Holonomie riemannienne et géométrie algébrique

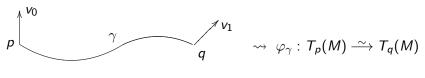
Arnaud Beauville

Université de Nice

Grenoble, Septembre 2008

Transport parallèle

(M,g) variété riemannienne \rightsquigarrow transport parallèle:



avec
$$\varphi_{\gamma} \circ \varphi_{\delta} = \varphi_{\delta\gamma}$$
 .

Idée :
$$\gamma:[0,1] o M$$
, on cherche $t\mapsto
u(t)\in \mathcal{T}_{\gamma(t)}(M)$

- Si $M = \mathbb{R}^n$ (euclidien), on impose $\dot{v}(t) = 0$;
- Si $M\subset \mathbb{R}^n$, on impose $\dot{v}(t)\perp T_{\gamma(t)}(M)$; équa. diff. du 1er ordre, unique solution tq $v(0)=v_0$.

Holonomie

En particulier,
$$\varphi:\{\text{lacets en }p\}\longrightarrow O(T_p(M))$$

$$\mathsf{Image}=H_p=(\text{sous-})\mathsf{groupe d'holonomie en }p$$

• indépendant de p à conjugaison près (M connexe).

Pour simplifier, on supposera M simplement connexe et compacte

 \Rightarrow H_p sous-groupe de Lie connexe compact de $SO(T_p(M))$ (Borel-Lichnerowicz)

Le théorème de de Rham

Théorème (de Rham)

$$T_p(M) = \bigoplus_i V_i$$
 stable sous $H_p \Rightarrow M \cong \prod_i M_i$ et $H_p \cong \prod_i H_{p_i}$.

On est ramené aux variétés irréductibles, i.e. dont la représentation d'holonomie est irréductible.

On exclut d'abord une classe bien connue de variétes, les espaces symétriques: G/H, avec G groupe de Lie compact, $H=\operatorname{Fix}(\sigma)^{\mathrm{o}}$, σ involution de G. Liste complète (E. Cartan), $H_p=H$.

Le théorème de Berger

Théorème (Berger)

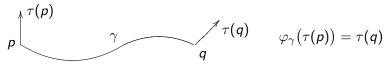
M irréductible $(\pi_1(M) = 0)$, non symétrique. Alors H =

H	$\dim(M)$	$m\'etrique$	existence
SO(n)	n	générique	classique
U(m)	2m	Kähler	classique
$SU(m)$ $(m\geq 3)$	2m	Calabi-Yau	Yau (78)
Sp(r)	4r	hyperkähler	AB (82)
$Sp(1)Sp(r)$ $(r \ge 2)$	4r	quaternion-Kähler	?
G_2	7		Joyce (96)
Spin(7)	8		Joyce (96)

Principe d'holonomie

A QUOI SERT L'HOLONOMIE?

Un champ de vecteurs (plus généralement, de tenseurs) τ est parallèle si



pour tout chemin γ de p à q.

Principe d'holonomie

L'évaluation en p établit une correspondance bijective entre:

- champs de tenseurs parallèles;
- tenseurs sur $T_p(M)$ invariants sous H_p .

Exemples: SO, U

Par suite : fixer $H \Leftrightarrow$ imposer certains tenseurs parallèles.

Plus l'holonomie est petite, plus on a de contraintes:

$$SU(m) \subset U(m) \subset SO(2m)$$
, $Sp(r) \subset SU(2r)$, $Sp(r) \subset Sp(1)Sp(r)$

Exemples

- $H = SO(n) \iff$ pas de champ de tenseurs parallèle (sauf g et dv_g): métrique générique.
- $H \subset U(m) \subset SO(2m)$
 - \iff *H* préserve l'endomorphisme $v\mapsto iv$ de $\mathbb{R}^{2m}\cong\mathbb{C}^m$
 - \iff endomorphisme J parallèle de T(M), $J^2 = -I$
 - \iff M a une structure complexe J kählérienne.

SU(m)

$$H\subset SU(m)\iff H\subset U(m)$$
 et H préserve la m -forme alternée \mathbb{C} -multilinéaire det : $\mathbb{C}^m\to\mathbb{C}$

- $\iff M$ kählérienne + m-forme holomorphe parallèle
- \iff le "fibré canonique" $K_M := \wedge_{\mathbb{C}}^m T^*(M)$, comme fibré holomorphe hermitien est trivial
- \iff sa courbure Ric_g (courbure de Ricci) est nulle.

Théorème (Yau)

M admet une métrique kählérienne avec $\mathrm{Ric}_g = 0 \iff M$ kählérienne, K_M trivial.

 \Rightarrow nombreux exemples: hypersurfaces de degré n+1 dans \mathbb{P}^n , etc.

Sp(r) – point de vue hyperkählérien

 $Sp(r):=U(r,\mathbb{H})=$ sous-groupe de $GL(r,\mathbb{H})$ préservant la forme hermitienne $\psi(x,y)=\sum x_i \bar{y}_i.$

2 manières de voir les quaternions:

• "Hamilton": $\mathbb{H} = \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$, $\mathbb{H}^r \cong \mathbb{R}^{4r}$. $Sp(r) = \text{sous-groupe de } O(\mathbb{R}^{4r}) \text{ commutant avec } i, j, k$. $H \subset Sp(r) \iff \text{structures complexes } I, J, K \text{ parallèles,}$ en fait une sphère \mathbb{S}^2 :

$$\mathbb{S}^2 = \{aI + bJ + cK, \ a^2 + b^2 + c^2 = 1\}$$
.

