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COUNTING RATIONAL CURVES ON K3 SURFACES

ARNAUD BEAUVILLE

Introduction. The aim of this paper is to explain the remarkable formula found
by Yau and Zaslow [YZ] to express the number of rational curves on a K3 surface.
Projective K3 surfaces fall into countably many families(�g)g≥1; a surface in�g

admits ag-dimensional linear system of curves of genusg. A naïve count of constants
suggests that such a system will contain a positive number, say,n(g), of rational
(highly singular) curves. The formula is∑

g≥0
n(g)qg = q

�(q)
,

where�(q) = q
∏

n≥1(1−qn)24 is the well-known modular form of weight 12, and
by convention we putn(0) = 1.
To explain the idea in a nutshell, take the caseg = 1. We thus look at K3 surfaces

with an elliptic fibrationf : S→ P1, and we ask for the number of singular fibres. The
(topological) Euler-Poincaré characteristic of a fibreCt is zero ifCt is smooth, is 1 if
it is a rational curve with one node, is 2 if it has a cusp, and so on. From the standard
properties of the Euler-Poincaré characteristic, we gete(S) = ∑

t e(Ct ); hence,n(1) =
e(S) = 24, and this number counts nodal rational curves with multiplicity 1, cuspidal
rational curves with multiplicity 2, and so on.
The idea of Yau and Zaslow is to generalize this approach to any genus. LetSbe

a K3 surface with ag-dimensional linear system� of curves of genusg. The role
of f is played by the morphism̄�� → �, whose fibre over a pointt ∈ � is the
compactified Jacobian̄JCt . To apply the same method, we would like to prove the
following facts.
(1) The Euler-Poincaré characteristice(�̄�) is the coefficient ofqg in the Taylor

expansion ofq/�(q).
(2) e(J̄Ct ) = 0 if Ct is not rational.
(3) e(J̄Ct ) = 1 if Ct is a rational curve with nodes as only singularities. More-

over e(J̄Ct ) is positive whenCt is rational, and can be computed in terms of the
singularities ofCt .
(4) For a generic K3 surfaceS in �g, all rational curves in� are nodal.
The first statement is proved in Section 1, by comparinge(�̄�) with the Euler-

Poincaré characteristic of the Hilbert schemeS[g], which has been computed by

Received 21 August 1997.
1991Mathematics Subject Classification.14J28.
Author partially supported by the European HCM project, Algebraic Geometry in Europe.

99



100 ARNAUD BEAUVILLE

Göttsche. Assertion (2) is proved in Section 2. We prove part of (3) in Sections 3
and 4. We expresse(J̄C) for a rational curveC in terms of a local invariant of
the singularities ofC, and we compute this local invariant in a number of cases.
This invariant has been recently identified by Fantechi, Göttsche, and van Straten
as the multiplicity of theδ-constant stratum in the semiuniversal deformation of the
singularity [FGS]; this implies in particular the positivity ofe(J̄C). This approach also
provides an alternate proof for most of our results in Sections 3 and 4. Unfortunately,
(4) is of a different nature and seems to be wide open. The outcome (see Corollary
2.3) is that the coefficient ofqg in q/�(q) counts the rational curves in� with a
certain multiplicity, which is 1 for a nodal curve and can be computed explicitly in
many cases. The only missing point (equivalent to (4)) is that for a generic surface in
�g, this coefficient is simply the number of rational curves in�.

1. The compactified relative Jacobian

1.1. Let X be a complex variety; we denote bye(X) its Euler-Poincaré charac-
teristic, defined bye(X) = ∑

p(−1)p dimQH
p
c (X,Q). Recall that this invariant is

additive, that is, it satisfiese(X) = e(U)+e(X U) wheneverU is an open subset
of X.

1.2. We consider a projective K3 surfaceSwith a complete linear system(Ct )t∈�

of curves of genusg ≥ 1 (so� is a projective space of dimensiong). We assume
that all the curvesCt are integral (that is, irreducible and reduced). This is a sim-
plifying assumption, which can probably be removed at the cost of various technical
complications. It is satisfied, of course, if the class ofCt generates Pic(S).
Let � → � be the morphism with fibreCt over t ∈ �. For each integerd ∈ Z, we

denote by�̄� = ∐
d∈Z �̄d� the compactified Picard scheme of this family.�̄d� is a

