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A very general sextic double solid is not stably rational

Arnaud Beauville

ABSTRACT

We prove that a double covering of P® branched along a very general sextic surface is not stably
rational.

1. Introduction

A projective variety X is stably rational if X x P™ is rational for some integer m. The paper
[10] of Voisin introduces a new approach to show that some complex varieties are not stably
rational. This is applied in [10] to prove that a double covering of P branched along a very
general quartic hypersurface is not stably rational, and in [4] to prove the same result for a
very general quartic threefold.

Using the same approach, we will prove the following theorem.

THEOREM 1. A double covering of P? branched along a very general sextic surface is not
stably rational.

These ‘sextic double solids’ are the Fano threefolds with Picard number 1 of minimal
anticanonical degree. They are already known to be non-rational [8, Theorem 2.2]; whether
they are unirational or not is unknown.

We will use Voisin’s method in the following form [10, Theorem 1.1 and Remark 1.3].

PROPOSITION 1. Let B be a smooth complex variety, o a point of B, f: 2 — B a flat,
projective morphism, such that the generic fiber of f is smooth, and that the only singularities
of the fiber X := %, are ordinary double points. Assume that for a desingularization X of X,
the torsion subgroup of H3(X', Z) is non-trivial. Then for a very general point b € B, the fiber
2y is not stably rational.

Thus to prove the theorem it suffices to find a nodal sextic surface A C P? such that the
desingularization X of the double cover X of P3 branched along A satisfies Tors H> (X' ,Z) # 0.
Such a surface is described in [7]. We give here another construction, perhaps simpler; it is not
clear to us how the two constructions are related.

As in [7], we use a family of quadric surfaces over P3, with discriminant locus A of degree 6;
the quadric fibration provides a natural P'-bundle over X,,,, and this gives a 2-torsion class
in H3(X g, Z), which extends to H3(X,Z). To construct our quadric fibration we start from a
cubic fivefold V' C P°, and project from a 2-plane contained in V. We show that the associated
P!-bundle has no rational section (Proposition 2), and that this provides a non-zero 2-torsion
class in H3(X,Z) (Proposition 3). As the referee pointed out, this is quite close to the method
used in [5].

Received 1 January 2015; revised 16 September 2015.
2010 Mathematics Subject Classification 14M20 (primary), 14E08, 14J45 (secondary).



Page 2 of 4 ARNAUD BEAUVILLE

2. The construction

We work over C. Let V C P® be a smooth cubic fivefold, and P C V a 2-plane. We choose

coordinates (Xo,..., Xo2; Yo,...,Y3) on PS such that P is given by Yy =---=Y3 =0 and
V by
> A XiX;+ Y BiX;+C =0, (1)
i i
where A;;, B;,C' are homogeneous forms in (Y, ...,Y3) of degree 1, 2 and 3.

Let V denote the variety obtained by blowing up V along P. The projection from P defines
a rational map V --» P3, which extends to a morphism q : V — P3. The fiber of q at a point
y = (Yp,...,Y3) of P? is the projective completion of the quadric in A? defined by equation (1).

Let A C P3 be the discriminant surface of the quadric fibration ¢, that is, the locus of points
y € P3 such that ¢~ !(y) is singular. It is defined by the sixth degree equation

( (Aij) | (Bi) >
det (- - _ - _ _ __ =0.

According to [2, Theorem 2.2], for a general choice of the forms A;;, B; and C, the surface
A is smooth except for a finite set 3 C A of 31 ordinary double points. We will assume from
now on that this condition holds. The quadric ¢~ (y) has rank 3 for y € A \ ¥, and rank 2 for
y € X.

Let 7 : X — P3 be the double covering branched along A. Then X is smooth except for the 31
ordinary double points lying above ¥.. The generatrices of the quadric ¢~!(y) are parameterized
by two disjoint rational curves for y € P3 \. A, one rational curve for y € A \ . This defines
a P-bundle ¢ : G — X,,,, onto the smooth locus of X.

PROPOSITION 2. (a) The fibration q : V — P* admits no rational section.

