AN AMPLENESS CRITERION FOR RANK 2 VECTOR BUNDLES ON SURFACES

ARNAUD BEAUVILLE

1. Introduction

We observe in this note that the proof of the Bogomolov stable restriction theorem [B] can be adapted to give an ampleness criterion for globally generated rank 2 vector bundles on certain surfaces. This applies to the Lazarsfeld-Mukai bundles, to congruences of lines in \mathbb{P}^3 , and possibly to the construction of surfaces with ample cotangent bundle.

2. Main result

Throughout the note, S will be a smooth projective surface over \mathbb{C} . We denote by $N^1(S)$ the group of divisors on S modulo numerical equivalence; this is a free, finitely generated abelian group, quotient of $NS(S) = H^2(S, \mathbb{Z})_{alg}$ by its torsion subgroup.

Proposition 1. Let E be a globally generated rank 2 vector bundle on S, with $h^0(E) \ge 4$. Assume that $N^1(S) = \mathbb{Z} \cdot c_1(E)$. Then either E is ample, or $E = \mathscr{O}_S \oplus \det(E)$.

We will need the following lemma:

Lemma. Let S be a smooth projective surface, and let E be a globally generated rank 2 vector bundle on S, with $h^0(E) \ge 4$ and $H^1(S, \det(E)^{-1}) = 0$. Then $c_1^2(E) > c_2(E)$.

 Proof : Let V be a general 4-dimensional subspace of $H^0(S,E)$. Then V generates E globally, giving rise to an exact sequence

$$(1) 0 \to N \to V \otimes_{\mathbb{C}} \mathscr{O}_S \to E \to 0.$$

Since N^* is globally generated, the zero locus of a general section s of N^* is finite, of length $c_2(N^*) = c_1^2(E) - c_2(E)$. Thus this number is ≥ 0 ; if it is zero, s does not vanish, so we have an exact sequence

$$0 \to \mathscr{O}_S \xrightarrow{s} N^* \to \det(E) \to 0$$
.

Since $H^1(S, \det(E)^{-1}) = 0$, this sequence splits, so that $N \cong \mathscr{O}_S \oplus \det(E)^{-1}$. Thus the exact sequence (1) reduces to

$$0 \to \det(E)^{-1} \to \mathscr{O}_S^3 \to E \to 0$$
;

but using again $H^1(S, \det(E)^{-1}) = 0$ this implies $h^0(E) \leq 3$, contradicting the hypothesis.

Proof of the Proposition: We denote by c_1 and c_2 the Chern classes of E in $H^*(S,\mathbb{Z})$, and by $\Delta_E := 4c_2 - c_1^2$ its discriminant. Assume that E is not ample. By Gieseker's lemma [L, Proposition 6.1.7], there exists an irreducible curve C in S and a surjective homomorphism $u: E \twoheadrightarrow \mathscr{O}_C$. The kernel F of u is a vector bundle, with total Chern class $c(F) = c(E)c(\mathscr{O}_C)^{-1} = (1 + c_1 + c_2)(1 - [C])$, hence

$$c_1(F) = c_1 - [C]$$
, $c_2(F) = c_2 - c_1 \cdot [C]$, and $\Delta_F = \Delta_E - 2c_1 \cdot [C] - [C]^2$.

The curve C is numerically equivalent to rc_1 for some integer r > 1. Therefore

$$\Delta_F = 4c_2 - (r+1)^2 c_1^2 \le 4(c_2 - c_1^2)$$
.

Because of our hypotheses det(E) is ample, so $H^1(S, det(E)^{-1}) = 0$ and we can apply the Lemma, which gives $\Delta_F < 0$. By Bogomolov's theorem (see [Ra, Théorème 6.1]), we have an exact sequence

$$0 \to L \to F \to \mathscr{I}_Z M \to 0$$

where Z is a finite subscheme of S, L and M are line bundles on S, with $c_1(L) = ac_1$, $c_1(M) = bc_1$ for some integers a, b such that $a \ge b$.

From that exact sequence we get $c_1(F)=(a+b)c_1$, hence a+b=1-r, and $c_2(F)=\deg(Z)+abc_1^2$, hence $\Delta_F=4\deg(Z)-(a-b)^2c_1^2$. Comparing with the previous expression for Δ_F and using the Lemma again we find

$$(a-b)^2 c_1^2 \ge -\Delta_F = (r+1)^2 c_1^2 - 4c_2 > (r^2 + 2r - 3)c_1^2 \ge (r^2 - 1)c_1^2$$
,

hence $a - b \ge r$, and $a \ge 1$.

