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A very general sextic double solid is not stably rational

Arnaud Beauville

Abstract

We prove that a double covering of P
3 branched along a very general sextic surface is not stably

rational.

1. Introduction

A projective variety X is stably rational if X × P
m is rational for some integer m. The paper

[10] of Voisin introduces a new approach to show that some complex varieties are not stably
rational. This is applied in [10] to prove that a double covering of P

3 branched along a very
general quartic hypersurface is not stably rational, and in [4] to prove the same result for a
very general quartic threefold.

Using the same approach, we will prove the following theorem.

Theorem 1. A double covering of P3 branched along a very general sextic surface is not
stably rational.

These ‘sextic double solids’ are the Fano threefolds with Picard number 1 of minimal
anticanonical degree. They are already known to be non-rational [8, Theorem 2.2]; whether
they are unirational or not is unknown.

We will use Voisin’s method in the following form [10, Theorem 1.1 and Remark 1.3].

Proposition 1. Let B be a smooth complex variety, o a point of B, f : X → B a flat,
projective morphism, such that the generic fiber of f is smooth, and that the only singularities
of the fiber X := Xo are ordinary double points. Assume that for a desingularization X̃ of X,
the torsion subgroup of H3(X̃, Z) is non-trivial. Then for a very general point b ∈ B, the fiber
Xb is not stably rational.

Thus to prove the theorem it suffices to find a nodal sextic surface Δ ⊂ P
3 such that the

desingularization X̃ of the double cover X of P
3 branched along Δ satisfies TorsH3(X̃, Z) �= 0.

Such a surface is described in [7]. We give here another construction, perhaps simpler; it is not
clear to us how the two constructions are related.

As in [7], we use a family of quadric surfaces over P
3, with discriminant locus Δ of degree 6;

the quadric fibration provides a natural P1-bundle over Xsm, and this gives a 2-torsion class
in H3(Xsm, Z), which extends to H3(X̃, Z). To construct our quadric fibration we start from a
cubic fivefold V ⊂ P

5, and project from a 2-plane contained in V . We show that the associated
P1-bundle has no rational section (Proposition 2), and that this provides a non-zero 2-torsion
class in H3(X̃, Z) (Proposition 3). As the referee pointed out, this is quite close to the method
used in [5].
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2. The construction

We work over C. Let V ⊂ P
6 be a smooth cubic fivefold, and P ⊂ V a 2-plane. We choose

coordinates (X0, . . . , X2; Y0, . . . , Y3) on P
6 such that P is given by Y0 = · · · = Y3 = 0 and

V by ∑
i,j

AijXiXj +
∑

i

BiXi + C = 0, (1)

where Aij , Bi, C are homogeneous forms in (Y0, . . . , Y3) of degree 1, 2 and 3.
Let V̂ denote the variety obtained by blowing up V along P . The projection from P defines

a rational map V ��� P
3, which extends to a morphism q : V̂ → P

3. The fiber of q at a point
y = (Y0, . . . , Y3) of P3 is the projective completion of the quadric in A3 defined by equation (1).

Let Δ ⊂ P
3 be the discriminant surface of the quadric fibration q, that is, the locus of points

y ∈ P
3 such that q−1(y) is singular. It is defined by the sixth degree equation

det

(
(Aij) (Bi)

(Bi) C

)
= 0.

According to [2, Theorem 2.2], for a general choice of the forms Aij , Bi and C, the surface
Δ is smooth except for a finite set Σ ⊂ Δ of 31 ordinary double points. We will assume from
now on that this condition holds. The quadric q−1(y) has rank 3 for y ∈ Δ � Σ, and rank 2 for
y ∈ Σ.

Let π : X → P3 be the double covering branched along Δ. Then X is smooth except for the 31
ordinary double points lying above Σ. The generatrices of the quadric q−1(y) are parameterized
by two disjoint rational curves for y ∈ P

3
� Δ, one rational curve for y ∈ Δ � Σ. This defines

a P
1-bundle ϕ : G → Xsm onto the smooth locus of X.

Proposition 2. (a) The fibration q : V̂ → P
3 admits no rational section.

(b) The P1-bundle ϕ admits no rational section.