(b) The P'-bundle ¢ admits no rational section.

Proof. (a) If ¢ admits a rational section, then the closure of its image is a subvariety Z
of V whose class [Z] € HY(V,Z) satisfies ([Z] - ¢*y) =1 for y € P3. Let us show that this is
impossible.

Consider the blowing up

ECts

Pk

P——V

The exceptional divisor E is the hypersurface in P x P? given by > A;;(y)X;X; = 0; the
projections of E onto P and P? are p and ¢’ := qoi. The group H?(E,Z) is generated by the
classes p*¢ and ¢"*m, where / is the class of a line in H2(P,Z) and 7 the class of a plane in P3.
Let h € H?(V,Z) be the class of a hyperplane section of V; the group H4(V,Z) is generated
by the classes b*h?, i,p*¢ and i.q"* 7 (see, for example, [1, Proposition 0.1.3]).

Let us compute the intersection number of these classes with the fiber of ¢ at a point y € P3.
The class b*h? induces on the quadric ¢~ (y) the intersection with a line, hence (b*h? - ¢*y) = 2.
For d € H*(E,Z), we have (i.d-q*y) = (d-q*y). This is zero for d = ¢*7. The class p*{ is
the class of a line > a; X; = 0, so its intersection with the conic ¢'~!(y) consists of two points,
hence (i.p*-q*y) = 2. It follows that (« - q¢*y) is even for any « € H4(V,Z), so ¢ does not
admit a rational section.
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(b) Suppose that ¢ admits a rational section. For a general point y in P, this section maps
the two points of 771(y) to two generatrices of the quadric ¢~*(y), one in each system. These
two generatrices intersect in one point s(y) of the quadric. This gives a rational section s of g,
thus contradicting (a). O

(The implication (a) = (b) is classical; it appears, for instance, in [3].)
Let X — X be the resolution of singularities obtained by blowing up the double points; the
exceptional divisor @ is a disjoint union of 31 smooth quadrics.

PROPOSITION 3. The 2-torsion subgroup of H3(X,7Z) is non-zero.

Proof. Put U := X ~ Q = Xspm. The Gysin exact sequence
HY(Q,Z) — H*(X,Z) — H*(U,Z) — H*(Q.Z)

shows that the restriction map induces an isomorphism on the torsion subgroups of H3(—,Z).
Thus it suffices to prove the statement for H3(U,Z).

The P'-bundle ¢ gives a class [¢] in the 2-torsion subgroup Bra(U) of the Brauer group
of U; the assertion (b) of Proposition 2 means that this class is non-zero. Let us recall how
such a class gives a 2-torsion class in H3(U,Z), the topological Brauer class (see [6, §1],
or [9, 1.1]). The exact sequences 0 — {£1} — G,, — G,, — 0 (for the étale topology) and
02257 Z/2 — 0 (for the classical topology) give rise to a commutative diagram of
exact sequences

Pic(U) —— H?*(U,Z/2) — Bry(U) — 0

g

H(U,Z) — H*(U,2/2) —2> H3(U, Z)

Therefore, @ induces a homomorphism 0 : Bro(U) — H3(U,Z), which is injective if ¢ :
Pic(U) — H?(U,Z) is surjective. This is indeed the case: in the commutative diagram

The top horizontal arrow is surjective because H Q(X ,0%)=0; the restriction map
H%(X,Z) — H*(U,Z) is surjective because of the Gysin exact sequence HZ2(X,Z) —
H?*(U,Z) — HY(Q,Z) = 0. Thus 9([¢]) is a non-zero 2-torsion class in H3(U,Z), hence the
proposition. ]

Theorem 1 follows by taking for B the space of sextic surfaces in P3, for 2~ the family of
double coverings of P™ branched along those surfaces, and for o € B the point corresponding
to the discriminant surface A.

Acknowledgements. 1 am indebted to C. Shramov for pointing out the paper [7], to A.
Collino for spotting an inaccuracy in the first version of this note and to J.-L. Colliot-Théléne
for pointing out reference [3].
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