A tale of two surfaces

Arnaud Beauville

Abstract.

We point out a link between two surfaces which have appeared
recently in the literature: the surface of cuboids and the Schoen surface.
Both give rise to a surface with ¢ = 4, whose canonical map is 2-to-1
onto a complete intersection of 4 quadrics in P® with 48 nodes.
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§1. Introduction

The aim of this note is to point out a link between two surfaces
which have appeared recently in the literature: the surface of cuboids
[ST, vL] and the surface (actually a family of surfaces) discovered by
Schoen [S]. We will show that both surfaces give rise to a surface X
with ¢ = 4, whose canonical map is 2-to-1 onto a complete intersection
of 4 quadrics ¥ C PS with 48 nodes. In the first case (§2) X is a
quotient (C' x C")/(Z/2)?, where C' and C’ are genus 5 curves with a
free action of (Z/2)2. In the second case (§3), X is a double étale cover
of the Schoen surface.

When the canonical map of a surface X of general type has degree
> 1 onto a surface, that surface either has p; = 0 or is itself canonically
embedded [B1, Th. 3.1]. Our surfaces X provide one more example of
the latter case, which is rather exceptional (see [CPT] for a list of the
examples known so far).
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§2. The surface of cuboids and its deformations

In P4, with coordinates (z,y; u, v, w), we consider the curve C' given
by

(1) u® = a(x,y) ) v? = b(.’l?,y) ’ w? = c(m,y)

where a, b, c are quadratic forms in x,y. We assume that the zeros of
a,b,c form a set Z C P! of 6 distinct points. Then C is a smooth
curve of genus 5, canonically embedded. It is preserved by the group
[y = (Z/2)® which acts on P* by changing the signs of u,v,w. Let
[ C Ty be the subgroup (isomorphic to (Z/2)?) which changes an even
number of signs. It acts freely on C, so the quotient curve D := C/T’
has genus 2. The subring of I'-invariant elements in & H°(C, K%) is
generated by z,y and z := wvw, with the relation 22 = abc; thus D is
the double cover of P! branched along Z.

Let JDs be the group of 2-torsion line bundles on D (isomorphic
to (Z/2)*). The I'-covering 7 : C' — D corresponds to a subgroup of
JDs isomorphic to (Z/2)?, namely the kernel of 7* : JD — JC. Let
Dy Doy Dy, P Ph, P be the Weierstrass points of D lying over the zeros
of a,b and ¢ respectively. Since the divisor 7*(p/, +p!) is cut out on C
by the canonical divisor u = 0, we have 7*(p, — p/) ~ 0, and similarly
for b and ¢; thus Kern* = {0,p, — pll,p, — pi,p. — p/}. This is a
Lagrangian subgroup of JDs for the Weil pairing [M2]; conversely, any
Lagrangian subgroup of JDy is of that form. Thus the curves C' we are
considering are exactly the (Z/2)%-étale covers of a curve D of genus 2
associated to a Lagrangian subgroup of JDs. In particular they form a
3-dimensional family.

The group I'g/T' 2 Z/2 acts on D = C/I’ through the hyperelliptic
involution, so C/Ty is isomorphic to P!.

Proposition 1. Let C,C" be two genus 5 curves of type (1), and
let X be the quotient of C x C" by the diagonal action of T =2 (Z/2)?.

1) X is a minimal surface of general type with ¢ = 4, py = 7,
K? =32,

2) The involution ix of X defined by the action of Ty/T = Z/2
has 48 fized points. The canonical map ¢y : X — PS factors through
ix , and induces an isomorphism of X/ix onto a complete intersection
of 4 quadrics in PS with 48 nodes.
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Proof : The computation of the numerical invariants of X is straight-
forward.

Let us denote by (2/,y';u/,v’,w’) the coordinates on ¢’ C P4, and
by a,b',c the corresponding quadratic forms. A basis of the space
HY(X,Kx) = (H°(C,K¢) @ H(C', KC/))F is given by the elements

X=z02 Y=z0y Z=yo2 T=yay
U=u®d V=0y W=wuw .

They satisfy the relations X7 —YZ =0 and
U?=A(X,Y,Z,T), V?=B(X,Y,Z,T), W?=C(X,Y,Z,T) ,

where A, B,C' are quadratic forms satisfying A(X,Y,Z,T) =
a(z,y) ® a(z’,y’) , and the analogous relations for B and C'.

