On the Brauer group of Enriques surfaces

Arnaud Beauville

Université de Nice

Berkeley, April 2009

The Brauer group

S smooth projective variety over $\mathbb C$

$$\mathrm{Br}(S) := H^2_{\mathrm{\acute{e}t}}(S,\mathbb{G}_m) \cong H^2(S,\mathcal{O}^*_{hol})_{\mathrm{tors}}$$

Why is it interesting?

- Br(K) important in number theory and algebra.
- Br(S) birational invariant detects non-rational varieties (Artin-Mumford).
- $\mathrm{Br}(S)$ classifies Severi-Brauer fibrations (= \mathbb{P}^n -bundles) over S
- $\alpha \in Br(S) \rightsquigarrow$ an abelian category $Coh_{\alpha}(S)$ of " α -twisted coherent sheaves".
- For S over a number field, Br(S) provides the Brauer-Manin obstruction to the existence of rational points.

How to compute Br(S)?

 $\mathrm{Br}(S)$ can be computed from the exponential exact sequence:

$$H^2(S,\mathbb{Z}) \to H^2(S,\mathcal{O}_S) \to H^2(S,\mathcal{O}_S^*) \to H^3(S,\mathbb{Z}) \to H^3(S,\mathcal{O}_S)$$

- If $H^{2,0}(S)=0$, $\operatorname{Br}(S)\cong H^3(S,\mathbb{Z})_{\operatorname{tors}}$;
- If S simply-connected surface, $\operatorname{Br}(S) \cong \operatorname{Hom}(T_S, \mathbb{Q}/\mathbb{Z})$, where $T_S := \operatorname{Pic}(S)^{\perp} \subset H^2(S, \mathbb{Z}) = \operatorname{transcendental lattice}$.

Enriques and K3 surfaces

X = K3 surface, σ fixed-point free involution of X,

 $S := X/\sigma$ Enriques surface, $\pi : X \to S$.

 $\mathrm{Br}(S)=H^3(S,\mathbb{Z})=\mathbb{Z}/2$ has a unique nonzero element b_S ;

 $Br(X) = Hom(T_X, \mathbb{Q}/\mathbb{Z}).$

QUESTION (Harari, Skorobogatov): What is π^*b_S ? Is it \neq 0?

Proposition

 $\pi^*b_S \in \operatorname{Hom}(T_X,\mathbb{Q}/\mathbb{Z})$ is the map

$$T_X \subset H^2(X,\mathbb{Z}) \stackrel{\pi_*}{\longrightarrow} H^2(S,\mathbb{Z}) \stackrel{\cdot \beta}{\longrightarrow} \mathbb{Z}/2 \subset \mathbb{Q}/\mathbb{Z}$$

where β is any element of $H^2(S,\mathbb{Z}/2)$ not coming from $H^2(S,\mathbb{Z})$.

But that does not say whether $\pi^*b_S = 0$ or not.

Main result

Theorem

- ② In the moduli space of Enriques surfaces, the surfaces S with $\pi^*b_S=0$ form a countable union of hypersurfaces.

Remark

The proof does not give any concrete example. But :

- Harari and Skorobogatov give an explicit example of S over \mathbb{Q} with $\pi^*b_S \neq 0$;
- Garbagnati and Van Geemen gave recently an explicit example of S over \mathbb{Q} with $\pi^*b_S=0$.

Brauer groups and cyclic coverings

Proposition 1

 $\pi: X \to S$ étale cyclic covering of smooth projective varieties, Galois group $G = \langle \sigma \rangle$. Consider

$$\operatorname{Nm}: \left\{ egin{array}{l} \operatorname{Pic}(X)
ightarrow \operatorname{Pic}(S) \ \mathcal{O}_X(D) \mapsto \mathcal{O}_S(\pi_*D) \end{array}
ight. . \end{array}
ight. . Then :$$

$$\operatorname{Ker}(\pi^* : \operatorname{Br}(S) \to \operatorname{Br}(X)) = \operatorname{Ker} \operatorname{Nm}/(1 - \sigma^*)(\operatorname{Pic}(X))$$

(valid over any algebraically closed field.)

