Sur la cohomologie de certains espaces de modules de fibrés vectoriels

Arnanud Beauville*

Dédié à M.S. Narasimhan et C.S. Seshadri pour leur $60^{\hat{e}me}$ anniversaire

Soit X une surface de Riemann compacte. Fixons des entiers r et d premiersm entre eux, avec $r \ge 1$, et notons \mathcal{M} 1' espace des modules $\mathcal{U}_x(r,d)$ des fibriés d. C'est une variété projective et lisse, et il existe un fibré de Poincaé \mathcal{E} sure $X \times \mathcal{M}$; cela signifie que pour tout point e de \mathcal{M} , correspondant à un fibré E sur X, la restriction de \mathcal{E} à $X \times e$ est isomorphe à E.

Notons p, q les projections de $X \times \mathcal{M}$ sur X et \mathcal{M} respectivement. Soit m un entier $\leq r$; la classe de Chern $c_m(\mathcal{E})$ admet une décomposition de Kinneth

$$c_m(\mathcal{E}) = \sum_i p^* \xi_i \cdot q^* \mu_i,$$

avec $\xi_i \in H^*(X, \mathbf{Z}), \mu_i \in H^*(\mathcal{M}, \mathbf{Z}), \deg(\xi_i) + \deg(\mu_i) = 2m$.

Nous dirons que les classes μ_i sont les *composantes de Künneth de* $c_m\mathcal{E}$. Un des resultats essientiels de [A-B] est la détermination d'un ensemble de générateurs de l'algébre de cohomologie $H^*(\mathcal{M}.\mathbf{Z})$; il a la consèquence suivante:

Théorème. L'algèbre de cohomologie $H^*(\mathcal{M}, \mathbf{Q})$ est engendrée par les composantes de Künneth des classes de Chern de \mathcal{E} .

Let but de cette note est de montrer comment la méthode de la diagonale utilisée dans [E-S] fournit une démonstration trés simple de ce théorème. Celcui-ci résulte de l'énoncé un peu plus général que voice:

^{*}Avec le support partiel du projet europeéen Science "Gremetry of Algebraic Varieties", Contrat n° SCI-0398-C(A).

Proposition. Soient X une variété complex projective et lisse, et M un espace de modules espace de modules de faisceaux stables sur x (par rapport á une polarisation fixée, cf. [M]). On fait les hypothèses suivantes:

- (i) La variété M est projective et lisse.
- (ii) Il existe un faiseceau de Poincaré & sur M.
- (iii) Pour E, F dans M, on a Extⁱ(E, F) = 0 pour i ≥ 2.
 Alors l'algèbre de cohomologie H*(M, Q) est engendrée par les composantes de Künneth des classes de Chern de E.

La démostration suit de près celle du th. 1 de [E-S]. Rappelons-enl' idèe fondamentale: soit δ la classe de cohomologie de la diagonale dans $H^*(\mathcal{M} \times \mathcal{M}, \mathbf{Q})$; notons p et q les deux projections de $\times \mathcal{M}$ sur \mathcal{M} . Soit $\delta = \sum_i p^* \mu_i \cdot q^* v_i$, la décompostion de Künneth de δ ; alors l'espace $H^*(\mathcal{M}, \mathbf{Q})$ est engendré par les v_i . En effect, pour λ dans $H^*(\mathcal{M}, \mathbf{Q})$, on a

$$\lambda = q_*(\delta \cdot p^*\lambda) = \sum \deg(\lambda \cdot \mu_i) v_i$$

d'où notre assertion. Il s'agint donce d'exprimer la classe δ en fonction des classes de Chern du fibré universel.

Notons p_1 , p_2 le deux projections de $C \times \mathcal{M} \times \mathcal{M}$ sur $C \times \mathcal{M}$, et π la projections sur $\mathcal{M} \times \mathcal{M}$; désignons par \mathcal{H} le faisceau $\operatorname{Hom}(p_1^*\mathcal{E}, p_2^*\mathcal{E})$. Vul',hypothèse (iii), l'hypercohomologie $R\pi_*\mathcal{H}$ est reprèsentée dans la catégorie dérivée par un complexe de fibrés K^{\bullet} , nul en degré différent de O rt 1. Autrement dit, il existe un morphisme de fibrés $u:K^0 \longrightarrow K^1$ tel qu, on ait, pour tout point x = (E, F) de \mathcal{M} , une suite exacte

$$0 \to \operatorname{Hom}(E, F) \to K^0(x) \xrightarrow{u(x)} k^1(x) \to \operatorname{Ext}^1(E, F) \to 0.$$

Come l'espace Hom(E, F) est non nul si et seulement si E et F est non nul si et seulement si E F sont isomorphes, on voit que la diagonale Δ de $\mathcal{M} \times \mathcal{M}$ coïncide ensemblistement avecle lieu de dégénérescence D de u (défine par l'annulation des mineurs de rang maximal de u). On

46 Arnanud Beauville

peut prouver comme dans [E-S] l'égalité schématique, mais cela n'est pas nécessaire pour démontrer la proposition.

