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Appendix: Lines on Pfaffian Hypersurfaces

by A. Beauville

The aim of this appendix is to prove that a general pfaffian hypersurface
of degree r > 2n − 3 in Pn contains no lines (Proposition 1). By a simple
dimension count (see Corollary 4 below), it suffices to show that the variety
of lines contained in the universal pfaffian hypersurface (that is, the hyper-
surface of degenerate forms in the space of all skew-symmetric forms on a
given vector space) has the expected dimension. We will deduce this from
an explicit description of the pencils of degenerate skew-symmetric forms,
which is the content of the proposition below.

We work over an algebraically closed field k. We will need an elementary
lemma:

Lemma 4. Given a pencil of skew-symmetric forms on a n-dimensional

vector space, there exists a subspace of dimension
[
n+1

2

]
which is isotropic

for all forms of the pencil.

Proof. By induction on n, the cases n = 0 and n = 1 being trivial. Let
ϕ+ tψ be our pencil; we can assume that ϕ is degenerate. Let D be a line
contained in the kernel of ϕ, and let D⊥ be its orthogonal with respect
to ψ. Then ϕ and ψ induce skew-symmetric forms ϕ̄ and ψ̄ on D⊥/D;
by the induction hypothesis there exists a subspace of dimension

[
n−1

2

]
in

D⊥/D which is isotropic for ϕ̄ and ψ̄. The pull-back of this subspace in D⊥

has dimension
[
n+1

2

]
and is isotropic for ϕ and ψ. �

The following result must be well known, but I have not been able to
find a reference:

Proposition 5. Let V be a vector space of dimension 2r, and (ϕt)t∈P
1 a

pencil of degenerate skew-symmetric forms on V . There exists a subspace

L ⊂ V of dimension r + 1 which is isotropic for ϕt for all t ∈ P1.

Proof. Again we prove the proposition by induction on r, the case r = 1 be-
ing trivial. The associated maps Φt : V → V ∗ form a pencil of singular linear
maps. By a classical result in linear algebra (see [G, Chap.XII, Thm. 4]),
there exist subspaces K ∈ V and L′ ∈ V ∗, with dimK = dimL′ + 1, such
that Φt(K) ⊂ L′ for all t; equivalently, there exist subspaces K and L of V ,
with dimK + dimL = 2r+ 1, which are orthogonal for each ϕt. Replacing
(K,L) by (K ∩L,K+L) we may assume K ⊂ L; the pencil (ϕt) restricted
to L is singular on K, hence induces a pencil (ϕ̄t) on L/K. Put dimK = p,
so that dim(L/K) = 2r + 1− 2p. By the above lemma there is a subspace
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of L/K, of dimension r+ 1− p, which is isotropic for each ϕ̄t. Its pull-back
in L has dimension r + 1 and is isotropic for each ϕt. �

Let us give a few consequences of Proposition 5. We keep our vector
space V of dimension 2r; we denote by Sr the space of skew-symmetric
forms on V , and by Xr the hypersurface of degenerate forms in P(Sr).

Corollary 3. The variety of lines contained in Xr is irreducible, of codi-

mension r + 1 in the Grassmannian of lines of P(Sr).

Proof. The (r + 1)-planes of V are parametrized by a Grassmannian G
of dimension r2 − 1. For such a plane L the space Sr,L of forms ϕ ∈ Sr
vanishing on L has dimension

dimSr,L = dim Λ
2V ∗ − dim Λ

2L∗ = r(2r − 1)−
r(r + 1)

2
=

3r(r − 1)

2
.

Let P be the Grassmannian of lines in P(Sr) (that is, the variety of pen-
cils of skew-symmetric forms). Consider the locus Z ∈ P × G of pairs
(
, L) with 
 ∈ Sr,L. The projection Z → G is a smooth fibration; its fi-
bre above a point L ∈ G is the Grassmannian of lines in P(Sr,L), which
has dimension 2 dimSr,L − 4. Thus Z is smooth, irreducible, of dimension
r2 − 1 + 2dimSL − 4 = 4r2 − 3r − 5.

Let Psing be the subvariety of P consisting of lines contained in Xr (that
is, the subvariety of singular pencils). The content of Proposition 5 is that
Psing is the image of Z under the projection to P. Thus Psing is irreducible,
of dimension ≤ 4r2 − 3r − 5, or equivalently, since dimP = 2dimSr − 4 =
4r2 − 2r − 4, of codimension ≥ r + 1. On the other hand, Psing is defined
locally by (r+1) equations in P, given by the coefficients of the polynomial
Pf(ϕt) of degree r. The corollary follows. �

Observe that r + 1 is the number of conditions that the requirement
to contain a given line imposes on a hypersurface of degree r in projective
space. In other words, Corollary 3 says that the hypersurface Xr behaves
like a general hypersurface of degree r as far as the dimension of its variety
of lines is concerned.

Let L be a vector space, of dimension n+1, and 
 = (
ij) a (2r×2r)-skew-
symmetric matrix of linear forms on L. The hypersurfaceX� in P(L) (= Pn)
defined by Pf(
ij) = 0 is called a pfaffian hypersurface. It is defined by the
equation Pf(
ij) = 0, of degree r.

Corollary 4. If r > 2n − 3 and the forms 
ij are general enough, X�

contains no lines.
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Proof. The matrix (
ij) defines a linear map u : L→ Sr, which is injective
when the forms 
ij are general enough (observe that dimL < dimSr). Thus
we can identify L to its image in Sr, and X� to the hypersurface Xr ∩P(L)
in P(L).

Let G be the Grassmann variety of (n+1)-dimensional vector subspaces
of S, and F the variety of lines contained in Xr. Consider the incidence
variety Z ∈ F ×G of pairs (
, L) with 
 ∈ P(L). The fibre of the projection
Z → G at a point L ∈ G is the variety of lines contained in Xr∩P(L) = X�.

Put N := dimSr. We have dimF = 2N −4− (r+1) by Corollary 3; the
projection Z → F is a fibration of relative dimension (n − 1)(N − n − 1).
This gives dimZ = 2N − 4− (r + 1) + (n− 1)(N − n− 1), while dimG =
(n+ 1)(N − n− 1). Thus

dimZ − dimG = 2n− 3− r < 0 ,

hence the general fibre of the projection Z → G is empty. �

Note that ‘(
ij) general enough’ means ‘for (
ij) in a certain Zariski
open subset of (L∗)N ’. In particular, suppose that our vector space L comes
from a vector space L0 over an infinite subfield k0 of k; then the matrices

(
ij) ∈ (L∗0)
N such that X� contains no lines are Zariski dense in the pa-

rameter space (L∗)N for r > 2n− 3.
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