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COUNTING RATIONAL CURVES ON K3 SURFACES

ARNAUD BEAUVILLE

Introduction. The aim of this paper is to explain the remarkable formula found
by Yau and Zaslow [YZ] to express the number of rational curves on a K3 surface.
Projective K3 surfaces fall into countably many familigg,),>1; a surface in%,
admits gg-dimensional linear system of curves of gegu# naive count of constants
suggests that such a system will contain a positive number,ngay, of rational
(highly singular) curves. The formula is

q
> n(@)gf = ——,
= Ag)

whereA(q) = q[],-1(1—¢™?*is the well-known modular form of weight 12, and
by convention we put(0) = 1.

To explain the idea in a nutshell, take the cgse 1. We thus look at K3 surfaces
with an elliptic fibrationf : S— P, and we ask for the number of singular fibres. The
(topological) Euler-Poincaré characteristic of a fibkas zero ifC; is smooth, is 1 if
it is a rational curve with one node, is 2 if it has a cusp, and so on. From the standard
properties of the Euler-Poincaré characteristic, we (®t= >, ¢(C;); hencen(1) =
e(S) = 24, and this number counts nodal rational curves with multiplicity 1, cuspidal
rational curves with multiplicity 2, and so on.

The idea of Yau and Zaslow is to generalize this approach to any genuS.beet
a K3 surface with g-dimensional linear systel of curves of genug. The role
of f is played by the morphisng¢ — II, whose fibre over a point € I is the
compactified JacobiaiC;. To apply the same method, we would like to prove the
following facts.

(1) The Euler-Poincaré characteristicf6) is the coefficient of¢ in the Taylor
expansion of;/A(q).

(2) e(JC;) =0 if C, is not rational.

(3) e(JC;) = 1 if C, is a rational curve with nodes as only singularities. More-
over e(JC;) is positive whenC; is rational, and can be computed in terms of the
singularities ofC;.

(4) For a generic K3 surfacgin %, all rational curves if1 are nodal.

The first statement is proved in Section 1, by compatigfé) with the Euler-
Poincaré characteristic of the Hilbert schef®é&!, which has been computed by
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Gottsche. Assertion (2) is proved in Section 2. We prove part of (3) in Sections 3
and 4. We express(JC) for a rational curveC in terms of a local invariant of

the singularities ofC, and we compute this local invariant in a number of cases.
This invariant has been recently identified by Fantechi, Gottsche, and van Straten
as the multiplicity of theS-constant stratum in the semiuniversal deformation of the
singularity [FGS]; this implies in particular the positivity @fJ C). This approach also
provides an alternate proof for most of our results in Sections 3 and 4. Unfortunately,
(4) is of a different nature and seems to be wide open. The outcome (see Corollary
2.3) is that the coefficient af® in g/A(q) counts the rational curves i with a
certain multiplicity, which is 1 for a nodal curve and can be computed explicitly in
many cases. The only missing point (equivalent to (4)) is that for a generic surface in
F ., this coefficient is simply the number of rational curvedin

1. The compactified relative Jacobian

1.1. Let X be a complex variety; we denote byX) its Euler-Poincaré charac-
teristic, defined by (X) = ZP(—l)P dimg H?(X,Q). Recall that this invariant is
additive, that is, it satisfies(X) = ¢(U) +e(X — U) wheneverU is an open subset
of X.

1.2.  We consider a projective K3 surfaBavith a complete linear systetd’; )<
of curves of genug > 1 (soIl is a projective space of dimensi@). We assume
thatall the curvesC; are integral (that is, irreducible and reduced). This is a sim-
plifying assumption, which can probably be removed at the cost of various technical
complications. It is satisfied, of course, if the claspfgenerates P(&).