projective variety of dimension 2g, which parameterizes pairs(Ct ,�) wheret ∈ �

and� is a torsion-free, rank-1 coherent sheaf onCt of degreed (which means, by
definition,χ(�) = d +1−g). According to Mukai [M, Example 0.5],̄�d� can be
viewed as a connected component of the moduli space of simple sheaves onS, and
therefore is smooth, and admits a (holomorphic) symplectic structure.
The simplest symplectic varieties associated to the K3 surfaceS are the Hilbert

schemesS[d], which parameterize finite subschemes of lengthd of S. The birational
comparison of the symplectic varieties�̄d�, for various values ofd, with S[g] is an
interesting problem, about which not much seems to be known. There is one easy
case, as show in Proposition 1.3.

Proposition 1.3. The compactified Jacobian̄�g� is birationally isomorphic to
S[g].

Proof. Let U be the open subset of�̄g� consisting of pairs(Ct ,L), whereCt is
smooth,L is invertible, and dimH 0(Ct ,L) = 1. To such a pair corresponds a unique
effective divisorD onCt of degreeg, which can be viewed as a length-g subscheme of
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S; since dimH 0(Ct ,�Ct (D)) = 1, it is contained in a unique curve of�, namely,Ct .
This provides an isomorphism betweenU and the open subset ofS[g] parameterizing
finite subschemes ofScontained in a unique smooth curve of�.

Corollary 1.4. Write q/�(q) = ∑
g≥0e(g)qg. Thene(�̄g�) = e(g).

Proof. We can either use a recent result of Batyrev and Kontsevich [B], which says
that two birationally equivalent, projective Calabi-Yau manifolds have the same Betti
numbers, or a more precise result of Huybrechts [H], which says that two birationally
equivalent, projective, symplectic manifolds are diffeomorphic. It remains to apply
Göttsche’s formulae(S[g]) = e(g) (see [G]).

2. The compactified Jacobian of a nonrational curve. Let C be an integral
curve. By arank-1 sheafonC, we mean a torsion-free, rank-1 coherent sheaf. The
rank-1 sheaves� onC of degreed are parameterized by the compactified Jacobian
J̄ dC. If L is an invertible sheaf of degreed on C, the map� �→ � ⊗ L is an
isomorphism ofJ̄C onto J̄ dC, so we can restrict our study to degree-0 sheaves.
Let � ∈ J̄C; the endomorphism ring of� is an�C-subalgebra of the sheaf of

rational functions onC. It is finitely generated as an�C-module, and hence it is
integral over�C . Thus it is of the form�C′ , wheref : C′ → C is some partial
normalization ofC. The sheaf� is an�C′-module, which amounts to saying that it
is the direct image of a rank-1 sheaf�′ onC′.

Lemma 2.1. Let L ∈ JC. Then� ⊗L is isomorphic to� if and only if f ∗L is
trivial.

Proof. The sheaf�⊗L is isomorphic tof∗(�′ ⊗f ∗L) and hence to� if f ∗L is
trivial. On the other hand, we have

�om�C
(�,�⊗L) ∼= �nd�C

(�)⊗�C
L ∼= f∗�C′ ⊗L ∼= f∗f ∗L,

so if f ∗L is nontrivial, the space Hom(�,� ⊗ L) is zero, and� ⊗ L cannot be
isomorphic to�.

Proposition 2.2. Let C be an integral curve whose normalizatioñC has genus
≥ 1. Thene(J̄ dC) = 0.

Proof. We have an exact sequence

0→ G −→ JC −→ J C̃ → 0,

whereG is a product of additive and multiplicative groups. In particular,G is a
divisible group, and hence this exact sequence splits as a sequence of abelian groups.
For each integern, we can find a subgroup of ordern in JC that maps injectively
into J C̃. By Lemma 2.1, this group acts freely on̄JC, which implies thatn divides
e(J̄C). Since this holds for anyn, the proposition follows.
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Corollary 2.3. Write q/�(q) = ∑
g≥0e(g)qg. Let �rat ⊂ � be the (finite)

subset of rational curves; thene(g) = ∑
t∈�rat

e(J̄Ct ).

Proof. We first make a general observation: Letf : X → Y be a surjective mor-
phism of complex algebraic varieties whose fibres have Euler characteristic zero; then
e(X) = 0. This is well known (and easy) iff is a locally trivial fibration. The general
case follows using Section 1.1, because there exists a stratification ofY such thatf
is locally trivial above each stratum (see [V]).
The set�rat is finite because otherwise it would contain a curve, soSwould be

ruled. Consider the morphismp : �̄g� → � above� �rat. By the above remark,
we havee(p−1(� �rat)) = 0, and hence we have the result, using Section 1.1 again.

