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Abelian theta functions

C curve (= Riemann surface) of genus g .

Topologically, line

bundles on C are classified by the degree deg L ∈ Z.

Jd := {isom. classes of line bundles of degree d on C} ∼=

J0 = the Jacobian of C ∼= complex torus Cg/Γ

We will focus on J := Jg−1.

Θ := {L ∈ J | H0(L) 6= 0} hypersurface in J (theta divisor) .

Definition

{theta functions of order k} := H0(J,OJ(kΘ))

= {meromorphic functions on J with poles ≤ kΘ};

line bundles trivial on Cg ⇒ theta functions lift to functions on

Cg , quasi-periodic w.r.t. Γ.
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Algebro-geometric properties

Notation: for L line bundle on a variety X ,

|L| := P(H0(X , L)) = {effective divisors D s.t. OX (D) ∼= L }

Rational map ϕL : X 99K |L|∗ associated to L.

Back to theta functions :

dim H0(J,OJ(kΘ)) = kg ;

ϕkΘ : J → |kΘ| embedding for k ≥ 3;

for k = 2, ϕ2Θ : J � J/i := K (J) ↪−→ |2Θ| , i : L 7→ K ⊗ L−1.

Gives explicit description of J as submanifold of PN ; much is

known about its equations, geometry etc.
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Non-abelian theta functions

Line bundles ↔ C∗-bundles; replace C∗ by arbitrary semi-simple

algebraic group G .

MG := moduli space of (semi-stable) G -bundles on C .

(For classical groups, G -bundle = vector bundle E + quadratic or

symplectic form; semi-stable ⇔ E semi-stable)

Important Fact : Pic(MG ) = Z [LG ], LG determinant bundle

G -theta functions of level k := elements of H0(MG ,Lk)
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Relation with physics

These spaces appear in math. physics, in (at least) 2 ways :

1 In topological quantum field theory : H0(MG ,Lk) depends

essentially only on the topology of C ; C 7→ H0(MG ,Lk)

should be a TQFT in the sense of Atiyah.

2 In conformal field theory : C 7→ H0(MG ,Lk) is the space of

conformal blocks for the Wess-Zumino-Witten model.

Mathematical consequences :

'&%$ !"#1 : when C varies, the H0(MG ,Lk) form a projectively flat

vector bundle on the moduli space Mg (Hitchin connection).

In other words, H0(MG ,Lk) carries a (projective) representation

of the modular group Γg = π1(Mg ).
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The Verlinde formula

'&%$ !"#2 gives the Verlinde formula for dim H0(MG ,Lk): for G = SL(r):

dim H0(MSL(r),Lk) =
( r

r + k

)g ∑
S⊂[1,r+k]
|S|=r

∏
s∈S
t /∈S

∣∣2 sinπ
s − t

r + k

∣∣g−1
.

(many mathematical proofs by now.)

Aim of the talk : understand L and H0(MG ,L), in particular,

the theta map ϕL :MG
//___ |L|∗ .
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G = SL(r)

MSL(r) = {E (semi-stable) rank r | det E = OC} .

(semi-stable: every E ′ ⊂ E has degree ≤ 0.)

Key construction : associate to E ∈MSL(r) a divisor on J

ΘE := {L ∈ J | H0(C ,E ⊗ L) 6= 0}

either ΘE is a hypersurface in J; then ΘE ∈ |rΘ| ,

or ΘE = J : E has no Theta divisor.

Thus get map θ :MSL(r) //___ |rΘ| , θ(E ) = ΘE .
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MSL(r)

ϕL
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θ
//______ |rΘ|

i.e. up to isomorphism, θ is the theta map.

In particular H0(MSL(r),L) ∼−→ H0(J,OJ(rΘ))∗.

Consequence :

Indeterminacy locus of θ = Bs |L| = {E ∈MSL(r) | ΘE = J} .

Examples first constructed by Raynaud, exist for r ≥ 4 in any

genus (Pauly). One of the major difficulties in the study of θ.
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G = SL(2)

Theorem

For g = 2, θ :MSL(2)
∼−→ |2Θ| (Narasimhan-Ramanan)

For g ≥ 3, C non hyperelliptic, θ :MSL(2) ↪−→ |2Θ|
(Brivio-Verra + van Geemen-Izadi)

For g ≥ 3, C hyperelliptic, θ 2-to-1 onto explicit subvariety of

|2Θ| (Bhosle-Ramanan).

