and the group Aut(Γ0) . Note that there are examples of unimodular lattices (even

or odd) Γ0 with Aut(Γ0) = {±1} [Ba], so that Aut(AΓ) is reduced to {±1, ±i} .
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4.2. Jacobians. We observe that for g > 1 the p.p.a.v. AΓ can not be a

Jacobian. Indeed, let C be a curve of genus g ; if JC ∼= AΓ , Torelli theorem

provides an automorphism u of C inducing either i or −i on JC , hence also on

T0(JC) = H0(C, KC)∗ . Then u acts trivially on the image of the canonical map

C → P(H0(C, KC)∗) ; this implies that u is the identity or that C is hyperelliptic

and u is the hyperelliptic involution. But in these cases u acts on H0(C, KC) by

multiplication by ±1, a contradiction.
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C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 20, 885–888. MR925290 (89a:14055)

[M] D. Mumford: Abelian varieties. Oxford University Press, London, 1970. MR0282985

(44:219)

[V] R. Varley : Weddle’s surfaces, Humbert’s curves, and a certain 4 -dimensional abelian

variety. Amer. J. Math. 108 (1986), no. 4, 931–952. MR853219 (87g:14050)
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