Soit E un eélément de \mathcal{M} . On a

$$rg(K^0) - rg(K^1) = \dim Hom(E, F) - \dim Ext^1(E, F)$$

quel que soit le point (E, F) de $\mathcal{M} \times \mathcal{M}$. Puisque $\operatorname{Ext}^2(E, E) = 0$, la dimension m de \mathcal{M} est égale à dim $\operatorname{Ext}^1(E, E)$; ainsi la sous-variéé déterminantale D de $\mathcal{M} \times \mathcal{M}$ a la codimension attendue $\operatorname{rg}(K^1) - \operatorname{rg}(k^0) + 1$. Sa classe de cohomologie $\delta' \in H^m(\mathcal{M} \times \mathcal{M}, \mathbf{Z})$ est alors donnée par la formule de Proteous

$$\delta' = c_m(K^1 - K^0) = c_m(-\pi!\mathcal{H}),$$

où π ! désigne le foncteur image directe en K-théorie. Cette classe étant multiple de la classe δ de la diagonale, on conclut avec le lemme suivant:

Lemme. Soit \mathcal{A} la sous-bQ-alg \hat{b} re de $H^*(\mathcal{M}, \mathbf{Q})$ engendrée par les composantes de Künneth des classes de Chern de \mathcal{E} , et soient p et q les deux projecutions de $\mathcal{M} \times M$ sur calM. Les classes de Chern de π ! \mathcal{H} sont de la forme $\sum P^*\mu_i \cdot q^*\nu_i$, avec $\mu_i, \nu_i \in \mathcal{A}$.

Notons r la projections de $C \times \mathcal{M} \times \mathcal{M}$ sur C. Tout polynôme en les classes de Chern de p_1^*calE et de $P_2^*\mathcal{E}$ est une somme de produits de la forme $r^*\gamma \cdot \pi^*p^*\mu \cdot \pi^*q^*\nu$, où μ et ν appartiennent à \mathcal{A} . Le lemme rémme réulte alors de la formule de Riemann-Roch

$$ch(\pi!\mathcal{H}) = \pi_*(r^* \operatorname{Todd}(C) \operatorname{ch}(\mathcal{H})).$$

Remarque. La condition (iii) de la proposition est évidenmment très con-traignante. Donnons deux exemples:

a) X est une surface rationnelle ou réglée, et la polarisation H vérifie $H \cdot K_X < 0$. L'argument de [M], cor. 6.7.3] montre que la condition (iii) est satisfaite. Si de plus les coefficients a_i du polynô me de Hilbert des éléments de \mathcal{M} , écrit sous la forme $X(E) \otimes H^m$) = $\sum_{i=0}^{2} a_i \binom{m+i}{i}$, sont premiers entereux, les conditions (ii) à (iii) sont satisfaites [M] §6].

Dans le cas d' une surface rationnelle, on obtient mieux. Pour toute variété T, désignons par $CH^*(T)$ l'anneau de Chow de T; grâ ce à l'isomorphisme $CH^*(Xtimes\mathcal{M})\cong CH^*(X)\otimes CH^*(\mathcal{M})$, on peut remplacer dans la démonstration de la proposition l'anneau de cohomologie par l'anneau de Chow. On en déduit que la cohomologie rationnelle de \mathcal{M} est algébrique, c'est-à-dire que l'application "classe de cycles" de cycles" $CH^*(\mathcal{M})\otimes \mathbf{Q} \longrightarrow H^*(\mathcal{M},\mathbf{Q})$ est u isomphisme d'anneaux. Dans le cas $X=\mathbf{P}^2$, ellingsrud et Strømme obtiennent le môme résultat sur \mathbf{Z} , plus le fait que ces groupes sont sans torsion, grâce à l'outil supplémentaire de la suite spectrale de Beilinson.

b) X est une variétée de Fano De dimension 3. Soit S une surface lisse appartenant au système linéaire $|-K_x|$ (de sorte que S est une surface K3). Lorsqu'elle est satisfaite, la condition (iii) a des conséquences remarquables [T]: elle entraîne que "application de restriction $E \longmapsto E_{|S|}$ définit un isomorphisme de M une sous-variété largrangienne d'un espace de modules M_S de fibrés sur S (muni de sa structure symplectique canonique). Il me semble intéressant de mettre en évidence des espace de modules de fibrés sur une variété de Fano (et déjà sur \mathbf{P}^3) possédant la propriété (iii).

Références

- [A-B] M. Atiyah et R. Bott, *Yang-Mills equations over Riemann surfaces*, Phil. Trans. R. Soc. London A **308** (1982) 523–615.
- [E-S] G. Ellingsrud et S.A. Strømme, *Towards the Chow ring of the Hilbert scheme of* **P**², J. reine angew. Math. **441** (1993) 33–44.
- [M] M. Maruyama, *Moduli of stable sheaves*, *II*. J. Math. Kyoto Univ. **18** (1978) 557–614.
- [T] A. N. Tyurin, *The moduli space of vector bundles on threefolds, surfaces and surves I,* preprint (1990).

47

Arnaud Beaville Université Paris-Sud Mathématiques- Bât. 425 91 405 Orsay Cedex, France