In other words,e(g) counts the number of rational curves with multiplicity, the
multiplicity of a curveC beinge(J̄C). In the next two sections, we try to show that
this is indeed a reasonable notion of multiplicity.

3. The compactified Jacobian of a rational curve

Lemma 3.1. Let f : C′ → C be a partial normalization ofC. The morphism
f∗ : J̄C′ → J̄C is a closed embedding.

Proof. Let � and� be two rank-1 sheaves onC′. We claim that any�C-homo-
morphismu : f∗� → f∗� is actuallyf∗�C′-linear. LetU be a Zariski-open subset
of C, ϕ ∈ �(U,f∗�C′), ands ∈ �(U,f∗�). The rational functionϕ can be written as
a/b, with a,b ∈ �(U,�C) andb �= 0. Then the elementu(ϕs)−ϕu(s) of �(U,f∗�)

is killed by b and hence is zero sincef∗� is torsion-free.
Therefore, iff∗� andf∗� are isomorphic as�C-modules, they are also isomor-

phic asf∗�C′-modules, which means that� and� are isomorphic. This proves the
injectivity of f∗ (which would be enough for our purposes). Now, ifS is any base
scheme, the same argument applies to sheaves� and� onC×S, flat overS, whose
restrictions to each fibreC×{s} are torsion-free rank-1. (Observe that a local section
b of �C is �-regular because it is on each fibre, and� is flat overS.) This proves
thatf∗ is a monomorphism; since it is proper, it is a closed embedding.

3.2. Recall that the curveC is said to beunibranchif its normalizatioñC → C is a
homeomorphism. Any curveC admits a unibranch partial normalizationπ̌ : Č → C

which is minimal, in the sense that any unibranch partial normalizationC′ → C

factors througȟπ . To see this, let� be the conductor ofC, and let$̃ be the inverse
image inC̃ of the singular locus$ ∈ C. The finite-dimensionalk-algebraA := �C̃/�
is a product of local rings(Ax)x∈$̃ . Let (ex)x∈$̃ be the corresponding idempotent
elements ofA. A sheaf of algebras�C′ with �C ⊂ �C′ ⊂ �C̃ is unibranch if and only
if �C′/� contains eachex , or, equivalently,�C′ contains the classesex +� for each
x ∈ $̃. Clearly there is a smallest such algebra, namely, the algebra�

Č
generated by

�C and the classesex +�. The completion of the local ring of̌C at a pointy is the
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image of̂�C,π̌(y) in �̂C̃,y .

Proposition 3.3. With the above notation,e(J̄C) = e(J̄ Č).

Proof. In view of Proposition 2.2, we may suppose thatC̃ is rational. As before,
we denote by$ the singular locus ofC and by $̃ its inverse image inČ. The
cohomology exact sequence associated to the short exact sequence

1→ �∗
C −→ �∗̃

C
−→ �∗̃

C
/�∗

C → 1

provides a bijective homomorphism (actually an isomorphism of algebraic groups)
�∗̃
C
/�∗

C

∼−→ JC.

The evaluation maps�∗̃
C

→ (C∗)$̃ and �∗
C → (C∗)$ give rise to a surjective

homomorphism�∗̃
C
/�∗

C → (C∗)$̃/(C∗)$ ; its kernel is unipotent, that is, isomorphic
to a vector space. Ifn is any integer≥ Card($̃), it follows that we can find a section
ϕ of �∗̃

C
in a neighborhood of̃$ such that the numbersϕ(x̃) for x̃ ∈ $̃ are all distinct,

butϕn belongs to�C . LetL be the line bundle onJC associated to the class ofϕ in
�∗̃
C
/�∗

C .

LetU be the complement of̌π∗(J̄ Č) in J̄C. According to Section 1.1 and Lemma
3.1, our assertion is equivalent toe(U) = 0.We claim that the line bundleL acts freely
onU ; since the order ofL in JC is finite and arbitrarily large, this will finish the proof.
Let � ∈ U , and letC′ be the partial normalization ofC such that�nd(�) = �C′ . By
definition ofU , C′ is not unibranch, and hence there are two points of$̃ mapping to
the same point ofC′; this implies that the functionϕ does not belong to�∗

C′ . From
the commutative diagram

�̃C̃∗/�C∗ ∼ ��

��

JC

��
�C̃∗/�C′∗ ∼ �� JC′

we conclude that the pullback ofL to JC′ is nontrivial. By Lemma 2.1, this implies
that�⊗L is not isomorphic to�.