Let ¥ be the surface defined by these four quadratic forms, and let
@+ X — 3 be the induced map. We have poix = ¢, so ¢ induces a
map @ from X/ix = (CxC")/Ty into ¥.. We consider the commutative
diagram

(C < C")/To

S A

Q=P x P!

D)

where p: (C' x C")/Ty — (C/Ty) x (C'/Ty) is the quotient map by Ty,
and ¢ the projection (X,Y,Z,T;U,V,W) — (X,Y,Z,T). The group
(Z/2)® acts on ¥ by changing the signs of (U,V,W); then ¢ is an
equivariant map of (Z/2)3-coverings, hence an isomorphism.

It remains to show that ix has 48 fixed points. These fixed points
are the images (mod. T') of the points of C' x C’ fixed by one of the
elements of I'g N\ I'. Such an element changes the sign of one of the
coordinates ¢ = u,v or w, hence fixes the 64 points (m,m’) of C x C’
with ¢(m) = £(m') = 0. This gives (3 x 64)/4 = 48 fixed points in
X. Q.E.D.

Ezample. Let us take for C' and C’ the curve Cy defined by

WC=zy , ?=a22—y2 , wi=a2+y2.
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The set of zeros of a,b,c is {0,00,£1,£i}, so the genus 2 curve D is
given by 22 = x(2* —1).
We get for X the following equations :

XT=YZ=U?,V?=X2-Y?-2°4+T%, W2 = X?4+Y?+2°4+T?;

or, after the linear change of variables X =x+t, T=t—x, Y =y + iz,
Z=y—iz, U=u, V=2v, W =2w:

R4y +22 . =y 422, P=x24+7 w2 =2 4y2 .
These are the equations of the surface of cuboids, studied in [ST, vL]. Tt
encodes the relations in a cuboid (= rectangular box) between the sides
X,¥,z, the face diagonals u,v,w, and the space diagonal t. Thus the
surface of cuboids belongs to a 6-dimensional family of intersection of 4
quadrics in P® with 48 nodes.

The curve Cp is isomorphic to the modular curve X (8), and the
map Cy x Cp — ¥ can be described in terms of theta functions [FS].

Remark 1. In [B3] we show that the surface X = (Cy x Cp)/T" has
mazimum Picard number p = h'', by analyzing the action of I' on
JCy; it follows that the desingularization ¥ of the surface of cuboids
Y. has the same property — a result obtained in [ST] via a computer
calculation.

Remark 2. Our surfaces X fit into a tower of (Z/2)2-étale coverings:
CxC'— X5 DxD".

The abelian covering r is the pull back of a (Z/2)?-étale covering of
JD x JD' :
X% - A

DxD s JDxJD'.

The abelian variety A is the Albanese variety of X, and « is the
Albanese map. Since the quotient X/ix is regular, ix acts as (—1) on
the space H°(X,QL); therefore if we choose « so that it maps a fixed
point of ix to 0, ix is induced by (—14).
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§3. The Schoen surface

The Schoen surfaces S have been defined in [S], and studied in
[CMR]. A Schoen surface S is contained in its Albanese variety A; it
has the following properties:

a) KzZ=16,p,=5, g=4 (hence x(0s) =2);

b) The canonical map ¢g : S — P* factors through an involution
is with 40 fixed points, and induces an isomorphism of S/ig onto the
complete intersection of a quadric and a quartic in P* with 40 nodes
[CMR].

Since S/is is a regular surface, ig acts as (—1) on the space
HOY(S,QL). Therefore if we choose the Albanese embedding S — A
so that it maps a fixed point of ig to 0, ig is induced by the involution
(=1a).

Let £ be a line bundle of order 2 on A; we denote by 7 : B — A the
corresponding étale double cover, and put X := 7~ 1(S). The restriction
of ¢ to S, which we will still denote by ¢, is nontrivial (because the
restriction map Pic®(A) — Pic®(S) is an isomorphism), hence X is
connected.

Proposition 2. X is a minimal surface of general type with q = 4,
py =7, K% =32.

Proof : The formulas K% = 32 and x(Ox) = 4 are immediate; we must
prove q(X) = 4, that is, H(S,¢) = 0.