Proof. (a) If q admits a rational section, then the closure of its image is a subvariety Z
of V̂ whose class [Z] ∈ H4(V̂ , Z) satisfies ([Z] · q∗y) = 1 for y ∈ P3. Let us show that this is
impossible.

Consider the blowing up

E

p

��

� � i �� V̂

b

��
P

� � �� V

The exceptional divisor E is the hypersurface in P × P3 given by
∑

Aij(y)XiXj = 0; the
projections of E onto P and P

3 are p and q′ := q ◦i. The group H2(E, Z) is generated by the
classes p∗� and q′∗π, where � is the class of a line in H2(P, Z) and π the class of a plane in P

3.
Let h ∈ H2(V, Z) be the class of a hyperplane section of V ; the group H4(V̂ , Z) is generated
by the classes b∗h2, i∗p∗� and i∗q′∗π (see, for example, [1, Proposition 0.1.3]).

Let us compute the intersection number of these classes with the fiber of q at a point y ∈ P
3.

The class b∗h2 induces on the quadric q−1(y) the intersection with a line, hence (b∗h2 · q∗y) = 2.
For d ∈ H2(E, Z), we have (i∗d · q∗y) = (d · q′∗y). This is zero for d = q′∗π. The class p∗� is
the class of a line

∑
aiXi = 0, so its intersection with the conic q′−1(y) consists of two points,

hence (i∗p∗� · q∗y) = 2. It follows that (α · q∗y) is even for any α ∈ H4(V̂ , Z), so q does not
admit a rational section.
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(b) Suppose that ϕ admits a rational section. For a general point y in P
3, this section maps

the two points of π−1(y) to two generatrices of the quadric q−1(y), one in each system. These
two generatrices intersect in one point s(y) of the quadric. This gives a rational section s of q,
thus contradicting (a).

(The implication (a) ⇒ (b) is classical; it appears, for instance, in [3].)
Let X̃ → X be the resolution of singularities obtained by blowing up the double points; the

exceptional divisor Q is a disjoint union of 31 smooth quadrics.

Proposition 3. The 2-torsion subgroup of H3(X̃, Z) is non-zero.

Proof. Put U := X̃ � Q ∼= Xsm. The Gysin exact sequence

H1(Q, Z) −→ H3(X̃, Z) −→ H3(U, Z) −→ H2(Q, Z)

shows that the restriction map induces an isomorphism on the torsion subgroups of H3(−, Z).
Thus it suffices to prove the statement for H3(U, Z).

The P
1-bundle ϕ gives a class [ϕ] in the 2-torsion subgroup Br2(U) of the Brauer group

of U ; the assertion (b) of Proposition 2 means that this class is non-zero. Let us recall how
such a class gives a 2-torsion class in H3(U, Z), the topological Brauer class (see [6, § 1],
or [9, 1.1]). The exact sequences 0 → {±1} → Gm → Gm → 0 (for the étale topology) and
0 → Z

×2−−→ Z → Z/2 → 0 (for the classical topology) give rise to a commutative diagram of
exact sequences

Pic(U) ��

c1

��

H2(U, Z/2) �� Br2(U) −→ 0

H2(U, Z) �� H2(U, Z/2) ∂ �� H3(U, Z)

Therefore, ∂ induces a homomorphism ∂̄ : Br2(U) → H3(U, Z), which is injective if c1 :
Pic(U) → H2(U, Z) is surjective. This is indeed the case: in the commutative diagram

Pic(X̃)
c1 ��

��

H2(X̃, Z)

��
Pic(U)

c1 �� H2(U, Z)

The top horizontal arrow is surjective because H2(X̃,OX̃) = 0; the restriction map
H2(X̃, Z) → H2(U, Z) is surjective because of the Gysin exact sequence H2(X̃, Z) →
H2(U, Z) → H1(Q, Z) = 0. Thus ∂̄([ϕ]) is a non-zero 2-torsion class in H3(U, Z), hence the
proposition.

Theorem 1 follows by taking for B the space of sextic surfaces in P
3, for X the family of

double coverings of P
n branched along those surfaces, and for o ∈ B the point corresponding

to the discriminant surface Δ.

Acknowledgements. I am indebted to C. Shramov for pointing out the paper [7], to A.
Collino for spotting an inaccuracy in the first version of this note and to J.-L. Colliot-Thélène
for pointing out reference [3].
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