V. Further developments

Arnaud Beauville

Université de Nice

March 28, 2008

Cohomology

Proposition (Bogomolov-Verbitsky)

X hyperkähler, A sub-algebra of $H^*(X,\mathbb{Q})$ spanned by $H^2(X,\mathbb{Q})$.

Then A satisfies Poincaré duality; $H^*(X,\mathbb{Q}) = A \oplus A^{\perp}$;

$$A = S^*H^2(X, \mathbb{Q})/J$$
 with $J = \langle x^{r+1} \mid x \in H^2(X, \mathbb{Q}), q(x) = 0 \rangle$

Corollary

$$S^pH^2(X,\mathbb{Q}) \to H^{2p}(X,\mathbb{Q})$$
 injective for $p \leq r$.

Proof.

- Geometric input:
 - $q(\alpha) = 0 \Rightarrow \alpha^{r+1} = 0;$
 - $\exists \ \omega \in H^2(X,\mathbb{Q}), \ \omega^{2r} \neq 0.$
- ② Put $H = H^2(X, \mathbb{Q})$, $B = S^*H/J$. Then $S^*H \to H^*(X, \mathbb{Q})$ maps J to 0, hence factors as $\lambda : B \to A$, with $\lambda(B_{2r}) \neq 0$.
- **3** Representation theory of $O(H,q) \Rightarrow B$ Gorenstein, i.e. $B_p \times B_{2r-p} \to B_{2r} = \mathbb{Q}$ perfect $\forall p$.
- If $\operatorname{Ker} \lambda \neq 0$, contains B_{2r} , contradiction.

REMARK: A depends only on (H, q) and r.

Lagrangian fibrations

X hyperkähler, dim X = 2r. Lagrangian fibration :

 $f:X\to B$ with connected fibres, B Kähler of dimension r, smooth fibres Lagrangian (i.e. $\sigma_{|X_b}=0$).

Proposition (Arnold-Liouville)

The smooth fibres of f are complex tori.

Proof.

$$0 \longrightarrow T_{X/B} \longrightarrow T_X \longrightarrow f^*T_B \longrightarrow 0$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr}$$

$$0 \longrightarrow f^*\Omega^1_B \longrightarrow \Omega^1_X \longrightarrow \Omega^1_{X/B} \longrightarrow 0$$

$$\Rightarrow \Omega^1_{X_b} \cong \mathcal{O}^r_{X_b} \Rightarrow X_b \text{ complex torus.}$$

 ${
m REMARK}$: Lagrangian fibrations correspond to completely integrable hamiltonian system in symplectic geometry.

Theorem (Matsushita + Hwang)

X hyperkähler, *B* Kähler with $0 < \dim B < 2r$, $f: X \rightarrow B$ with connected fibers. Then:

- 1 f is a Lagrangian fibration;
- ② B Fano with $b_2 = 1$ (and dim B = r);
- **3** If X projective, $B \cong \mathbb{P}^r$.

Proof.

• For $\alpha \in H^2(B, \mathbb{C})$,

$$\alpha^{2r} = 0 \implies (f^*\alpha)^{2r} = 0 \implies (f^*\alpha)^{r+1} = 0 \implies \alpha^{r+1} = 0$$

 $\implies \dim B \le r \text{ (take } \alpha \text{ K\"{a}hler)}.$

- **⑤** Pic(B) = $\mathbb{Z} \cdot [L]$, $K_B = L^{\otimes n}$. Idea: $H^{r,0}(B) = 0$ (as above) ⇒ $n \neq 0$, more work $\rightsquigarrow n < 0$.
- 6 Proof that X_b Lagrangian: ▶ Skip proof

Proof that the fibres are Lagrangian

Lemma

$$\alpha, \beta, \gamma \in H^2(X, \mathbb{C})$$
 with $q(\alpha) = q(\alpha, \beta) = 0$. Then

$$\int_X \alpha^p \beta^q \gamma^m = 0 \quad \text{for } p > m \ .$$

Proof of the lemma.

- $\forall \gamma \in H^2(X,\mathbb{C}), \ q(t\alpha + \beta + s\gamma) = c \ st + P(s)$
- $\Rightarrow \int_X (t\alpha + \beta + s\gamma)^{2r} = f_X (c st + P(s))^r = \sum_{m \geq p} a_{p,m} t^p s^m$
- $\Rightarrow \int_X \alpha^p \beta^q \gamma^m = 0 \text{ for } p > m.$

Proof that the fibres are Lagrangian.

- APPLY WITH : $\alpha=f^*\alpha_0$ with $\int_B \alpha_0^r=m\neq 0$, $\beta=\sigma+\bar{\sigma}$, $\gamma=$ Kähler class on X.
- $i: X_b \hookrightarrow X$. Then $\int_X \alpha^r \omega = m \int_{X_b} i^* \omega$. Thus:
- $0 = \int_X \alpha^r \beta^2 \gamma^{r-2} = m \int_{X_b} i^* (\beta^2 \gamma^{r-2}) =$ $2m \int_{X_b} (i^* \sigma) (i^* \bar{\sigma}) (i^* \bar{\sigma})^{r-2}.$
- $i^*\gamma$ Kähler \Rightarrow hermitian form $(\alpha, \beta) \mapsto \int_X \alpha \bar{\beta} (i^*\gamma)^{r-2} > 0$ on $H^{2,0}(X_b) \Rightarrow i^*\sigma = 0$.

Some open questions

If $f: X \to B$ Lagrangian and M ample on B, f^*M nef and $q(f^*M) = 0$.

- ② Variant: $L \in Pic(X)$, $q(L) = 0 \Rightarrow \exists f : X \dashrightarrow B$?

EXAMPLE: *S* K3 with $Pic(S) = \mathbb{Z}[L]$. Recall:

$$\operatorname{Pic}(X) = \mathbb{Z}[L^{[r]}] \stackrel{\perp}{\oplus} \mathbb{Z}[\delta_r], \ \ q(L^{[r]}) = L^2, \ q(\delta_r) = -2(r-1).$$

Assume $L^2 = 2(r-1)n^2$, then $M = L^{[r]}(-n\delta_r)$ has q(M) = 0.

THEOREM (Sawon, Markushevich): $\exists \ f: S^{[r]} \to \mathbb{P}^r$ with $f^*\mathcal{O}_{\mathbb{P}^r}(1) = M$.

③ Recall $H^*(X, \mathbb{Q}) = A \oplus A^{\perp}$. What about A^{\perp} ? Known: 4 | b_{2i+1} (Wakakuwa).

Some open questions, II

- Can we say more for hyperkähler 4-folds? Theorem (Guan): either $b_2=23$, or $3 \le b_2 \le 8$. Improve?
- On they have only finitely many deformation types?
- Is there a correct formulation of a Torelli-type property?
- Most important: Find more examples!

THE END