Let 6 — IT be the morphism with fibr€; overs € I1. For each integed € Z, we
denote by§6 = [[,.; $9¢ the compactified Picard scheme of this familf6¢ is a
projective variety of dimensiong2 which parameterizes paifg;, ¥) wherer € I1
and ¥ is a torsion-free, rank-1 coherent sheaf©nof degreed (which means, by
definition, x (¥) = d + 1—g). According to Mukai [M, Example 0.5]$¢% can be
viewed as a connected component of the moduli space of simple shea%smh
therefore is smooth, and admits a (holomorphic) symplectic structure.

The simplest symplectic varieties associated to the K3 sui$aaes the Hilbert
schemes“!, which parameterize finite subschemes of lengjtif S. The birational
comparison of the symplectic varietig€«¢, for various values off, with S&! is an
interesting problem, about which not much seems to be known. There is one easy
case, as show in Proposition 1.3.

ProposiTION 1.3 The compactified Jacobiaf$% is birationally isomorphic to

gl

Proof. Let U be the open subset g®% consisting of pair§C;, L), whereC; is
smooth,L is invertible, and dinHH%(C,, L) = 1. To such a pair corresponds a unique
effective divisorD on C; of degreeg, which can be viewed as a lenggtsubscheme of



COUNTING RATIONAL CURVES ON K3 SURFACES 101

S; since dimH2(C;, Oc, (D)) =1, itis contained in a unique curve Bif, namely,C;.
This provides an isomorphism betwe&rand the open subset 8f! parameterizing
finite subschemes @ contained in a unique smooth curveldf O

COROLLARY 1.4 Write g/A(q) = Y -0€(2)q*. Thene($8%€) = e(g).

Proof. We can either use a recent result of Batyrev and Kontsevich [B], which says
that two birationally equivalent, projective Calabi-Yau manifolds have the same Betti
numbers, or a more precise result of Huybrechts [H], which says that two birationally
equivalent, projective, symplectic manifolds are diffeomorphic. It remains to apply
Géttsche’s formula(S¢)) = e(g) (see [G]). O

2. The compactified Jacobian of a nonrational curve.Let C be an integral
curve. By arank-1 sheafon C, we mean a torsion-free, rank-1 coherent sheaf. The
rank-1 sheave& on C of degreed are parameterized by the compactified Jacobian
J4C. If L is an invertible sheaf of degre# on C, the map¥ — £ ® L is an
isomorphism of/ C onto JC, so we can restrict our study to degree-0 sheaves.

Let £ € JC; the endomorphism ring of is an Oc-subalgebra of the sheaf of
rational functions onC. It is finitely generated as a@-module, and hence it is
integral overO¢. Thus it is of the formO¢/, where f : C’ — C is some partial
normalization ofC. The sheaff is anO,-module, which amounts to saying that it
is the direct image of a rank-1 she#ifon C’.

LeEmMMA 2.1 LetL € JC. Then® ® L is isomorphic ta¥ if and only if f*L is
trivial.

Proof. The sheaff® L is isomorphic tof,.(¥'® f*L) and hence t& if f*L is
trivial. On the other hand, we have

Homo (£, LQL) = éndo(£) R0 L = fuO0c QL = fi f*L,

so if f*L is nontrivial, the space Ho(f,¥ ® L) is zero, and¥ ® L cannot be
isomorphic to¥. O

ProposiTioN 2.2 Let C be an integral curve whose normalizatiéhhas genus
> 1. Thene(J4C) = 0.

Proof. We have an exact sequence
O—>G—>JC—>J5—>0,

where G is a product of additive and multiplicative groups. In particularjs a
divisible group, and hence this exact sequence splits as a sequence of abelian groups.
For each integer, we can find a subgroup of orderin JC that maps injectively

into JC. By Lemma 2.1, this group acts freely drC, which implies that: divides

e(JC). Since this holds for any, the proposition follows. O



102 ARNAUD BEAUVILLE

CoRroLLARY 2.3 Write g/A(g) = Zgzoe(g)qg. Let [T C IT be the (finite)
subset of rational curves; thef(g) = Zrenrate(jct)-

Proof. We first make a general observation: Lfgt X — Y be a surjective mor-
phism of complex algebraic varieties whose fibres have Euler characteristic zero; then
e(X) = 0. This is well known (and easy) jf is a locally trivial fibration. The general
case follows using Section 1.1, because there exists a stratificatioswéh thatf
is locally trivial above each stratum (see [V]).

