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Endomorphisms of Hypersurfaces and Other Manifolds

Arnaud Beauville

0 Introduction

In this note we prove the following result.

Theorem. A smooth complex projective hypersurface of dimension greater than 1 and

degree greater than 2 admits no endomorphism of degree greater than 1. �

Since the case of quadrics is treated in [PS], this settles the question of endo-

morphisms of hypersurfaces. We prove the theorem in Section 1, using a simple but

efficient trick devised by E. Amerik,M. Rovinsky, and A.Van deVen [ARV]. In Section 2 we

collect some general results on endomorphisms of projective manifolds; we classify in

particular the Del Pezzo surfaces that admit an endomorphism of degree greater than 1.

1 Hypersurfaces

We consider in this note a compact complex manifold X that admits an endomorphism

f : X → Xwhich is generically finite (or equivalently surjective), of degree greater than 1.

If X is projective (or more generally Kähler), f is actually finite; otherwise it contracts

some curve C to a point, so that the class of [C] in H∗(X,Q) is mapped to zero by f∗; this

contradicts the following lemma.

Lemma 1. Let d = deg f.The endomorphisms f∗ and d−1f∗ ofH∗(X,Q) are inverse to each

other.

This follows from the formula f∗f∗ = d Id. �
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54 Arnaud Beauville

The proof of the theorem stated in the Introduction is based on the following

result, which appears essentially in [ARV].

Proposition 1. Let X be a submanifold of PN, of dimension n, and let f be an endomor-

phism of X such that f∗OX(1) = OX(m) for some integer m ≥ 2. Then

cn
(
Ω1X(2)

) ≤ 2n deg(X). �

Proof. Let us sketch the proof following [ARV]. We first observe that the sheaf Ω1
PN
(2)

is spanned by its global sections; therefore Ω1X(2), which is a quotient of Ω1
PN
(2)|X, is

also spanned by its global sections. Let σ be a general section of Ω1X(2); then σ and its

pullback f∗σ ∈ H0(X,Ω1X(2m)) have isolated zeros (see [ARV, Lemma 1.1]). By counting

these zeros, we get

cn
(
Ω1X(2m)

) ≥ deg(f) cn
(
Ω1X(2)

)
.

Since deg(f) = mn, we get cn(Ω1X(2)) ≤ m−ncn(Ω
1
X(2m)). By the splitting principle,

cn(Ω
1
X(2m)) is a polynomial inm with leading term (2m)n deg(X). Replacing f by fk, we

obtain the above inequality for m arbitrarily large; therefore

cn
(
Ω1X(2)

) ≤ lim
m→∞

m−ncn
(
Ω1X(2m)

)
= 2n deg(X). �

Proof of the theorem. Let X be a smooth hypersurface of dimension n and of degree d.

We first discuss the case n ≥ 3. Then b2(X) = 1, so that the condition f∗OX(1) = OX(m)

is automatic. In view of the proposition, we just have to prove that cn(Ω1X(2)) > 2n d.

Twisting the Euler exact sequence and the conormal sequence by OX(2), we get exact

sequences

0 −→ Ω1
Pn+1

(2)|X −→ OX(1)
n+2 −→ OX(2) −→ 0,

0 −→ OX(2− d) −→ Ω1
Pn+1

(2)|X −→ Ω1X(2) −→ 0,

from which we find

c
(
Ω1X(2)

)
= (1+ h)n+2(1+ 2h)−1

(
1+ (2− d)h

)−1
,

where h is the class of a hyperplane section in H2(X,Z). Since hn = d, we have

cn
(
Ω1X(2)

)
= dRes0 ω with ω =

(1+ x)n+2

xn+1(1+ 2x)(1+ (2− d)x)
dx.

Straightforward computations give
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Endomorphisms of Hypersurfaces and Other Manifolds 55

Res∞ ω =
1

2(d− 2)
, Res−1/2 ω =

(−1)n+1

2d
, Res1/(d−2) ω =

−(d− 1)n+2

d(d− 2)
;

hence, by the residue theorem,

cn
(
Ω1X(2)

)
=

2(d− 1)n+2 − d+ (−1)n(d− 2)

2(d− 2)
.

Using (d − 1)2 = d(d − 2) + 1, we get cn(Ω1X(2)) > d(d − 1)n ≥ d2n; hence the result in

this case.

For the casen = 2,weobserve that the result is straightforwardwhenKX is ample

or trivial (see Proposition 2); therefore it only remains to prove it for cubic surfaces.This

can be easily done with the above method, but we deduce it from the more general case

of Del Pezzo surfaces (see Proposition 3). �

Remark. The same method applies (with some work) to complete intersections of multi-

degree (d1 , . . . , dp) in P
n+p, provided one of the di is greater than 2. On the other hand,

it does not work in general for complete intersections of quadrics.

2 Other manifolds

In this section we gather a few remarks on projective manifolds admitting an endomor-

phism of degree greater than 1. We first recall that this has strong implications on the

Kodaira dimension of the manifold.