Corollary 3.4. For a rational nodal curveC, we havee(J̄C) = 1.

Remark 3.5.Consider a rational curveC whose singularities are all of typeA2l−1,
that is, locally defined by an equationu2−v2l = 0. Locally around such a singular-
ity, the curveC is the union of two smooth branches with a high-order contact, so
by Proposition 3.3,e(J̄C) is equal to 1. The fact that some highly singular curves
count with multiplicity 1 looks rather surprising. The caseg = 2 provides a (modest)
confirmation: The surfaceS is a double covering ofP2, branched along a sextic curve
B; the curvesCt are the inverse images of the lines inP2, and they become rational
when the line is bitangent toB. We get anA3-singularity when the line has a contact
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of order 4; thus our assertion in this case follows from the (certainly classical) fact
that a line with a fourth-order contact counts as a simple bitangent.

3.6. Proposition 3.3 reduces the computation of the invariante(J̄C) to the case
of a unibranch (rational) curve. To understand this invariant, we use a construction
of Rego (see [R]; see also [GP]). For eachx ∈ C, we putδx = dim�C̃,x/�C,x , and
we denote by� the ideal�C̃(−∑

x(2δx)x), which is contained in the conductor of
C (but the inclusion is strict unlessC is Gorenstein).
For x ∈ C, we denote byAx andÃx the finite-dimensional algebras�C,x/�x and

�C̃,x/�x . LetG(δx, Ãx) be theGrassmannian of codimension-δx subspaces of̃Ax , and
letGx be the closed subvariety ofG(δx, Ãx) consisting of sub–Ax-modules. We can
also viewGx as parameterizing the sub–�C,x-modules�x of codimensionδx in �C̃,x ,
because any such submodule contains�x (see [GP, Lemma 1.1(iv)]). Since�C̃/� is
a skyscraper sheaf with fibrẽAx at x, the product

∏
x∈$Gx parameterizes sub–�C-

modules� ⊂ �C̃ such that dim�C̃,x/�x = δx for all x. This impliesχ(�C̃/�) =∑
x δx = χ(�C̃/�C), and hence� ∈ J̄C. We have thus defined a morphisme :∏
x∈$Gx → J̄C.

Proposition 3.7. The mape is a homeomorphism.

Note thate is already not an isomorphism whenC is a rational curve with one
ordinary cusps; the GrassmannianGs is isomorphic toP1, while J̄C is isomorphic
to C.

Proof. Since we are dealing with compact varieties, it suffices to prove thate is
bijective.
Injectivity. Let � and� be two sub–�C-modules of�C̃ containing�. If � and

� give the same element in̄JC, there exists a rational functionϕ on C̃ such that
� = ϕ�. But the equalities dim�C̃,x/�x = dim�C̃,x/�x = dimϕx�C̃,x/�x imply
ϕx�C̃,x = �C̃,x for all x, which means thatϕ is constant.
Surjectivity. Let f : C̃ → C be the normalization morphism, and let� ∈ J̄C. Let

us denote bỹ� the line bundle oñC quotient off ∗� by its torsion subsheaf. We
claim that its degree is≤ 0: we have an exact sequence

0→ � −→ f∗�̃ −→ 	 → 0,

where	 is a skyscraper sheaf supported on the singular locus ofC, such that dim	x ≤
δx for all x ∈ C (see [GP, Lemma 1.1]); this impliesχ(�̃)−χ(�) ≤ χ(�C̃)−χ(�C),
from which the required inequality follows. SincẽC is rational, it follows that̃�−1

admits a global section whose zero set is contained in$.
Because of the canonical isomorphisms

Hom�C

(
�,�C̃

) ∼= Hom�C̃

(
f ∗�,�C̃

) ∼= Hom�C̃

(
�̃,�C̃

)
,
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we conclude that there exists a homomorphismi : � → �C̃ , which is bijective outside
$. Putnx = dim�C̃,x/i(�x) for eachx ∈ $. Since∑

x∈$

nx = dim�C̃/i(�) = χ
(
�C̃

)−χ(�) = g =
∑
x∈$

δx,

there exists a rational functionϕ on C̃ with divisor
∑

x(δx −nx)x. Replacing� by
ϕ�, we may assumenx = δx for all x, which means that� belongs to the image ofe.