The setll4 is finite because otherwise it would contain a curveSswmould be
ruled. Consider the morphisim: $8¢ — II abovell — 4. By the above remark,
we havee(p~1(IT - I,a)) = 0, and hence we have the result, using Section 1.1 again.

O

In other wordse(g) counts thg number of rational curves with multiplicity, the
multiplicity of a curveC beinge(JC). In the next two sections, we try to show that
this is indeed a reasonable notion of multiplicity.

3. The compactified Jacobian of a rational curve

Lemma 3.1 Let f : C' — C be a partial normalization ofC. The morphism
fx: JC'— JC is a closed embedding.

Proof. Let ¥ and.l be two rank-1 sheaves aff. We claim that any--homo-
morphismu : f,&£ — fil is actually f,O0¢-linear. LetU be a Zariski-open subset
of C,p e I'(U, f0c¢), ands € I'(U, f.¥). The rational functiorp can be written as
a/b,witha,b e I'(U,0¢) andb # 0. Then the element(gs) — pu(s) of ['(U, fyll)
is killed by b and hence is zero singg. is torsion-free.

Therefore, if £, & and f,.M are isomorphic a§c-modules, they are also isomor-
phic as f,0¢,-modules, which means th&t and.it are isomorphic. This proves the
injectivity of f, (which would be enough for our purposes). Nowsifs any base
scheme, the same argument applies to she#@wasd. it on C x S, flat overS, whose
restrictions to each fibr€ x {s} are torsion-free rank-1. (Observe that a local section
b of O¢ is Jl-regular because it is on each fibre, attds flat overS.) This proves
that f, is a monomorphism; since it is proper, it is a closed embedding. O

3.2. Recallthatthe curve is said to bainibranchif its normalizationC — Cisa
homeomorphism. Any curv€ admits a unibranch partial normalizatién: ¢ — C
which is minimal, in the sense that any unibranch partial normalizatior> C
factors throught. To see this, le¥ be the conductor of, and letS: be the inverse
image inC of the singular locus € C. The finite-dimensional-algebrad := Oz/€
is a product of local ringgA), 5. Let (ey), .5 be the corresponding idempotent
elements ofd. A sheaf of algebra€cs with ¢ C O¢/ C O is unibranch if and only
if O¢//% contains eacla,, or, equivalently0 contains the classes + % for each
x € . Clearly there is a smallest such algebra, namely, the algebgenerated by

Oc and the classes, +%. The completion of the local ring af at a pointy is the
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image ofCc sy in Oz .
PrOPOSITION 3.3 With the above notatior,(JC) = e(JC).

Proof. In view of Proposition 2.2, we may suppose tidais rational. As before,
we denote byX the singular locus ofC and by X its inverse image irC. The
cohomology exact sequence associated to the short exact sequence

1-0¢ — 0% — 0%/0¢ — 1

provides a bijective homomorphism (actually an isomorphism of algebraic groups)
0%/0% — JC.

The evaluation map@* — (C”‘)Z and 0y, — (C** give rise to a surjective
homomorphlsn@* /0% — (C*) X /(CH¥; its kernel is unipotent, that is, isomorphic
to a vector space i is any |ntege|> Card ), it follows that we can find a section
@ of @*C in a neighborhood oF such that the numbeys(x) for X € £ are all distinct,
but ¢” belongs td0¢. Let L be the line bundle od C associated to the class @fin
@*5/@*5.

