IV. Birational hyperkähler manifolds

Arnaud Beauville

Université de Nice

March 28, 2008

Atiyah's example

 $f:\mathcal{X} \to D$ family of K3 surfaces, smooth over $D^*;~\mathcal{X}$ smooth, \mathcal{X}_0 has one node s.

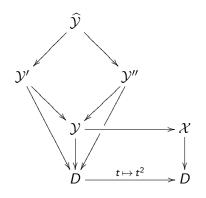
local coordinates (x, y, z) at s, $f(x, y, z) = x^2 + y^2 + z^2$.

Pull back by
$$t \mapsto t^2$$
:
$$\begin{array}{ccc}
\mathcal{Y} \longrightarrow \mathcal{X} \\
\downarrow & \downarrow & \downarrow \\
D \xrightarrow{t \mapsto t^2} D
\end{array}$$

$$\mathcal{Y} \text{ at } s : x^2 + y^2 + z^2 = t^2.$$

Blow up s in $\mathcal{Y} \leadsto \widehat{\mathcal{Y}}$ smooth, exceptional divisor = quadric. Can blow down along each ruling:

Atiyah's example, II



 \mathcal{Y}' and \mathcal{Y}'' smooth over D, fibre at 0= resolution of \mathcal{X}_0 , isomorphic over D^* , but not over D.

Atiyah's example, III

Choosing trivializations of $H^2(\mathcal{Y}'_t,\mathbb{Z})_{t\in D}$ and $H^2(\mathcal{Y}''_t,\mathbb{Z})_{t\in D}$ which coincide over D^* , get

 \wp' and $\wp'':D\to \mathcal{M}_L$ which coincide on D^* but not on D^*

 \mathcal{Y}_0' and \mathcal{Y}_0'' give non-separated points in \mathcal{M}_L .

Mukai's elementary transformations

X hyperkähler, dim X = 2r, contains $P \cong \mathbb{P}^r$.

Then
$$\sigma_{|P} = 0$$
 (P Lagrangian) \Rightarrow

$$0 \longrightarrow T_{P} \longrightarrow T_{X|P} \longrightarrow N_{P/X} \longrightarrow 0$$

$$\downarrow^{\downarrow} \qquad \qquad \downarrow^{\downarrow} \qquad \qquad \downarrow^{\downarrow}$$

$$0 \longrightarrow N_{P/X}^{*} \longrightarrow \Omega_{X|P}^{1} \longrightarrow \Omega_{P}^{1} \longrightarrow 0$$

Blow-up P in X:

$$E \longrightarrow \widehat{X}$$

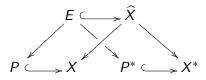
$$\downarrow \qquad \qquad \downarrow$$

$$P \longrightarrow X$$

Mukai's elementary transformations, II

$$E = \mathbb{P}_P(N_{P/X}) = \mathbb{P}_P(\Omega_P^1) = \{(p, h) \in P \times P^* \mid p \in h\} = \mathbb{P}_{P^*}(\Omega_{P^*}^1)$$

Thus can blow down E to $P^* \hookrightarrow X^*$:



 X^* symplectic, not necessarily Kähler. If it is, hyperkähler.

Atiyah's construction in higher dimension

Suppose $X=\mathcal{X}_0,\ \mathcal{X}\to D$ family of hyperkähler manifolds \leadsto deformation vector $v\in H^1(X,T_X)\cong H^1(X,\Omega^1_X)$.

$$P \hookrightarrow X \hookrightarrow \mathcal{X}$$
 gives exact sequence

$$0 \to N_{P/X} \cong \Omega^1_P \longrightarrow N_{P/X} \longrightarrow (N_{X/X})_{|P} \cong \mathcal{O}_P \to 0 \quad (*)$$

Lemma

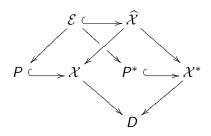
Extension class $e \in H^1(P, \Omega^1_P) = pull \ back \ of \ v \in H^1(X, \Omega^1_X)$.

Suppose $e \neq 0$ (e.g. v Kähler). Then (*) = Euler exact sequence:

$$0 \to \Omega_P^1 \longrightarrow N_{P/\mathcal{X}} \cong \mathcal{O}_P^{r+1}(-1) \longrightarrow \mathcal{O}_P \to 0$$

Blow up P in \mathcal{X} . Exceptional divisor $\mathcal{E} \cong P \times P^*$. As above, can blow down \mathcal{E} onto P^* :

Atiyah's construction in higher dimension, II



 $\mathcal{X}, \mathcal{X}^*$ isomorphic over $D^* \rightsquigarrow \text{non-separated points in } \mathcal{M}_L$.

Theorem (Huybrechts)

X, X' birational hyperkähler. $\exists~\mathcal{X} \to D$ and $\mathcal{X}' \to D$ isomorphic over D^* with $\mathcal{X}_0 \cong X$, $\mathcal{X}_0' \cong X'$.

Corollary

Two birational hyperkähler manifolds are diffeomorphic.

Compare:

- If X, X' birational Calabi-Yau, $b_i(X) = b_i(X')$ and $h^{p,q}(X) = h^{p,q}(X')$ (Batyrev, Kontsevich);
- there exists X, X' birational Calabi-Yau threefolds s.t. $H^*(X, \mathbb{Z}) \not\cong H^*(X', \mathbb{Z})$ as algebras (Friedman). ($\Rightarrow X$ and X' not diffeomorphic).