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Abstract
A family of K3 surfacesX → B has the Franchetta property if the Chow group of 0-cycles
on the generic fiber is cyclic. The generalized Franchetta conjecture proposed by O’Grady
asserts that the universal familyXg → Fg of polarizedK3of degree 2g−2 has the Franchetta
property. While this is known only for small g thanks to [7], we prove that for all g there is
a hypersurface in Fg such that the corresponding family has the Franchetta property.

1 Introduction

In 1954, Franchetta stated that the only line bundles defined on the generic curve of genus
g ≥ 2 are the powers of the canonical bundle [3]. Since the proof was insufficient, the result
became known as the Franchetta conjecture; it was proved by Harer in [5], see also [1].

In [6], O’Grady proposed an analogue of this result for 0-cycles on K3 surfaces. Recall
that the Chow group CH2(X) of 0-cycles on a K3 surface X contains a canonical class oX ,
the class of any point lying on some rational curve in X ; for any divisors D and D′ on
X , the product D · D′ in CH2(X) is a multiple of oX [2]. Let p : X → B be a map of
smooth varieties whose general fiber is a K3 surface. We say that the family X → B has
the Franchetta property if for every smooth fiber X of p the image of the restriction map
CH2(X ) → CH2(X) is contained in Z · oX . Equivalently, the Chow group CH2(Xη) of the
generic fiber is cyclic.

For g ≥ 2, let Xg → Fg be the universal family of polarized K3 surfaces of degree
2g − 2. The generalized Franchetta conjecture of O’Grady is the assertion that this family
has the Franchetta property. 1 It is proved for g ≤ 10 and some higher values of g in [7]; the
general case seems far out of reach. We prove in this note a much weaker (and much easier)
statement:

1 Here one can viewFg as a stack, or restrict to the open subset parametrizing K3 with trivial automorphism
group.
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Theorem There exists for every g a hypersurface in Fg such that the corresponding family
satisfies the Franchetta property.

The key point of the proof is the construction, for each g, of a 18-dimensional family of
polarized K3 surfaces of degree 2g − 2, which can be realized as complete intersections in
P
1 × P

n for n = 2, 3 or 4 (Sect. 3). Then a simple argument, already used in [7], shows
that these families have the Franchetta property (Sect. 2). Here the crucial property of our
families is that they are parameterized by a linear space (in particular, they give unirational
hypersurfaces in Fg for every g); thus there is no chance of extending the method to the
whole moduli space Fg , which is of general type for g large enough [4].

2 Themethod

Weuse themethod of [7], based on the following result. Let P be a smooth complex projective
variety, E a vector bundle on P , globally generated by a subspace V of H0(E). Consider
the subvariety X ⊂ P(V ) × P of pairs (Cs, x) with s(x) = 02; let p, q be the projections
onto P(V ) and P . For s ∈ V � {0}, the fiber p−1(Cs) is the zero locus of s in P; for x ∈ P ,
the fiber q−1(x) is the space of lines Cs ⊂ V such that s(x) = 0. Since V generates E , the
projection q : X → P is a projective bundle (in particular, X is smooth).

Proposition For any smooth fiber X of p, the image of the restrictionmapCH(X ) → CH(X)

is equal to the image of CH(P).

Proof Let h ∈ CH1(P(V )) be the class of a hyperplane section. The class p∗h ∈ CH1(X )

induces the hyperplane class on a general fiber of q; since q is a projective bundle, it follows
that CH(X ) is generated by q∗ CH(P) and the powers of p∗h. But p∗h vanishes on the
fibers of p, hence the result. 	

Corollary Assume that the smooth fibers of p are K3 surfaces, and that the multiplication
map
mP : Sym2 CH1(P) → CH2(P) is surjective. Then the family X → P(V ) has the
Franchetta property.

Proof Let X be a smooth fiber of p. The commutative diagram

Sym2 CH1(P)

mP

Sym2 CH1(X)

mX

CH2(P) CH2(X)

shows that the image of CH2(P) → CH2(X) is contained in the image of mX , hence in
Z · oX . 	


3 Proof of the theorem

Since dimFg = 19, we must construct for every g a family of polarized K3 surfaces (S, L)

with (L)2 = 2g − 2 satisfying the Franchetta property, and depending on 18 moduli (this

2 Here P(V ) is the space of lines in V .
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implies our Theorem, see [7, §2, Remark (i)]). We will need three different constructions in
order to cover every g ≥ 8 (the small genus cases follow from [7]).Wewill apply theCorollary
with P = P

1 × P
n for n = 2, 3 or 4 — note that the surjectivity of mP is trivially satisfied.

For i, j ∈ N, we put OP (i, j) := OP1(i) �OPn ( j); the vector bundle E will be a direct sum
of n − 1 line bundles of this type, so S is a complete intersection of n − 1 hypersurfaces in
P . In order for S to be a K3 surface we must have det(E) = K−1

P = OP (2, n + 1). We will
always take V = H0(E).