The varietyGx depends only on the local ring� of C at x (even only on its com-
pletion); we also denote it byG�. Recall thatG� parameterizes the sub–�-modules
L of the normalizatioñ� of � with dim�̃/L = dim�̃/�. We putε(x) = e(Gx) (or
ε(�) = e(G�)). Proposition 3.7 gives us the following.

Proposition 3.8. LetC be a rational unibranch curve; thene(J̄C) = ∏
x∈C ε(x).

Of courseε(x) is equal to 1 for a smooth point, so we could as well consider the
product over the singular locus$ of C. Note that, in view of Proposition 3.3, we may
defineε(x) for a nonunibranch singularity by taking the product of theε-invariants
of each branch; Proposition 3.8 remains valid.

4. Examples

4.1. Singularities withC∗-action. Assume that the local, unibranch ring� admits
aC∗-action. This action extends to its completion, so we assume that� is complete.
The C∗-action also extends to the normalizatioñ� of �, and there exists a local
coordinatet ∈ �̃ such that the lineCt is preserved. (This is because the proalgebraic
group Aut(̃�) is an extension ofC∗ by a prounipotent group; hence all subgroups
of Aut(̃�) isomorphic toC∗ are conjugate.) It follows that the graded subring� is
associated to a semigroup� ⊂ N; in other words,� is the ringC[[�]] of the formal
series

∑
γ∈� aγ t

γ .

TheC∗-actions on� and�̃ give rise to aC∗-action onG�. The fixed points of this
action are the submodules of�̃, which are graded, that is, of the formC[[�]], where
� is a subset ofN. The condition dim̃�/C[[�]] = dim�̃/� means Card(N−�) =
Card(N−�), and the condition thatC[[�]] is an�-module that means�+� ⊂ �.
The first condition already implies that there are only finitely many such fixed points.
According to [BB], the number of these fixed points is equal toe(G�). We conclude
the following.

Proposition 4.2. Let� ⊂ N be a semigroup with finite complement. The number
ε(C[[�]]) is equal to the number of subsets� ⊂ N such that� + � ⊂ � and
Card(N−�) = Card(N−�).

We do not know whether there exists a closed formula computing this number,
say, in terms of a minimal set of generators of�. This turns out to be the case in
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the situation in which we were originally interested, namely, planar singularities. The
semigroup� is then generated by two coprime integersp andq, which means that
the local ring� is of the formC[[u,v]]/(up −vq).

Proposition 4.3. Letp andq be two coprime integers. Then

ε
(
C[[u,v]]/(up −vq

)) = 1

p+q

(
p+q

p

)
.

Proof. The following proof was shown to me by P. Colmez.

4.3.1. We first observe that if a subset� satisfies� +� ⊂ �, all its translates
n+� (n ∈ Z) contained inN have the same property; moreover, among all these
translates, there is exactly one with Card(N−�) = Card(N−�). Thus the number we
want to compute is the cardinal of the set
 of subsets� ⊂ N, such that�+� ⊂ �,
modulo the identification of a subset and its translates.

4.3.2. For such a subset�, let us introduce the generating functionF�(T ) =∑
δ∈�T δ ∈ Z[[T ]]. Sincep+� ⊂ �, we canwrite, in a uniqueway,�=⋃p

i=1(a(i)+
pN), then(1−T p)F�(T ) = ∑p

i=1T
a(i). Writing similarly� = ⋃q

j=1(b(j)+qN),

we get(1−T q)F�(T ) = ∑q

j=1T
b(j). Puta(j) = b(j−p)+p for p+1≤ j ≤ p+q;

the equality (
1−T p

) p+q∑
j=p+1

T a(j)−p = (
1−T q

) p∑
i=1

T a(i)

reads as

p+q∑
i=1

T a(i) =
p∑

i=1

T a(i)+q +
p+q∑

j=p+1

T a(j)−p.(4.3.a)