Let U be the complement of,(JC) in JC. According to Section 1.1 and Lemma
3.1, our assertion is equivalentd@/) = 0. We claim that the line bundle acts freely
onU,; since the order of in JC is finite and arbitrarily large, this will finish the proof.
Let ¥ € U, and letC’ be the partial normalization @ such thaténd(¥) = 0. By
definition of U, C’ is not unibranch, and hence there are two points shapping to
the same point of”; this implies that the functiop does not belong t6%,. From
the commutative diagram

Op+/0cs ——JC

L

Og+/0cr —— JC!

we conclude that the pullback @fto JC’ is nontrivial. By Lemma 2.1, this implies
that¥® L is not isomorphic taf. O

CoroLLARY 3.4 For a rational nodal curveC, we havee(JC) = 1.

Remark 3.5. Consider a rational curv€ whose singularities are all of typey;_1,
that is, locally defined by an equatiad —v% = 0. Locally around such a singular-
ity, the curveC is the union of two smooth branches with a high-order contact, so
by Proposition 3.3¢(JC) is equal to 1. The fact that some highly singular curves
count with multiplicity 1 looks rather surprising. The case- 2 provides a (modest)
confirmation: The surfac8is a double covering d??, branched along a sextic curve
B; the curvesC; are the inverse images of the linesRA, and they become rational
when the line is bitangent tB. We get anAs-singularity when the line has a contact
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of order 4; thus our assertion in this case follows from the (certainly classical) fact
that a line with a fourth-order contact counts as a simple bitangent.

3.6. Proposition 3.3 reduces the computation of the invaraiC) to the case
of a unibranch (rational) curve. To understand this invariant, we use a construction
of Rego (see [R]; see also [GP]). For eack C, we puts, = dim0Og , /Oc , and
we denote byé the idealOz(—)_,(28,)x), which is contained in the conductor of
C (but the inclusion is strict unlegs is Gorenstein).

Forx € C, we denote byA, andA, the finite-dimensional algebrag /6. and
Og /6x. LetG(dy, Ax) be the Grassmannian of codimensigysubspaces mx, and
let G, be the closed subvariety &(5,, A x) consisting of subA,-modules. We can
also viewG, as parameterizing the subd—,-modules¥, of codimensiord, in Oz ,
because any such submodule contéipgsee [GP, Lemma 1.1(iv)]). Sindg=/€ is
a skyscraper sheaf with fibg, atx, the producf [, .5, G, parameterizes sube-
modules? C Oz such that dinOz , /%, = &, for all x. This impliesx (0x/%) =
> .8x = x(Og/0¢), and hencef e JC. We have thus defined a morphisen
[Liex G — JC.

ProposiTION 3.7. The mape is a homeomorphism.

Note thate is already not an isomorphism whéhis a rational curve with one
ordinary cusp; the Grassmannia@, is isomorphic toP!, while J C is isomorphic
toC.

Proof. Since we are dealing with compact varieties, it suffices to proveetismat
bijective.

Injectivity. Let £ and.il be two sub&c-modules of0x containing%. If £ and
A give the same element iAC, there exists a rational functiap on C such that
M = ¢&. But the equalities difix , /M, = dimOg /¥ = dime, O | /M, imply
¢x0z = 0g , for all x, which means thap is constant.

Surjectivity Let f : C — C be the normalization morphism, and éte JC. Let
us denote bﬁ? the line bundle orC quotient of f*& by its torsion subsheaf. We
claim that its degree is: 0: we have an exact sequence

0—>§£—>f*§é—>9f—>0,

where7 is a skyscraper sheaf supported on the singular locassdich that dind, <
3, forall x € C (see [GP, Lemma 1.1)); this implie@(?ﬁ) —x (&) < x(O0z)—x(Oc),
from which the required inequality follows. Sin€gis rational, it follows that?—1
admits a global section whose zero set is contained.in

Because of the canonical isomorphisms

Homo, (£, 0g) = Homo, (f*%,0¢) = Hom,. (2. 0z),
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we conclude that there exists a homomorphisrff — O, which is bijective outside
¥. Putn, = dim@ax/i(sex) for eachx € . Since

Y e =dim0z/i(#) = x(0z) —x(H =g =) .

xex xex

there exists a rational functiagn on C with divisor >, (8x —ny)x. Replacing® by
»¥, we may assume, = §, for all x, which means th&¥ belongs to the image ef
O

The varietyG, depends only on the local rifgof C atx (even only on its com-
pletion); we also denote it b§g. Recall thatGe parameterizes the su-modules
L of the normalizatior® of ¢ with dim@/L = dim@/@. We pute(x) = e(Gy) (or
£(0) = e(Gg)). Proposition 3.7 gives us the following.