The polarization L on our K3 surface S will be the restriction of the very ample line bundle
OP (a, 1) on P , for a ≥ 1. Let p, h ∈ CH1(P) be the pull back of the class of a point in P

1

and of the hyperplane class in P
n . Then

2g − 2 = (L)2 = (ap + h)2 · [S] = (
2a(p · h) + h2

) · [S] .
Case I: n = 2, E = OP (2, 3), hence

2g − 2 = (
2a(p · h) + h2

) · (2p + 3h) = 2(3a + 1) .

Case II: n = 3, E = OP (1, 1) ⊕ OP (1, 3), hence

2g − 2 = (
2a(p · h) + h2

) · (p + h)(p + 3h) = 2(3a + 2) .

Case III: n = 4, E = OP (0, 3) ⊕ OP (1, 1) ⊕ OP (1, 1), hence

2g − 2 = (
2a(p · h) + h2

) · 3h(p + h)2 = 2(3a + 3) .

Thus we get all values of g ≥ 8.
It remains to prove that the three families just constructed depend on 18 moduli. The exact

sequence

0 → TS → TP|S → NS/P → 0

gives rise to an exact sequence

0 → H0(TP|S) → H0(NS/P )
∂−→ H1(S, TS) ;

the image of ∂ describes, inside the space of first order deformations of S, those which
come from our family. Thus we want to prove dim Im ∂ = 18, or equivalently h0(NS/P ) −
h0(TP|S) = 18.

We have TP = pr∗1 TP1 ⊕ pr∗2 TPn ; from the Euler exact sequence we get h0((pr∗1 TP1)|S) =
h0(pr∗1 TP1), and similarly for pr∗2 TPn . Thus h0(TP|S) = h0(TP1)+ h0(TPn ) = 3+ n(n+ 2).

Let us denote by dS the restriction to S of a class d ∈ Pic(P). Using dS · d ′
S = d · d ′ · [S],

we find

p2S = 0 , pS .hS = 3 , h2S = 2n − 2 .

By Riemann–Roch, we have h0(OS(i, j)) = 2 + 1

2
(i pS + jhS)2 = 2 + 3i j + j2(n − 1).

Case I: h0(NS/P ) = h0(OS(2, 3)) = 29, h0(TP|S) = 11.
Case II: h0(NS/P ) = h0(OS(1, 1)) + h0(OS(1, 3)) = 9 + 29 = 36, h0(TP|S) = 18.
Case III: h0(NS/P ) = 2h0(OS(1, 1)) + h0(OS(0, 3)) = 2 · 8+ 29 = 45, h0(TP|S) = 27.
In each case we find h0(NS/P ) − h0(TP|S) = 18 as required. 	


Remarks.− 1) In fact, for S very general in each family, Pic(S) is generated by pS and hS :
this follows from the Noether–Lefschetz theory, see [8, Thm. 3.33]. Therefore Pic(S) is the

rank 2 lattice with intersection matrix

(
0 3
3 2n − 2

)
.
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2) Our 3 families admit actually a simple geometric description. In what follows we
consider a general surface S in each family. We fix homogeneous coordinates U , V on P

1.
Case I: S is given by an equation U 2A + 2UV B + V 2C = 0 in P = P

1 × P
2, with

A, B,C cubic forms on P
2. Projecting onto P

2 gives a double covering S → P
2 branched

along the sextic plane curve � : B2 − AC = 0. Let α and γ be the divisors on � defined by
A = B = 0 and C = B = 0; then 2α, 2γ and α + γ are induced by the cubic curves A = 0,
C = 0 and B = 0 respectively, hence belong to the canonical system |K�|. It follows that α
and γ are linearly equivalent theta-characteristics, hence belong to a half-canonical g19, that
is, a vanishing thetanull on �. Conversely, it is easy to see that a smooth plane sextic with a
vanishing thetanull has an equation of the above form. We conclude that the surfaces in Case
I are the double covers of P

2 branched along a sextic curve with a vanishing thetanull.
Case II: The equations of S in P = P

1 × P
3 have the form UL + V M = U A + V B =

0, where L, M; A, B are forms of degree 1 and 3 on P
3. The projection S → P

3 is an
isomorphism onto the quartic surface LB−MA = 0; this is the equation of a general quartic
containing a line. Thus the surfaces in Case II are the quartic surfaces containing a line.

Case III: The equations of S in P = P
1 × P

4 are of the formU A+ V B = UC + V D =
F = 0, where A, B,C, D; F are forms of degree 1 and 3 on P

3. The projection S → P
4 is an

isomorphism onto the surface AD− BC = F = 0, that is, the intersection of a quadric cone
(with one singular point) and a cubic in P

4. Thus the surfaces in Case III are the complete
intersections of a quadric cone and a cubic in P

4.
Note that one sees easily from this description that each family depends indeed on 18

moduli.
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