Sketch of proof

Hochschild-Serre spectral sequence:

$$E_2^{p,q} = H^p(G, H^q(X, \mathbb{G}_m)) \implies H^{p+q}(S, \mathbb{G}_m)$$

$$E_2^{2,0} = H^2(G, \mathbb{C}^*) = 0; \text{ then}$$

$$0 \to E_\infty^{1,1} \longrightarrow H^2(S, \mathbb{G}_m) \xrightarrow{\pi^*} H^2(X, \mathbb{G}_m)$$

$$\text{and} \qquad 0 \to E_\infty^{1,1} \longrightarrow E_2^{1,1} \xrightarrow{d_2} E_2^{3,0}$$

$$\Rightarrow \operatorname{Ker} \pi^* = \operatorname{Ker} d_2$$

$$d_2 : H^1(G, \operatorname{Pic}(X)) \to H^3(G, \mathbb{C}^*) = \operatorname{Hom}(G, \mathbb{C}^*) = \hat{G}$$
In general, $H^1(G, -) = \operatorname{Ker} S / \operatorname{Im}(1 - \sigma)$, with $S = \sum_{g \in G} g$;
here $S(L) = \bigotimes_{g \in G} g^*L = \pi^* \operatorname{Nm}(L)$. Hence Nm induces
$$\overline{\operatorname{Nm}} : H^1(G, \operatorname{Pic}(X)) \to \operatorname{Ker} \pi^* \cong \hat{G}$$

Claim:
$$d_2 = \overline{\mathrm{Nm}}$$
 (\Longrightarrow Prop. 1)

Follows from: some general non-sense on spectral sequences, + explicit computation.

• Back to X K3, S Enriques: Prop. $1 \Rightarrow$

$$\pi^*b_S=0\iff \exists\; L\in \mathrm{Pic}(X),\; \mathrm{Nm}(L)=\mathcal{O}_S,\; L\notin (1-\sigma^*)(\mathrm{Pic}(X))\;.$$

Proposition 2

$$L \in \operatorname{Pic}(X)$$
, $\sigma^*L \cong L^{-1}$. Then

$$\operatorname{Nm}(L) = \mathcal{O}_{S}$$
 and $L \notin (1 - \sigma^{*})(\operatorname{Pic}(X)) \iff L^{2} \equiv 2 \mod 4$

Thus: $\pi^*b_S = 0 \iff \exists L \in \operatorname{Pic}(X), \ \sigma^*L \cong L^{-1}, \ L^2 \equiv 2 \mod 4$ = part ① of the Theorem.

Partial proof of Proposition 2

$$L^2 \equiv 2 \mod 4 \implies L \notin (1 - \sigma^*)(\operatorname{Pic}(X))$$
 and $\operatorname{Nm}(L) = \mathcal{O}_S$:

(a) If $L = \mathcal{O}_X(D - \sigma^*D)$ for some divisor D,

$$L^2 = (D - \sigma^* D)^2 \equiv (D + \sigma^* D)^2 = (\pi^* \pi_* D)^2 = 2(\pi_* D)^2 \equiv 0 \mod 4$$

(b)
$$\pi^* \operatorname{Nm}(L) = L \otimes \sigma^* L = \mathcal{O}_X$$
. If $\operatorname{Nm}(L) \neq \mathcal{O}_S$,

then
$$Nm(L) = K_S \Rightarrow$$

 $E:=\pi_*L$ has a non-degenerate symmetric $\varphi:E\otimes E o K_S$,

hence
$$h^2(E) = h^0(E^* \otimes K_S) = h^0(E)$$
.

$$\varphi \leadsto H^1(E) \otimes H^1(E) \longrightarrow H^2(K_S) \cong \mathbb{C}$$

non-degenerate skew-symmetric, hence $h^1(E)$ even.

Thus
$$\chi(E) = \chi(L)$$
 even $\Rightarrow L^2 \equiv 0 \mod 4$ (Riemann-Roch).

The period map for Enriques surfaces

Fix X_0 K3, σ_0 fixed-point free involution. Put

$$L := H^2(X_0, \mathbb{Z})$$
 $\sigma_L := \sigma_0^*$ $L^- := \operatorname{Ker}(1 + \sigma_L)$

independent of the choice of (X_0, σ_0) ; rk $L^- = 12$.

S Enriques surface, $\pi:X\to S$ double cover, σ involution, ω holomorphic 2-form on X ($\omega\neq 0$); then $\sigma^*\omega=-\omega$.