We have $H^0(E\otimes L^{-1})=H^0(E^*\otimes \det(E)\otimes L^{-1})\neq 0$. Since E is globally generated, the natural map $E^*\to H^0(E)^*\otimes_{\mathbb C}\mathscr O_S$ is injective, hence $H^0(\det(E)\otimes L^{-1})\neq 0$. Since $c_1(L)=ac_1$ with $a\geq 1$, the only possibility is $L\cong \det(E)$, and therefore $H^0(E^*)\neq 0$. Using again that E is globally generated, we obtain $E=\mathscr O_S\oplus\det(E)$.

Remark. The condition $h^0(E) \geq 4$ is necessary: if E is ample and globally generated, the rational map $\mathbb{P}(E) \to \mathbb{P}(H^0(E))$ associated to the linear system $|\mathscr{O}_{\mathbb{P}(E)}(1)|$ is a finite morphism, hence $\dim \mathbb{P}(H^0(E)) \geq 3$. On the other hand, the condition $N^1(S) = \mathbb{Z} \cdot c_1$ is quite restrictive, but it is not clear how it could be weakened. For instance, we will exhibit in Example 1 of $\S 4$ a globally generated rank 2 vector bundle E on \mathbb{P}^2 with $h^0(E) \geq 4$, $\det E = \mathscr{O}_{\mathbb{P}^2}(2)$, which is not ample.

3. APPLICATION 1: LAZARSFELD-MUKAI BUNDLES

Let C be an irreducible curve in S, L a line bundle on C, and V a 2-dimensional subspace of $H^0(L)$ which generates L. The Lazarsfeld-Mukai bundle $E_{C,V}$ is defined by the exact sequence

$$0 \to E_{CV}^* \to V \otimes_{\mathbb{C}} \mathscr{O}_S \to L \to 0$$
.

Let $N_C := \mathscr{O}_S(C)_{|C}$ be the normal of C in S. By duality we get an exact sequence

$$0 \to V^* \otimes_{\mathbb{C}} \mathscr{O}_S \to E_{CV} \to N_C \otimes L^{-1} \to 0$$
.

Proposition 2. Assume $H^1(S, \mathscr{O}_S) = 0$, $N^1(S) = \mathbb{Z} \cdot [C]$, and that the line bundle $N_C \otimes L^{-1}$ on C is globally generated and nontrivial. Then $E_{C,V}$ is globally generated and ample.

Proof: We put $E := E_{C,V}$. Since $H^1(S, \mathcal{O}_S) = 0$, we have a commutative diagram of exact sequences

$$0 \longrightarrow V^* \otimes_{\mathbb{C}} \mathscr{O}_S \longrightarrow H^0(S, E) \otimes_{\mathbb{C}} \mathscr{O}_S \longrightarrow H^0(C, N_C \otimes L^{-1}) \otimes_{\mathbb{C}} \mathscr{O}_S \longrightarrow 0$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

This implies that E is globally generated, with $h^0(E) = 2 + h^0(N_C \otimes L^{-1}) \ge 4$. From the bottom exact sequence we get $c_1(E) = [C]$ and $c_2(E) = \deg(L) > 0$. The conclusion follows from Proposition 1.

4. APPLICATION 2: CONGRUENCES OF LINES

Let \mathbb{G} be the Grassmannian of lines in \mathbb{P}^3 , which we view as a smooth quadric in \mathbb{P}^5 ; let $S \subset \mathbb{G}$ be a smooth surface. This defines a 2-dimensional family of lines in \mathbb{P}^3 , classically called a *congruence*. A point $p \in \mathbb{P}^3$ through which pass infinitely many lines of the congruence is called a *fundamental point* (or, more classically, a singular point) of the congruence.

Proposition 3. Assume that S has degree > 1 and that $N^1(S)$ is generated by the restriction of $\mathscr{O}_{\mathbb{G}}(1)$. Then S has no fundamental point.

Proof: Let E be the restriction to S of the universal quotient bundle Q on \mathbb{G} . The projective bundle $\mathbb{P}(E)$ on S parametrizes pairs (ℓ,p) in $S\times\mathbb{P}^3$ with $p\in\ell$, and the second projection $q:\mathbb{P}_S(E)\to\mathbb{P}^3$ satisfies $q^*\mathscr{O}_{\mathbb{P}^3}(1)=\mathscr{O}_{\mathbb{P}(E)}(1)$. Thus q is finite (that is, S has no fundamental point) if and only if E is ample.