ProposiTION 3.8 LetC be arational unibranch curve; ther(JC) =[], . e(x).

Of coursee(x) is equal to 1 for a smooth point, so we could as well consider the
product over the singular locs of C. Note that, in view of Proposition 3.3, we may
definee(x) for a nonunibranch singularity by taking the product of thimvariants
of each branch; Proposition 3.8 remains valid.

4. Examples

4.1. Singularities witlC*-action. Assume that the local, unibranch riigadmits
a C*-action. This action extends to its completion, so we assumétlsatomplete.
The C*-action also extends to the normalizationof 0, and there exists a local
coordinater € 0 such that the lin€: is preserved. (This is because the proalgebraic
group Aui©) is an extension o€* by a prounipotent group; hence all subgroups
of Aut(0) isomorphic toC* are conjugate.) It follows that the graded subrinis
associated to a semigrowpcC N; in other wordsg is the ringC[[I"]] of the formal
seriesy , crayt”.

The C*-actions orp and(® give rise to aC*-action onGg. The fixed points of this
action are the submodules ©f which are graded, that is, of the foi@j[A]], where
A is a subset oN. The condition din@/C[[A]] = dimG/0 means Car(tN — A) =
CardN —TI'), and the condition thaC[[A]] is anO-module that meanE + A C A.
The first condition already implies that there are only finitely many such fixed points.
According to [BB], the number of these fixed points is equad(@¢). We conclude
the following.

ProposiTION 4.2 LetI" C N be a semigroup with finite complement. The number
e(C[[T']]) is equal to the number of subsets ¢ N such thatl' + A ¢ A and
CardN — A) =CardN-T).

We do not know whether there exists a closed formula computing this number,
say, in terms of a minimal set of generatorsIbfThis turns out to be the case in
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the situation in which we were originally interested, namely, planar singularities. The
semigroupl’ is then generated by two coprime integgrandg, which means that
the local ring0 is of the formCJ[[u, v]]/(u? — v?).

ProposiTION 4.3 Let p andg be two coprime integers. Then

£(Cllw, v11/ (4 —v9)) = L(’Hq).

p+q p
Proof. The following proof was shown to me by P. Colmez.

4.3.1. We first observe that if a subsét satisfiesI" + A C A, all its translates
n+ A (n € Z) contained inN have the same property; moreover, among all these
translates, there is exactly one with Caéid- A) = CardN—T"). Thus the number we
want to compute is the cardinal of the 8ebf subsetsA C N, such thal"+ A C A,
modulo the identification of a subset and its translates.

4.3.2. For such a subseh, let us introduce the generating functiéi (T) =
Y sea TP € Z[[T]]. Sincep+ A C A, we canwrite, in a unique wag = J!_; (a(i)+
pN), then(1—TP) FA(T) = >_F_, 7%, Writing similarly A = szl(b(j) +gN),
we get(1—T9) Fa(T) = Y_4_; T"V). Puta(j) = b(j—p)+pfor p+1<j < p+g;
the equality

ptq
l TP Z TaW)—p — 1 Tq ZTG(I)
j=p+1
reads as
ptq pt+q
(4.3.a) ZT“(’)—ZTa(l)+q+ Z Ta(D=p

j=p+1

Conversely, given a functioa : [1, p+¢] — N satisfying (4.3.a), the sex =
U1 (@@ +pN) is equal tQJj.’;‘ﬁH(a(j) — p+¢gN), and therefore satisfids+ A C
A. (Note that (4.3.a) implies that the clasgp®wdp) of thea(i)’s, for 1 <i < p, are
all distinct.)