Definition

- **1** A marking of S is an isometry $\varphi: H^2(X, \mathbb{Z}) \xrightarrow{\sim} L$ which conjugates the actions of σ^* and σ_L .
- ② The period $\wp(S,\varphi)$ is $\varphi_{\mathbb{C}}(\mathbb{C}\omega) \in \mathbb{P}(L_{\mathbb{C}}^{-})$.

Horikawa's theorem

Let
$$\Omega:=\{x\in\mathbb{P}(L_{\mathbb{C}}^-)\mid (x\cdot x)=0\quad (x\cdot \bar{x})>0\}\subset\mathbb{P}(L_{\mathbb{C}}^-)\cong\mathbb{P}^{11}$$
 and $\Omega^{\mathrm{o}}:=\Omega-\bigcup\lambda^{\perp}$ for all $\lambda\in L^-$, $\lambda^2=-2$.

Claim: $\wp(S,\varphi) \in \Omega^{o}$.

- (a) $(\omega \cdot \omega) = 0$ and $(\omega \cdot \bar{\omega}) > 0$, hence $\wp(S, \varphi) \in \Omega$;
- **(b)** $\wp(S,\varphi) \in \lambda^{\perp} \iff \varphi^{-1}(\lambda) = [D], \ D \in \operatorname{Div}(X);$ $D^2 = -2 \implies D \text{ or } -D \ge 0. \text{ But } \sigma^*D \equiv -D, \text{ impossible.}$

Theorem (Horikawa)

- **2** Every point of Ω° is the period point of some (S, φ) .

Theorem, part ②

Hence \wp induces a bijection

 $\{ \text{isom. classes of Enriques surfaces} \} \ \stackrel{\sim}{\longrightarrow} \ \Omega^{\mathrm{o}}/\mathit{O}(\mathit{L}^{-}) \ .$

 $\mathcal{M}:=\Omega^{\mathrm{o}}/O(L^{-})$ is the coarse moduli space of Enriques surfaces; it is a quasi-projective variety (actually quasi-affine (Borcherds), and rational (Kondō)).

For $\lambda \in L^-$, the image \mathcal{H}_{λ} of λ^{\perp} in \mathcal{M} is an algebraic hypersurface.

Theorem

In
$$\mathcal{M}$$
, $\{S \mid \pi^*b_S = 0\} = \bigcup \mathcal{H}_{\lambda}$ for $\lambda \in L^-$, $\lambda^2 \equiv 2 \pmod{4}$.

Proof

Recall: $\pi^*b_S = 0 \iff \exists D \text{ with } \sigma^*D \equiv -D \text{ and } D^2 \equiv 2 \pmod{4}$

$$\iff \exists \lambda \in L^-, (\lambda \cdot \omega) = 0, \lambda^2 \equiv 2 \pmod{4}.$$

Complements and questions

Remark (H. Martinez):

• When $\pi^*b_S = 0$, explicit construction of b_S :

$$L \in \operatorname{Pic}(X)$$
, $\sigma^*L \cong L^{-1}$, $L^2 \equiv 2 \pmod{4}$. Then $\sigma^*\mathbb{P}(\mathcal{O}_X \oplus L) = \mathbb{P}(\mathcal{O}_X \oplus L^{-1}) \cong \mathbb{P}(\mathcal{O}_X \oplus L)$ \sim

 $\mathbb{P}(\mathcal{O}_X \oplus L) \to X$ descends to Severi-Brauer $P \to S$ representing b_S .

Questions:

• Extend to other surfaces; typical case, Godeaux surfaces:

$$\sigma = \text{automorphism } (X_i) \mapsto (\zeta^i X_i) \text{ of } \mathbb{P}^3, \ \zeta^5 = 1,$$
 $X := \text{invariant quintic (e.g. } \sum X_i^5 = 0), \ \pi : X \to S := X/\langle \sigma \rangle.$

$$Br(S) = \mathbb{Z}/5$$
, b_S generator, when is $\pi^*b_S = 0$??

Questions (continued)

• Extend to higher-dimensional varieties.

Good case: X holomorphic symplectic, e.g. fourfold.

A fixed-point free automorphism must be of order 3

$$(\chi(\mathcal{O}_X)=3)$$
. Example ??

THE END