Example (Narasimhan-Ramanan)

g = 3, C non hyperelliptic : MSL(2) quartic hypersurface

Q ⊂ |2Θ| ∼= P7,singular along the Kummer variety K (J) =⇒

Q is the Coble quartic.
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G = SL(r), g(C ) = 2

In genus 2, dimMSL(r) = dim |rΘ| = r 2 − 1.

Proposition

For g = 2, θ is generically finite.

Note : θ is not a morphism for r ≥ 4; some fibres have dimension

≥ [ r
2 ]− 1.

Example (Ortega)

(g = 2) θ :MSL(3) → |3Θ| ∼= P8 is a double covering, branched

along a sextic hypersurface S ⊂ |3Θ|.

S∗ ⊂ |3Θ|∗ is the Coble cubic, the unique cubic hypersurface

in |3Θ|∗ singular along the image of J.
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SO(r) versus O(r)

MO(r)
∼= {(E , q) | E semi-stable rk r , q : Sym2E → OC non-deg.}

MSO(r)
∼= {(E , q, ω) | (E , q) ∈MO(r) , ω ∈ H0(C ,∧r E ) , q(ω) = 1)}

Map MSO(r) �MOO(r) := {(E , q) ∈MO(r) | ∧r E = OC} .

For r odd, −1 ∈ Aut(E , q) exchanges ω and −ω ⇒

MSO(r)
∼−→MOO(r) .

For r even, MSO(r)
2:1−→MOO(r) .
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Technical point: O(r) versus GL(r)

Theorem (Serman)

The map MO(r) →MGL(r) is an embedding.

Remarks

1 MSO(r) has 2 components M±SO(r), distinguished by the

Stiefel-Whitney class w2 ∈ {±1}.

2 For (E , q) ∈MO(r), E ∼= E ∗, hence ΘE = ΘE∗ = i∗ΘE ,

where i is the involution L 7→ K ⊗ L−1 of J.

Thus ΘE ∈ |rΘ|+ or |rΘ|−, the eigenspaces of i∗ in |rΘ|.
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H0(M±
SO(r),L)

Theorem

M±SO(r)

��

θ± //___ |rΘ|±
_�

��
MSL(r)

θ //___ |rΘ|

θ± = theta map for M±SO(r) .

In particular, H0(M±SO(r),L) ∼−→
(
H0(J,OJ(rΘ))∗

)±
.

(Essential ingredient: Verlinde formula for SO(r).)
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Example (g = 2, r = 3)

M−SO(3)
� � //

θ−��

MSL(3)

θ
��

M+
SO(3)

? _oo

%%KKKKKKKKK
θ+

��

|3Θ|−
(∼=P3)

� � // |3Θ| (∼=P8) |3Θ+| (∼=P4)
? _oo Q? _oo

S− = ∪Hp

?�

S
?�

S ∩ |3Θ−| := S− = union of 6 planes

S ∩ |3Θ+| = Q+ 2H, Q = Igusa quartic, H = Θ + |2Θ| ⊂ |3Θ|+ .
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G = Sp(2r)

MSp(2r) = {(E , ϕ) | E ∈MSL(2r) , ϕ : ∧2E → OC non-deg.}

Again MSp(2r) ↪−→MSL(2r) (Serman).

E ∼= E ∗ ⇒ ΘE ∈ |2rΘ|+  θ :

{
MSp(2r) 99K |2rΘ|+

E 7→ ΘE

Then LSp(2r) = θ∗O(1), but θ+ is not the theta map for r ≥ 3.(
That is,

(
H0(J,OJ(2rΘ))∗

)+ −→ H0(MSp(2r),L) not bijective
)
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H0(MSp(2r),L)

Replace J by N := {F ∈MGL(2) | det F = KC} (∼=MSL(2))

and Θ by ∆ := {F ∈ N | H0(C ,F ) 6= 0}.

To E ∈MSp(2r) associate ∆E := {F ∈ N | H0(C ,E ⊗ F ) 6= 0}.
Then : either ∆E = N , or ∆E ∈ |r∆|.

Theorem

|L|∗

o
��

MSp(2r)

ϕL

66nnnnnnn

E 7→ ∆E

//______ |r∆|

In particular, H0(MSp(2r),L) ∼−→ H0(N ,ON (r∆))∗.

(Proof relies on the rank-level duality SL(2)− GL(r) proved by

Marian-Oprea and Belkale.)
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The end
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