By construction [S] a Schoen surface fits into a flat family over the
unit disk A:

SC——= A

N\

A

where:

e A/A is a smooth family of abelian varieties;

e at a point z # 0 of A, 8, is a Schoen surface, and S, — A, is
the Albanese embedding;

o Ay = JC x JC for a genus 2 curve C'; 8 is the union of JC
embedded diagonally in JC x JC, and of CxC C JC x JC (we choose
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an Abel-Jacobi embedding C C JC'). These two components intersect
transversally along the diagonal C' C C x C'.

The line bundle £ extends to a line bundle £ of order 2 on A. Let
o be the restriction of £ to 8y; we want to compute H'(8y, ). We
have an exact sequence

(2) 0=ty — Lyjjc ®lojoxc — bojc = 0.

The line bundle £y on JC x JC can be written a X 3, where « and
(B are 2-torsion line bundles on JC', not both trivial; we use the same
letters to denote their restriction to C'. The cohomology exact sequence
associated to (2) gives

HY(JC,a®p)® H(CxC,aXpB) — H°(C,a®p) — H(80,4y) —
HYJC,a®p)d HY(C x C,aRB) — HY(C,a® p) .

The restriction map H®(JC,a ® ) — H(C,a ® ) is surjective,
so u is injective. If @ and B are nontrivial, H!(C x C,a X B) is zero,
and the restriction map H'(JC,a ® B) — H'(C,a ® ) is injective, so
H'(8¢,4y) = 0. If, say, B is trivial, H'(JC,«a) is zero and the map
HY(C x C,pria) — H'(C,a) is bijective, hence H' (8, %) = 0 again.

By semi-continuity this implies H'(S.,£.) =0 for z general in A,
or equivalently q(gz) = ¢(8,) = 4, where S — § is the étale double
covering defined by £. But ¢ is a topological invariant, so this holds

for all z# 0 in A, hence H'(S,¢) =0. Q.E.D.

The surface X has a natural action of (Z/2)?, given by the involu-
tion ix induced by (—1p) and the involution 7 associated to the double
covering X — S, which is induced by a translation of B. We want to
determine how these involutions act on H°(X, Kx). The decomposition
of HY(X, Kx) into eigenspaces for 7 is

H(X,Kx) = HS,Ks) ® H*(S,Ks ® 1) .

By property b) above, is acts trivially on H°(S, Kg). It remains to
study how it acts on H°(S, Kgs ® ¢), or equivalently on H?(S,¢). To
define this action we choose the isomorphism w : (—14)*¢ == ¢ over A
such that «(0) = 1, and we consider the involutions

HP(is,u) : HP(S,0) ~55 HP(S,i%0) 5 HP(S,0) .
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Proposition 3. There exist line bundles £ of order 2 on A for
which is acts trivially on H?(S, /). In that case ix has 48 fized points.

Proof : We will denote by A, and A, the 2-torsion subgroups of A and
its dual abelian variety A, and similarly for B. The fixed point set of
ig 18 Ao NS, and that of ix is BoNX.

We apply the holomorphic Lefschetz formula to the automorphism
ig of S and the ig-linearization u|g :igl — £ :

—1)P Tr HP (i u:} u(a) .
ST s =5 3 w0
(At a point a of As, u(a) : £, — ¢, is the multiplication by a scalar,
which we still denote u(a).)

Let a € Ay. By [M1], property iv) p. 304, we have u(a) = (—1)¢*0
where (, ) : Ay X Ay — Z/2 is the canonical pairing. Thus the right
hand side of the Lefschetz formula is %(fo — f1), where f;, for i € Z/2,
is the number of points a € A; N S with (a, ) = 1.

We have HO(S,¢) = H(S,¢) = 0 (Proposition 2), hence
dim H2(S,¢) = x(Og) = 2. Thus the left hand side is Tr H?(ig,u) €
{2,0,—2}. Since fo + f1 =40 this gives f; € {16,20,24}, and we want
to find ¢ such that H?(ig,u) = Id, that is fo = 24.

Put F := As N S. Consider the homomorphism j : Ay — (Z)2)F
given by j(¢) = ((a,€))acr. For £ # 0, the weight of the element
§(0) of (Z/2)F (that is, the number of its nonzero coordinates) is fi,
which belongs to {16,20,24}. Therefore j is injective; its image is a 8-
dimensional vector subspace of (Z/2)F', that is, a linear code, such that
the weight of any nonzero vector belongs to {16,20,24}. A simple linear
algebra lemma [B2, lemme 1] shows that a code in (Z/2)*° of dimension
> 7 contains elements of weight < 20; thus there exist elements ¢ in
Ay with f; = 16, hence fo = 24.