On dit que M est hyperkählérienne.

Sp(r) – point de vue symplectique holomorphe

• "Cayley": $\mathbb{C} = \mathbb{R} + \mathbb{R}i$, $\mathbb{H} = \mathbb{C}(j)$ avec $jz = -\bar{z}j$; $\mathbb{H}^r \cong \mathbb{C}^{2r}$. $\psi = h + \varphi j$ avec h hermitienne et φ \mathbb{C} -linéaire alternée. Donc $Sp(r) = U(2r,\mathbb{C}) \cap Sp(2r,\mathbb{C})$.

$$H = Sp(r) \iff \begin{cases} \text{ structure complexe k\"ahl\'erienne} \\ 2\text{-forme holomorphe symplectique parall\'ele } \varphi, \\ \text{unique \'a un scalaire pr\`es} \end{cases}$$

Théorème

M kählérienne avec 2-forme holomorphe symplectique $\varphi \Rightarrow$ M admet une métrique hyperkählérienne.

Démonstration: M admet une métrique Kähler Ricci-plate (Yau); pour une telle métrique, tout champ de tenseurs holomorphe est parallèle (Bochner).

Exemples de variétés hyperkählériennes

Exemples

- r=1: Sp(1)=SU(2), M= surface complexe (compacte, $\pi_1=0$) à fibré canonique trivial $\stackrel{\text{déf}}{=}$ surface K3.
- 2 r > 1? Idée: S^r admet des formes symplectiques (trop):

$$\sigma = \lambda_1 p_1^* \varphi + \ldots + \lambda_r p_r^* \varphi \ , \quad \text{avec} \ \lambda_1, \ldots, \lambda_r \in \mathbb{C}^* \ .$$

Pour avoir l'unicité, on impose $\lambda_1 = \ldots = \lambda_r$, i.e.:

 σ provient de $S^{(r)} := S^r/\mathfrak{S}_r$.

 $S^{(r)}$ est singulière, mais admet une résolution $S^{[r]}$, le schéma de Hilbert (ou espace de Douady).

 σ forme symplectique sur $S^{[r]} \Rightarrow S^{[r]}$ hyperkählérienne.

Exemples de variétés hyperkählériennes 2

Exemples (suite)

- Construction analogue en partant d'un tore complexe de dimension 2 → variétés de Kummer généralisées K_r.
- 4 2 exemples sporadiques (O'Grady), de dimension 6 et 10.

Pas d'autre exemple connu!

Sp(1)Sp(r)

 $Sp(r)=U(r,\mathbb{H})$ commute aux homothéties, en particulier à $\mathbb{H}_1^{ imes}=\{ ext{quaternions de norme }1\}\cong Sp(1)$.

Le groupe Sp(1)Sp(r) préserve la sphère

$$\mathbb{S}^2=\{aI+bJ+cK,\ a^2+b^2+c^2=1\}\subset \operatorname{End}(\mathbb{R}^{4r})\ .$$

Soit M d'holonomie Sp(1)Sp(r) ("quaternion-Kähler"); on a une sphère $\mathbb{S}^2\subset T_p(M)$ en chaque $p\in M$.

La réunion de ces sphères est l'espace des twisteurs $t: Z \to M$.

Théorème (Salamon)

Z a une structure complexe naturelle, telle que $t^{-1}(m) \cong \mathbb{P}^1 \quad \forall m$, et une structure de contact holomorphe.

Sp(1)Sp(r), suite

structure de contact = suite exacte $0 \to H \longrightarrow T(Z) \stackrel{\theta}{\longrightarrow} L \to 0$ (L fibré en droites, $\theta \in \Omega^1_Z \otimes L$) telle que $d\theta_{|H}$ symplectique. (analogue des variétés symplectiques en dimension impaire)

Idée de la construction.

Pour
$$(p, J) \in Z$$
, $T_{(p,J)}(Z) = T_p(M) \oplus T_J(\mathbb{S}^2)$
structure complexe J sur $T_p(M)$, standard sur $T_J(\mathbb{S}^2)$
structure de contact: $H_{(p,J)} = T_p(M) \subset T_{(p,J)}(Z)$.

Deux cas, suivant le signe de la courbure scalaire.

Dans le cas négatif, Z n'est pas kählérienne: pas d'exemple connu.

Sp(1)Sp(r), suite

Dans le cas positif, Z est une variété projective, et même de Fano.

(i.e.: les sections de K_Z^{-N} plongent Z dans \mathbb{P}^M pour N >> 0).

Exemples de variétés de contact projectives

- **1** $\mathbb{P}T^*(X)$ pour toute variété projective X;
- ② \mathfrak{g} alg. de Lie simple; $Z \subset \mathbb{P}(\mathfrak{g})$ unique orbite adjointe fermée. (exemple: matrices de rang 1 dans $\mathbb{P}(\mathfrak{sl}_r)$.)

Conjectures

Ce sont les seules variétés de contact projectives

⇒ toute variété quaternion-Kähler positive est symétrique.

Sp(1)Sp(r), fin

Résultats partiels

Z variété de contact projective, $\theta: T(Z) \rightarrow L$

- **3** Si Z n'est pas de Fano, $Z \cong \mathbb{P}T^*(X)$ (Kebekus, Peternell, Sommese, Wiśniewski + Demailly)
- ② Si L a "assez de sections", $Z = \mathbb{P}(\mathfrak{g})$ (AB) (remarque: K_Z^{-1} est une puissance de L)