We have $h^0(Q)=4$, and a nonzero section of Q vanishes along a linear plane; therefore $h^0(E)\geq 4$, and we can apply Proposition 1. If $E=\mathscr{O}_S\oplus\mathscr{O}_S(1)$, we have $c_2(E)=0$, that is, $c_2(Q)\cdot[S]=0$; this can only happen if S is a linear plane, which we have excluded. Therefore E is ample.

Corollary. Let d, e be two integers with d, e > 1, or d = 1 and $e \ge 3$; let $S \subset \mathbb{G}$ be the complete intersection of two general hypersurfaces of degree d and e. Then S has no fundamental point.

Indeed Pic(S) is generated by $\mathcal{O}_S(1)$ [D, Théorème 1.2].

Examples.— 1) Perhaps the simplest example of a nontrivial congruence is the surface S of lines bisecant to a twisted cubic $T \subset \mathbb{P}^3$; it is isomorphic to $\operatorname{Sym}^2 T \cong \mathbb{P}^2$, embedded in $\mathbb{G} \subset \mathbb{P}^5$ by the Veronese map. In that case $N^1 = \mathbb{Z} \cdot [\mathscr{O}_{\mathbb{P}^2}(1)]$ but $\det E = \mathscr{O}_{\mathbb{P}^2}(2)$, and indeed the fundamental locus of S is T, so E is not ample.

2) Let A be an abelian surface such that $\mathrm{NS}(A)=\mathbb{Z}\cdot[L]$, where L is a line bundle with $L^2=10$. The linear system |L| embeds A into \mathbb{P}^4 [R], giving the famous Horrocks-Mumford abelian surface. The projection $\pi:\mathbb{G}\to\mathbb{P}^4$ from a general point of \mathbb{P}^5 is a double covering, and the surface $S:=\pi^{-1}(A)\subset\mathbb{G}$ is smooth. The line bundle π^*L is not divisible in $N^1(S)$: since $(\pi^*L)^2=20$, this could happen only if π^*L is divisible by 2; but $\pi^*L=K_S$, so this would imply that K_S^2 is divisible by 8, a contradiction. It then follows from [Bu] that $N^1(S)$ is generated by $\pi^*L=\mathscr{O}_S(1)$, so Proposition 2 applies and S has no fundamental point.

5. APPLICATION 3 (VIRTUAL): SURFACES WITH AMPLE COTANGENT BUNDLE

The original motivation of this work was to obtain new examples of surfaces with ample cotangent bundle – these surfaces have very interesting properties, but there are few concrete examples known. Applying Proposition 1 to Ω^1_S we get the following result; unfortunately we do not know any example of a surface satisfying the hypotheses (help welcome!).

Proposition 4. Assume that Ω^1_S is globally generated (for instance that S is a subvariety of an abelian variety), $q(S) \geq 4$, and $N^1(S) = \mathbb{Z} \cdot [K_S]$. Then Ω^1_S is ample.

Proof: The hypotheses imply that K_S is ample, hence $c_2(S) > 0$; therefore Ω_S^1 is not isomorphic to $\mathscr{O}_S \oplus K_S$. The conclusion follows from Proposition 1.

REFERENCES

- [B] F. Bogomolov: Holomorphic tensors and vector bundles on projective varieties. Math. of the USSR, Izvestija 13 (1979), 499-555.
- [Bu] A. Buium: *Sur le nombre de Picard des revêtements doubles des surfaces algébriques.* C. R. Acad. Sci. Paris Sér. I Math. **296** (1983), no. 8, 361-364.
- [D] P. Deligne: Le théorème de Noether. Groupes de monodromie en géométrie algébrique II, Exposé XIX, 328-340. Lecture Notes in Math. 340, Springer, Berlin-Heidelberg-New York, 1973.
- [L] R. Lazarsfeld: Positivity in algebraic geometry, II. Ergeb. Math. (3) 49. Springer-Verlag, Berlin, 2004.
- [R] S. Ramanan: Ample divisors on abelian surfaces. Proc. London Math. Soc. (3) 51 (1985), no. 2, 231-245.
- [Ra] M. Raynaud: Fibrés vectoriels instables applications aux surfaces (d'après Bogomolov). Algebraic surfaces, 293-314; Lecture Notes in Math. 868, Springer, Berlin-New York, 1981.

Université Côte d'Azur, CNRS – Laboratoire J.-A. Dieudonné, Parc Valrose, F-06108 Nice cedex 2, France *E-mail address*: arnaud.beauville@unice.fr