The equality (4.3.a) means that there exists a permutatienS,, such that
a(oi)isequal tau(i)+q if i < pandtoa(i)— p if i > p. This implies that:(o” (i))
is of the forma(i) + ag — Bp with «,8 € N anda + 8 = m; sincep andq are
coprime, it follows that is of orderp +¢, that is, it is a circular permutation. It also
follows that the numberg(i) are all distinct, and hence the permutatiois uniquely
determined. Let be a permutation such thatz ! is the permutatiori — i +1
(modp +¢), and letS, = 7([1, p]). Replacingz by a-t~1, our functiona satisfies

a(i)+q, ifieSa,

(4.3.b) a(i+1) = . fieS,
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Since t is determined up to right multiplication by a power 6f the setSy C
[1, p+¢q] is well determined up to a translation (mpd-¢g). Note that replacingh
by n + A amounts to adding the constant valu¢o the functiona and hence does
not changesy .

4.3.3. Conversely, let us start from a sub&t [1, p +¢] with p elements. We
define inductively a functioams on[1, p +¢] by the relations (4.3.b), giving t@s(1)
an arbitrary value, large enough so thattakes its values ifN. By construction, the
functionas satisfies (4.3.b); so, by 4.3.2, the sub&et= U _s(as(s) + pN) satisfies
I't+AsC As.

An easy computation givess;1(i +1) = as(i) and thereforeAs;1 = As. Let
& be the set of subsets @, p +¢] with p elements, modulo translation; the maps
A = Sp from 9 to ¥ andS+— As from & to @ are inverse of each other. Since

Card¥) = ((piq))(P;‘l), the proposition follows. O

4.4. Simple singularities.We now consider the case where the singularitie€ of
aresimple that is, of A, D, E types. The local ring of such a singularity has only
finitely many isomorphism classes of torsion-free rank-1 modules, and this property
characterizes these singularities among all plane curves singularities (see [GK]).

ProrosiTION 4.5, LetO be the local ring of a simple singularity. Thex0) is the
number of isomorphism classes of torsion-free rarfkimodules. It is given by:

—e(0) =141, if OisoftypeAy;
—&(0)=1, if0Oisoftypedy,1;
—&(0)=1, if0isoftypeDy (Il > 2);
—&(0) =1, if0OisoftypeDyi1( > 2);
—&(0) =5, ifOis of typeEs;
—e(0)=2, if0OisoftypeEy;
—e(0)=7, if0OisoftypeEs.

Proof. Let C be arational curve having only one simple singularity with local ring
0; the action ofJC on JC has finitely many orbits, corresponding to the different
isomorphism classes of rank9dmodules. Since each orbit is an affine space, its Euler
characteristic is 1, and hence by Section (@) = e(JC) is equal to the number of
these orbits.

If O is unibranch, its completion is of the for@[[u, v]]/(u” — v?), with p = 2,
q = 21+ 1 for the typeAy, p = 3, g = 4 for the typeFEs, andp = 3, g = 5 for
the typeEs. In these cases, the result follows from Proposition 4.3. We have already
observed that = 1 for an A1 singularity (see Remark 3.5). &; singularity is
the union of am4;_3 branch and a transversal smooth branch, and hence we have the
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result by Proposition 3.3. Finally, afi; singularity is the union of an ordinary cusp
and its tangent, and hence it has- 2. O

Remark 4.6. Let % be the set of graded sub-modulesL c € with dimG/L =
dimG/0. Two modulesL and M in % are isomorphic if and only i = "L for
somen € Z, but the dimension condition forces= 0. It follows thateach torsion-
free rankd 0-module is isomorphic to exactly one elementiofThat way it is quite
easy to write down the list of isomorphism classes of rarkrhodules (which is
well known; (see, e.g., [GK]). For instance (fis of type Eg, we get the following
modules (with the notation of Section 4.1):

0, O0r+08, 024065, o0r2+0r*, 0r3+0r4, 0r3+0rP+017, Ot
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