Conversely, given a functiona : [1,p + q] → N satisfying (4.3.a), the set� =⋃p

i=1(a(i)+pN) is equal to
⋃p+q

j=p+1(a(j)−p+qN), and therefore satisfies�+� ⊂
�. (Note that (4.3.a) implies that the classes(modp) of thea(i)’s, for 1≤ i ≤ p, are
all distinct.)
The equality (4.3.a) means that there exists a permutationσ ∈ Sp+q such that

a(σ i) is equal toa(i)+q if i ≤ p and toa(i)−p if i > p. This implies thata(σm(i))

is of the forma(i) + αq − βp with α,β ∈ N and α + β = m; sincep and q are
coprime, it follows thatσ is of orderp+q, that is, it is a circular permutation. It also
follows that the numbersa(i) are all distinct, and hence the permutationσ is uniquely
determined. Letτ be a permutation such thatτστ−1 is the permutationi �→ i +1
(modp+q), and letS� = τ([1,p]). Replacinga by a ◦τ−1, our functiona satisfies

a(i+1) =
{
a(i)+q, if i ∈ S�,

a(i)−p, if i /∈ S� .
(4.3.b)
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Since τ is determined up to right multiplication by a power ofσ , the setS� ⊂
[1,p+q] is well determined up to a translation (modp+q). Note that replacing�
by n+� amounts to adding the constant valuen to the functiona and hence does
not changeS�.

4.3.3. Conversely, let us start from a subsetS⊂ [1,p+q] with p elements. We
define inductively a functionaS on [1,p+q] by the relations (4.3.b), giving toaS(1)
an arbitrary value, large enough so thataS takes its values inN. By construction, the
functionaS satisfies (4.3.b); so, by 4.3.2, the subset�S= ∪s∈S(aS(s)+pN) satisfies
�+�S⊂ �S.
An easy computation givesaS+1(i + 1) = aS(i) and therefore�S+1 = �S. Let

� be the set of subsets of[1,p+q] with p elements, modulo translation; the maps
� �→ S� from 
 to � andS �→ �S from � to 
 are inverse of each other. Since
Card(�) = ( 1

(p+q)

)(
p+q
p

)
, the proposition follows.

4.4. Simple singularities.We now consider the case where the singularities ofC

aresimple, that is, ofA,D,E types. The local ring of such a singularity has only
finitely many isomorphism classes of torsion-free rank-1 modules, and this property
characterizes these singularities among all plane curves singularities (see [GK]).

Proposition 4.5. Let� be the local ring of a simple singularity. Thenε(�) is the
number of isomorphism classes of torsion-free rank-1 �-modules. It is given by:

−ε(�) = l+1, if � is of typeA2l;
−ε(�) = 1, if � is of typeA2l+1;
−ε(�) = 1, if � is of typeD2l (l ≥ 2);
−ε(�) = l, if � is of typeD2l+1 (l ≥ 2);
−ε(�) = 5, if � is of typeE6;
−ε(�) = 2, if � is of typeE7;
−ε(�) = 7, if � is of typeE8.

Proof. LetC be a rational curve having only one simple singularity with local ring
�; the action ofJC on J̄C has finitely many orbits, corresponding to the different
isomorphism classes of rank-1�-modules. Since each orbit is an affine space, its Euler
characteristic is 1, and hence by Section 1.1,ε(�) = e(J̄C) is equal to the number of
these orbits.
If � is unibranch, its completion is of the formC[[u,v]]/(up − vq), with p = 2,

q = 2l + 1 for the typeA2l , p = 3, q = 4 for the typeE6, andp = 3, q = 5 for
the typeE8. In these cases, the result follows from Proposition 4.3. We have already
observed thatε = 1 for anA2l+1 singularity (see Remark 3.5). ADl singularity is
the union of anAl−3 branch and a transversal smooth branch, and hence we have the
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result by Proposition 3.3. Finally, anE7 singularity is the union of an ordinary cusp
and its tangent, and hence it hasε = 2.

Remark 4.6. Let 
 be the set of graded sub–�-modulesL ⊂ �̃ with dim�̃/L =
dim�̃/�. Two modulesL andM in 
 are isomorphic if and only ifM = tnL for
somen ∈ Z, but the dimension condition forcesn = 0. It follows thateach torsion-
free rank-1 �-module is isomorphic to exactly one element of
. That way it is quite
easy to write down the list of isomorphism classes of rank-1�-modules (which is
well known; (see, e.g., [GK]). For instance, if� is of typeE8, we get the following
modules (with the notation of Section 4.1):

�, �t +�t8, �t2+�t6, �t2+�t4, �t3+�t4, �t3+�t5+�t7, �̃t4.
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