Proposition 2. Let X be a compact manifold with an endomorphism f of degree greater

than 1.

(a) The Kodaira dimension κ(X) is less than dim(X).

(b) If κ(X) ≥ 0 , then f is étale. �

Proof. Assertion (a) follows for instance from [KO], and assertion (b) is stated in [SF].

Let us give the proofs for completeness.

(a) Consider the pluricanonical maps ϕm : X ��� |mKX|∗ associated to the linear

systems |mKX| (m ≥ 1). The pullback map f∗ : H0(X,mKX)→ H0(X,mKX) is injective and

therefore bijective. We have the following commutative diagram:

X

f

��

ϕm ������� |mKX|∗

� tf∗

��
X

ϕm ������� |mKX|∗
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56 Arnaud Beauville

In particular, we see that f induces an automorphism of ϕm(X). If dimϕm(X) = dimX,

then this implies deg f = 1.

(b) Letm be a positive integer such that the linear system |mKX| is nonempty. Let

F be the fixed divisor of this system, and let |M| be its moving part, so thatmKX ≡ F+M.

The Hurwitz formula reads KX ≡ f∗KX + R, where R is the ramification divisor of f. This

gives

F+M ≡ (
f∗F+mR

)
+ f∗M.

In particular, we have h0(f∗M) ≤ h0(M) = h0(mKX). Since the pullback map

f∗ : H0(X,M) → H0(X, f∗M) is injective, we get h0(f∗M) = h0(mKX), which means that

|f∗M| is the moving part of |mKX| and f∗F+mR is its fixed part. Thus

F = f∗F+mR

in the divisor group Div(X) of X. Let ν : Div(X)→ Z be the homomorphism that takes the

value 1 on each irreducible divisor. Since ν(f∗F) ≥ ν(F), the above equality is possible

only if R = 0. We conclude that f is étale. �

Every Kodaira dimension less than dimX can indeed occur, as shown by the

varieties V × A, where A is an abelian variety. More generally, any (nontrivial) abelian

scheme over a smooth projective variety admits étale endomorphisms of degree greater

than 1. It seems possible that every projective manifold with an endomorphism of degree

greater than 1 and κ(X) ≥ 0 is of this type, up to a finite étale covering. For surfaces this

follows easily from the classification. Partial results in the threefold case are announced

in [SF].

Let us now turn to ramified endomorphisms. By Proposition 2 we must consider

manifolds with κ(X) = −∞; a natural place to look at is Fano manifolds. For surfaces we
have a complete answer.

Proposition 3. A Del Pezzo surface S admits an endomorphism of degree greater than 1

if and only if K2S ≥ 6. �

Proof. (a)A Del Pezzo surface of degree greater than or equal to 6 is isomorphic toP1×P1
or P2 blown-up at some of the points (1, 0, 0), (0, 1, 0), (0, 0, 1). The first case is trivial; in

the second case, the endomorphisms (X, Y, Z) �→ (Xp, Yp, Zp) of P2 extend to the blown-up
surface.

(b) Let us now consider a Del Pezzo surface S with an endomorphism f : S → S

of degree d > 1. Let E be an exceptional curve on S, F = f(E), and let δ be the degree of
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Endomorphisms of Hypersurfaces and Other Manifolds 57

f|E : E → F. We have f∗E = δF and therefore f∗F ≡ (d/δ)E (see Lemma 1). Taking squares

gives F2 = −d/δ2 . Because of the genus formulaC2+C·K = 2g(C)−2, the only curveswith

negative square on a Del Pezzo surface are the exceptional ones. Thus F is exceptional,

d = δ2 , and f∗F ≡ δE. Since the right-hand side does not move, this is an equality of

divisors. It means that f is ramified along E with ramification index δ. In other words, if

we denote by E the (finite) set of exceptional curves on S and by R the ramification divisor

of f, we have R =
∑
E∈E(δ− 1)E+ Z, where Z is an effective divisor. By intersecting with

−KS, we get

−KS · R ≥ (δ− 1)Card(E).

For each E ∈ E we have f∗KS · E = KS · f∗E = δKS · F = −δ, and therefore (f∗KS −

δKS) · E = 0. We can assume that E spans the Picard group of S. (This holds as soon as

K2S ≤ 7.)Thus f∗KS ≡ δKS. Then the Hurwitz formula KS ≡ f∗KS+R gives R ≡ (δ−1)(−KS),
so that the above inequality becomes K2S ≥ Card(E). This is impossible for K2S ≤ 5, as the

surface S then contains at least 10 exceptional curves. �

For Fano threefolds we know the answer in the case b2 = 1, as a consequence of

the more general results of [A] and [ARV]: the only Fano threefold with b2 = 1 admitting

an endomorphism of degree greater than 1 is P3 .Their methods apply to some other Fano

threefolds, but the general case seems to require new techniques.
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