It remains to compute the number of fixed points of ix in that case.
The fixed locus of ix is BoNX = 771 (7(Bz)N.S). Dualizing the exact
sequence of (Z/2)-vector spaces

0= (Z/2)f — Ay = By
and using the canonical pairings we get an exact sequence
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Thus the points a of Ay NS which belong to 7(Bs) are those with
(a,€) = 0. There are fy = 24 such points, hence 48 fixed points of
ix. QE.D.

Remark 3. There exist line bundles ¢ in Ay with fo = f1 = 20. In-
deed otherwise j(As) would be an 8-dimensional linear code in (Z,/2)%°
with weights 16 and 24, projective in the sense of [CK]; this is impos-
sible since equation (3.10) of [CK] does not hold. Thus in the next
Proposition the hypothesis on ¢ is necessary.

Proposition 4. Choose ¢ as in Proposition 3. Then the canonical
map o : X — P factors through ix , and induces an isomorphism of
X/ix onto a complete intersection of 4 quadrics in P with 48 nodes.

Proof : Since iy acts trivially on H°(X, Kx), we have a commutative
diagram

Px

X = »nC - psb

R

g 75, = . pt

where ¢y and ¢g are the canonical maps, ¥ and = their images, p the
projection corresponding to the injection H°(S, Ks) — H°(X,Kx), ps
its restriction to X.

The map @gom : X — E gives the quotient of X by the action of
(Z/2)%. Since T acts non-trivially on H°(X, Kx), ¢y identifies ¥ with
the quotient X/ix. Thus all the maps in the left hand square of the
above diagram are double coverings, étale outside finitely many points.
In particular, since K% = 32, we have deg¥ = 16.

We choose bases (zg,...,z4) and (u,v) of the (+1) and (—1)-
eigenspaces in H°(X, Kx) with respect to 7. The elements u?, uv, v?
of HY(X,K$?) are invariant under 7 and iy, therefore they are pull-
back of ig-invariant forms in H°(S, K§?). Such a form comes from
an element of H°(Z,0=(2)), hence from an element of H°(P* Op(2)).

Thus we have
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where a, b, ¢ are quadratic forms in zg,...,z4. Moreover the irreducible
quadric @ containing Z is defined by a quadratic form g¢(z) which
vanishes on X.

Thus ¥ is contained in the subvariety V of PS defined by these 4
quadratic forms. If V is a surface, it has degree 16 and therefore is
equal to ¥. Thus it suffices to prove that the morphism p,, : V — @
induced by the projection p is not surjective.

Assume that py, is surjective; it has degree 2, and we have a carte-
sian diagram

(G,
Px
(G

[N <=— ™

©=5 T

The variety V is irreducible: otherwise Y is contained in one of
its component, which maps birationally to @), and py has degree 1, a
contradiction. Since @ \ Sing(Q)) is simply connected, py is branched
along a surface R C Q). Since E is an ample divisor in @ (cut out by a
quartic equation), it meets R along a curve, and py, is branched along

that curve, a contradiction. Q.E.D.

Remark 4. Tt follows that Z = p(X) is defined by the equations
q(z) = b(z)? — a(z)c(z) = 0. The 40 nodes of = break into two sets:
the 16 points in P* defined by a(z) = b(z) = ¢(z) = q(x) = 0 are the
images by ps; of smooth points of ¥ fixed by the involution induced by
T; px is étale over the other 24 nodes of =, giving rise to the 48 nodes
of X.

Remark 5. The two families of surfaces X that we have constructed
in §2 and §3 are different; in fact, a surface X; of the first family is not
even homeomorphic to a surface X5 of the second one. Indeed X,
admits an irrational genus 2 pencil X — D, and this is a topological
property [C]. But for a general member X5 of the second family, the
Albanese variety of the corresponding Schoen surface is simple [S], so
its double cover Alb(X5) is also simple; therefore Xs cannot have an
irrational pencil of genus 2.

It follows that the corresponding surfaces Y belong to two different
connected components of the moduli space of complete intersections of
4 quadrics in P% with an even set of 48 nodes.
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